Volume One: Xlib Programming Manual
for Version 11 of the X Window System

X Window SystenSBN 1-56592-002-3
1992

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

This document is based in part orKlib———C Language X Interface by Jin Gettys, Ron Newman, and Robert
Scheifer, and theX Window System Protocol, Version 1y Robert Scheifer and Ron Newman, both of which are
copyright © 1985, 1986, 1987, the Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital
Equipment Corporation, Maynard, Massachusetts. In addition, we have included some material provided in Oliver
Jones’ Xlib Tutorial Overheadswhich was distributed at the MIT X Conference in January 1988 and which is
copyright © 1987 Apollo Computer, Inc.

We have used this material under the terms of its copyright, which grants free use, subject to the following
conditions:

"Permission to use, copy, modify and distribute this documentationi.g., the original MIT, DEC, Sun
Microsystems, or Apollo materiafor any purpose and without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the names of MIT, Apollo, Digital, Tektronix, or Sun not be
used in advertising or publicity pertaining to this documentation without specific, written prior permission.
MIT and Digital make no representations about the suitability of the software described herein for any
purpose. Itis provided ‘as is’ without expressed or implied warranty. "

Note, however, that those portions of this document that are based on the original X11 documentation and other
source material have been significantly revised, and that all such revisions are copyright © 1987, 1988, 1989, and
1990 O'Reilly & Associates, Inc. Inasmuch as the proprietary revisions cannot be separated from the freely
copyable MIT source material, the net result is that copying of this document is not allowed. Sorry for the
doublespeak!

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for
errors or omissions, or for damages resulting from the use of the information contained herein.

August 1988: First Edition.

November 1988: Minor revisions.

May 1989: Release 3 updates added. Minor revisions.

April 1990: Second Edition covers Release 3 and Release 4.
July 1990: Minor revisions.

October 1990: Minor revisions.

December 1991: Minor revisions.

June 1992: Third Edition covers Release 4 and Release 5.

March 1993: Minor revisions.

Preface

About This Manual

This manual describes the X library, the C Language programming interface to Version 11 of the X Window Systen
X library, known as Xlib, is the lowest level of programming interface to X. This library enables a programmer to wi
applications with an advanced user interface based on windows on the screen, with complete network transparenc
will run without changes on many types of workstations and personal computers.

Xlib is powerful enough to write effective applications without additional programming tools and is necessary for ce
tasks even in applications written with higher—level "toolkits."

There are a number of these toolkits for X programming, the most notable being the DEC/MIT toolkit Xt, the Andre)
toolkit developed by IBM and Carnegie—Mellon University, and the InterViews toolkit from Stanford. These toolkits
still evolving, and only Xt is currently part of the X standard. Toolkits simplify the process of application writing
considerably, providing a numberwidgetsthat implement menus, command buttons, and other common features of
user interface.

This manual does not describe Xt or any other toolkitat is done in Volumes Four and Five of our X Window System
series. Nonetheless, much of the material described in this book is helpful for understanding and using the toolkits,
the toolkits themselves are written using Xlib and allow Xlib code to be intermingled with toolkit code.

Summary of Contents

This manual is divided into two volumes. This is the first volumeXtieProgramming Manual It provides a
conceptual introduction to Xlib, including tutorial material and numerous programming examples. Arranged by tas
topic, each chapter brings together a group of Xlib functions, describes the conceptual foundation they are based c
illustrates how they are most often used in writing applications (or, in the case of the last chapter, in writing window
managers). Volume One is structured so as to be useful as a tutorial and also as a task—oriented reference.

The second volume, théib Reference Manuaincludes reference pages for each of the Xlib functions, organized
alphabetically for ease of reference; a permuted index; and humerous appendices and quick reference aids.

Volume One and Volume Two are designed to be used together. To get the most out of the examples in Volume O
will need the exact calling sequences of each function from Volume Two. To understand fully how to use each of tt
functions described in Volume Two, all but the most experienced X "hacker" will need the explanation and example
Volume One.

Both volumes include material from the original Xlib and X11 protocol documentation provided by MIT, as well as fi
other documents provided on the MIT release tape. We have done our best to incorporate all of the useful informa
from the MIT documentation, to correct code references we found to be in error, to reorganize and presentitin a ir
useful form, and to supplement it with conceptual material, tutorials, reference aids, and examples. In other words,
manual is not only a replacement but is a superset of the MIT documentation.

Those of you familiar with the MIT documentation will recognize that each reference page in Volume Two includes
detailed description of the routine found in Gettys, Newman, and ScheKlésC Language X Interfagelus, in many

cases, additional text that clarifies ambiguities and describes the context in which the routine would be used. We h
added cross references to related reference pages and to where additional information can be found in Volume On

How to Use This Manual

Volume One is intended as an introduction to all the basic concepts of X programming and also as a useful referen
many of the most common programming techniques. It is divided into 14 chapters, which describe and demonstrat:
of the X programming library, and numerous appendices.

You will find it necessary to read at least Chapters 1, 2, and 3 before attempting to program with the X library. Cha

Introduction provides a discussion of the context in which X programs operate. Chayt€oRceptsdescribes the
conceptual foundations underlying X programming. ChaptBa8ic Window Progragrpresents a simple program.

Chapters 4 through indow AttributesThe Graphics Contexbrawing Graphics and Tex€Color, Events andThe
Keyboard and Pointg¢discuss various programming techniques that are used in all X programs. These chapters ca
read as a tutorial and consulted for reference later.

Chapter 10Internationalization and Chapter 11nternationalized Text Inputescribe the Xlib features for making an
application usable in any language without changes to the application binary. These features were added in Relea

Chapter 12Interclient Communicatigris a description of communication between applications and between applicati
and the window manager, including properties and selections. The proposed conventions for interclient communic
presented in Appendix Iinterclient Communcation Conventigrd Volume Zero, X Protocol Reference Man{zal of the
second printing).

Chapter 13Managing User Preferencedescribes the facilities provided for database management, parsing the comr
line, and managing user preferences. Xlib calls this the resource manager.

Chapter 14A Complete Applicatigrmprovides an example of a complete application. This chapter is especially useful
demonstrating managing user preferences with the resource manager.

Chapter 150ther Programming Techniquesescribes programming techniques that will be useful to some but not all
programs. It should be scanned for applicable techniques and read in detail when needed for a particular project.

Chapter 16Window Managementlescribes what window managers do and how they work. This information should
provide a more complete knowledge of the variety of contexts in which X applications may function. It also describ
Xlib functions that are intended primarily for window management. A simple window manager program is describec

Appendix A,Specifying Fontsdescribes how the programmer should specify default font names.
Appendix B,X10 Compatibilitydescribes the routines supported in X11 for compatibility with X Version 10.

Appendix C,Writing Extensions to Xs a guide to writing extensions to X. This is for experienced X programmers on
is provided so that this manual can serve as a complete replacement for the MIT Xlib documentation.

Appendix D,The basecalc Applicatiompresents the complete code fiasecal¢the complete application described in
Chapter 12A Complete Applicatian

Appendix E,Event Referencaescribes each event type in a reference page format. Included is how to select the e\
when they are generated, the contents of the event structures, and notes on how to use them. This information is"
using the numerous events.

Appendix F,The Xmu Librarydescribes the routines in this miscellaneous utilities library that are useful in Xlib
programming. This library is not an X Consortium standard but is widely available.

Appendix G,Sources of Additional Informatiphists where to get the X software, companies that offer training in X
programming, and descriptions of additional published books on the subject.

Appendix H,Release Noteslescribes the changes between Releases 3, 4 and 5. This manual describes Release 4
Release 5.

The Glossarygives you somewhere to turn should you run across a term with which you are unfamiliar. Some care
been taken to see that all terms are defined where they are first used in the text, but this assumes a sequential rea
manual.

Volume Two consists of a permuted index, reference pages to each library function, and appendices that cover ma
structures, function groups, events, fonts, colors, cursors, keysyms, and errors. Finally, Volume Two concludes wi
at—-a—glance charts that help in setting the graphics context (GC) and the window attributes. This volume should b
consulted to obtain the specifics of calling each Xlib function.

Getting the Example Programs

The example programs in this book are available electronically in a number of ways: by ftp, ftpmail, bitftp, and uucg
cheapest, fastest, and easiest ways are listed first. If you read from the top down, the first one that works for you it
probably the best. Udtp if you are directly on the Internet. Use ftpmail if you are not on the Internet but can send a
receive electronic mail to internet sites (this includes CompuServe users). Use BITFTP if you send electronic mail
BITNET. Use UUCP if none of the above works.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown, with what you shc
in boldface.

%tp ftp.uu.net

Connected to ftp.uu.net.

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.

Name (ftp.uu.net:kismet): anonymous

331 Guest login ok, send domain style e—-mail address as password.

Password: kismet@ora.com (use your user name and host here)

230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/xbook/xlib/

250 CWD command successful.

ftp> binary (Very important! You must specify binary transfer for compressed files
»)
200 Type set to I.

ftp> get xlibprgs3.tar.Z

200 PORT command successful.

150 Opening BINARY mode data connection for xlibprgs3.tar.Z.
226 Transfer complete.

ftp> quit

221 Goodbye.

%

If the file is a compressed tar archive, extract the files from the archive by typing:
%zcat xlibprgs3.tar.Z | tar xf —

System V systems require the following tar command instead:

%zcat xlibprgs3.tar.Z | tar xof —

If zcatis not available on your system, use separate uncompress and tar commands.

If the file is a compressed shar archive, you can extract the files from the archive by typing:

%uncompress FILE.shar.Z
%bin/sh FILE.shar

FTPMAIL

FTPMAIL is a mail server available to anyone who can send and receive electronic mail to and from Internet sites.
includes most workstations that have an email connection to the outside world, and CompuServe users. You do nc
be directly on the Internet. Here's how to do it.

You send mail tdtpmail@decwrl.dec.comin the message body, give the name of the anonymous ftp host and the ft;
commands you want to run. The server will run anonymous ftp for you and mail the files back to you. To get a cor
help file, send a message with no subject and the single word "help" in the body. The following is an example mail
that should get you the examples. This command sends you a listing of the files in the selected directory, and the |
examples file. The listing is useful in case there’s a later version of the examples you'’re interested in.

%mail ftpmail@decwrl.dec.com
Subject:
reply jerry@ora.com (where you want files mailed)

connect ftp.uu.net

chdir /published/oreilly/xbook/xlib/

dir

binary

uuencode (or btoa if you have it)
get xlibprgs3.tar.Z

quit %

A signature at the end of the message is acceptable as long as it appears after "quit."

All retrieved files will be split into 60KB chunks and mailed to you. You then remove the mail headers and concate
them into one file, and thernudecodeor atobit. Once you've got the desired file, follow the directions under FTP to
extract the files from the archive.

VMS, DOS, and Mac versions afidecodgeatob, uncompressandtar are available. The VMS versions are on
gatekeeper.dec.com in /archive/pub/\\MS

BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages requesting files, and it sends you
the files by electronic mail. BITFTP currently serves only users who send it mail from nodes that are directly on BI
EARN, or NetNorth. BITFTP is a public service of Princeton University. Here’s how it works.

To use BITFTP, send mail containing your ftp comman®T¢-TP@PUCC For a complete help file, send HELP as th
message body.

The following is the message body you should send to BITFTP:

FTP ftp.uu.net NETDATA

USER anonymous

PASS your Internet email address (not your bitnet address)
CD /published/oreilly/xbook/xlib/

DIR

BINARY

GET xlibprgs3.tar.Z

QUIT

Once you've got the desired file, follow the directions under FTP to extract the files from the archive. Since you are
probably not on a UNIX system, you may need to get versiongde#codeuncompressatob, andtar for your system.
VMS, DOS, and Mac versions are available. The VMS versions ajatekeeper.dec.com/archive/pub/VMS

Questions about BITFTP can be directed to Melinda VaMa&iINT@PUCCon BITNET.

UUCP

UUCP is standard on virtually all UNIX systems, and is available for IBM—compatible PCs and Apple Macintoshes.
examples are available by UUCP via modem from UUNET; UUNET's connect-time charges apply.

You can get the examples from UUNET whether you have an account or not. If you or your company has an acco!
UUNET, you will have a system with a direct UUCP connection to UUNET. Find that system, and type:

uucp uunet\!~/published/oreilly/xbook/xlib//xlibprgs3.tar.Z yourhost \I~/ yourname /

The backslashes can be omitted if you use the Bourne s)éligtead ofcsh The file should appear some time later (ug
to a day or more) in the directolysr/spool/uucppubligbhurname If you don’t have an account but would like one so thi
you can get electronic mail, then contact UUNET at 703—-204-8000.

If you don't have a UUNET account, you can set up a UUCP connection to UUNET using the phone number
1-900-468-7727. As of this writing, the cost is 50 cents per minute. The charges will appear on your next telephe
The login name is "uucp" with no password. For examplé, sys/Systemsntry might look like:

uunet Any ACU 19200 1-900-468-7727 ogin:——ogin: uucp

Your entry may vary depending on your UUCP configuration. If you have a PEP-capable modem, make sure
s50=255s111=30 is set before calling.

It's a good idea to get the filpublished/oreilly/xbook/xlib//Is-IR.As a short test file containing the filenames and sizes
all the files in the directory.

Once you've got the desired file, follow the directions under FTP to extract the files from the archive.

Compiling the Example Programs

Once you've got the examples and unpacked the archive as described above, you're ready to compile them. The
way is to usémake a program supplied with the X11 distribution that generates proper Makefiles on a wide variety ¢
systemsimakeuses configuration files called Imakefiles which are included. If you in@ales you should go to the
top-level directory containing the examples, and type:

%xmkmf
%make Makefiles
%make

All the application—defaults files are in the main examples directory. The application—defaults files are not automati
installed in the system application—defaults directory (usiadly/lib/X11/app—default®n UNIX systems). (See Chapter
9, Resource Management and Type Converdmmdetails.) If you have permission to write to that directory, you can
copy them there yourself. Otherwise, you can set the XAPPLRESDIR environment variable to the complete path of
directory where you installed the examples. The value of XAPPLRESDIR must end with a / (slash). (Most of the e
will not function properly without the application—defaults files.)

Assumptions

Readers should be proficient in the C programming language, although examples are provided for infrequently use
features of the language that are necessary or useful when programming with X. In addition, general familiarity wit
principles of raster graphics will be helpful.

Related Documents
The C Programming Languadpy B. W. Kernighan and D. M. Ritchie.

The following documents are included on the X11 source tape:

Xt Toolkit Intrinsicsby Joel McCormack, Paul Asente, and Ralph Swick

Xt Toolkit Widgetdy Ralph Swick and Terry Weissman

Xlib—C Language X Interfacby Jim Gettys, Ron Newman, and Robert Scheifler

X Window System Protocol, Versiontiyi Robert Scheifler

The following other books on the X Window System are available from O’Reilly and Associates, Inc.:
Volume Zero —-X Protocol Reference Manual

Volume Two ——Xlib Reference Manual

Volume Three —X Window System User’s Guide

Volume Four —-X Toolkit Intrinsics Programming
Manual

Volume Five ——X Toolkit Intrinsics Reference Manual
Volume Six ——Motif Programming Manual

Volume Seven —XView Programmer’s Guide
Volume Eight ——X Administrator’'s Guidéforthcoming)
PHIGS Programming Manual

PHIGS Reference Manual

Quick Reference —Fhe X Window System in a Nutshell

Requests for Comments

Please write to tell us about any flaws you find in this manual or how you think it could be improved, to help us proy
you with the best documentation possible.

Our U.S. mail address, e-mail address, and telephone number are as follows:

O'Reilly and Associates, Inc.

103 Morris Street

Sebastopol, CA 95472

(800) 338-6887

UUCP: uunetloraladrian Internet: adrian@ora.com

Bulk Sales Information

This manual is being resold by many workstation manufacturers as their official X Window System documentation.
information on volume discounts for bulk purchase, call O’'Reilly and Associates, Inc. at 617-354-5800, or send e-
linda@ora.com (uunet'orallinda).

Source licensing terms for online documentation are also available.

Acknowledgements

The information contained in this manual is based in pakKlitn-C Language X Interfagevritten by Jim Gettys, Ron
Newman, and Robert Scheifler, and ¥&Vindow System Protocol, Version b} Robert Scheifler (with many
contributors). The X Window System software and these documents were written under the auspices of Project Att
MIT. In addition, this manual includes material from Oliver Jones’ Xlib tutorial presentation, which was given at the
X Conference in January 1988, and from David Rosenthebs—Client Communication Conventions Manulabwe a
great debt to the X Consortium policy allowing others to build on their work.

I would like to thank the people who helped this book come into being. It was Tim O’Reilly who originally sent me «
a contract to write a manual for X Version 10 for a workstation manufacturer and later to another company to write
manual for X Version 11, from which this book began. | have learned most of what | know about computers and te
writing while working for Tim. For this book, he acted as an editor, he helped me reorganize several chapters, he w
on theColor andManaging User Preferencehapters when time was too short for me to do it, and he kept my spirits |
through this long project. While | was concentrating on the details, his eye was on the overall presentation, and his
improved the book enormously.

This book would not be as good (and we might still be working on it) had it not been for Daniel Gilly. Daniel was m
production assistant for critical periods in the project. He dealt with formatting issues, checked for consistent usag

terms and noticed irregularities in content, and edited files from written corrections by me and by others. His job we
take as much of the work off me as possible, and with his technical skill and knowledge of UNIX, he did that very w

This manual has benefitted from the work and assistance of the entire staff of O’Reilly and Associates, Inc. Sue W
was responsible for graphics and design, and she proofed many drafts of the book; Linda Mui tailored the troff mac
the design by Sue Willing and myself and was invaluable in the final production process; John Strang figured out tt
resource manager and wrote the original section on that topic; Karen Cakebread edited a draft of the manual and
established some conventions for terms and format. Peter Mui executed the "at—a—glance" tables for the inside ba
Tom Scanlon entered written edits and performed copy fitting; Donna Woonteiler wrote the index of the book; Valel
Quercia, Tom Van Raalte, and Linda Walsh all contributed in some small ways; and Cathy Brennan, Suzanne Van
and Jill Berlin fielded many calls from people interested in the X manual and saved me all the time that would have
Ruth Terry, Lenny Muellner, and Donna Woonteiler produced the Second Edition, with graphics done by Chris Reil
Mike Sierra produced the Third Edition. A special thanks to everyone at O’'Reilly and Associates for putting up witt
habits of printer and terminal hogging, lugging X books around, recycling paper, and for generally being good at wt
do and good-natured to boot.

David Flanagan wrote much of the material on X11R5, which appeared originally in hiBtogmkmmer’'s Supplement
for Release 5I'm sincerely grateful to him for doing such a great job.

I would also like to thank the people from other companies that reviewed the book or otherwise made this project p
John Posner, Barry Kingsbury, Jeff MacMann and Jeffrey Vroom of Stellar Computer; Oliver Jones of Apollo Comg
Sam Black, Jeff Graber, and Janet Egan of Masscomp; Al Tabayoyon, Paul Shearer, and many others from Tektro
Robert Scheifler and Jim Fulton of the X Consortium (who helped witGdher andManaging User Preferences
chapters), and Peter Winston 1l and Aub Harden of Integrated Computer Solutions. Despite the efforts of the reviev
everyone else, any errors that remain are my own.

—— Adrian Nye

Chapter 1

Introduction

This chapter gives the big picture: what X is all about and some fundamentals of how it works. Everyone should Ic
this chapter, though readers who are already familiar with X may only want to skim it.

In September 1987, the Massachusetts Institute of Technology released the first snapshot of what may well becorr
the most significant software technologies of the 1990s: Version 11 of the X Window System, commonly referred t
X11. X11 may not change the world, but it is likely to change the world of workstations.

The X Window System is being adopted as a standard by nearly every workstation manufacturer and should event
replace or be supported under their proprietary windowing systems. Versions will also be available for personal cor
and supercomputers.

For the first time, portable applications can be written for an entire class of machines rather than for a single
manufacturer’'s equipment. Programmers can write in a single graphics language and expect their applications to \
without significant modifications on dozens of different computers.

What's more, since X is a hetwork—based windowing system, applications can run in a network of systems from dif
vendors. Programs can be run on a remote computer, and the results displayed on a local workstation. Proprietary
networks have been around for a while. However, network cooperatidfifeoéntcomputers has been held up by the la
of a common applications language. Now there is one.

Vendors hope that X will lead to a software explosion similar to the one that occurred in response to the PC standa
microcomputers.

1.1 Versions of X

X was developed jointly by MIT’s Project Athena and Digital Equipment Corporation, with contributions from many
companies. It was masterminded by Robert Scheifler and colleagues at MIT, though it owes some debt to the "W"
windowing package developed by Paul Asente at Stanford.

There have been numerous research versions of X. Version 10, Release 4 (popularly known as X10.4), which was
in 1986, became the basis for several commercial products. Development of most X10.4 products was curtailed, h
when it became apparent that Version 11 would not be compatible with it. Version 11, Release 1 became available
September 1987, Release 2 in March 1988, Release 3 in February 1989, Release 4 in January 1990, and Release
August 1991.

Version 11 is a complete window programming package. It offers much more flexibility in the areas of supported d
features, window manager styles, and support for multiple screens and provides better performance than X Versiol
is fully extensible. But just as important, the X11 subroutine library (Xlib) is expected to be stable for several years
be at least a de facto industry standard. That means that programs written with this library will not need major revi:
because of software updates. While there may be additions to this library, there will not be incompatible changes tc

With X11 Release 2, control of X passed from MIT to the X Consortium, an association of major computer manufac
who plan to support the X standard. The Consortium was formed in January 1988 and includes virtually all large ¢
manufacturers. Many software houses and universities are associate members, who also have a voice in controllir
standard and receive advance access to newly released software.

1.2 X Window System Concepts

The X Window System is complex, but it is based on a few premises that can be quickly understood. This section
describes these major concepts.

1.2.1 Displays and Screens
The first and most obvious thing to note about X is that it is a windowing system for bitmapped graphics displays.

In bitmapped graphics, each dot on the screen (cafdedeh or picture element) corresponds to one or more bits in memory. Programs modify the
display simply by writing to display memory. Bitmapped graphics are also referred to as raster graphics, since most bitmapped displays use
television—type scan line technology: the entire screen is continually refreshed by an electron beam scanning across the face of the display tuk
line, or raster, at a time. The term bitmapped graphics (or memory—mapped graphics) is more general, since it also applies to other dot—oriente
such as LCD screens. We assume that you are familiar with the basic principles of bitmapped graphics.

It supports color as well as monochrome and gray-scale displays.

A slightly unusual feature is thatdésplayis defined as a workstation consisting of a keyboard, a pointing device such
mouse, andne or morescreensMultiple screens can work

As of Release 5, there is a standardized extension called the X Input Extension that supports multiple input devices other than keyboards or mir

together, with mouse movement allowed to cross physical screen boundaries. As long as multiple screens are cor
a single user with a single keyboard and pointing device, they comprise only a single display, as shown in Figure 1

Figure 1-1. A display consisting of more than one screen

1.2.2 The Server—Client Model

The next thing to note is that X is a network—oriented windowing system. An application need not be running on th
system that actually supports the display. While many applications can execute locally on a workstation, other apg
can execute on other machines, sending requests across the network to a particular display and receiving keyboar
pointer events from the system controlling the display.

At this point, only TCP/IP and DECnet networks are supported by the X Consortium and most vendors, though tha:
change before long.

The program that controls each display is known sereer At first, this usage of the term server may seem a little
odd--when you sit at a workstation, you tend to think of a server as something across the network (such as a file ¢
server) rather than the local program that controls your own display. The thing to remember is that your display is
accessible to other systems across the network, and for those systems, the code executing in your system does ac
display server.

The server acts as an intermediary between user programs ¢tialttsior application3 running on either the local or
remote systems and the resources of the local system. The server (without extensions) performs the following tasl
. Allows access to the display by multiple clients.

. Interprets network messages from clients.

. Passes user input to the clients by sending network messages.

. Does two—-dimensional drawing——graphics are performed by the display server rather than by the client.

. Maintains complex data structures, including windows, cursors, fonts, and "graphics contegtnliaeghat can
be shared between clients and referred to simply by resource IDs. Server-maintained resources reduce the ¢
data that has to be maintained by each client and the amount of data that has to be transferred over the netw

Since the X Window System makes the network transparent to clients, these programs may connect to any display
network if the host they are running on has permission from the server that controls that display. In a network
environment, it is common for a user to have programs running on several different hosts in the network, all invoke
and displaying their windows on a single screen, as shown in Figure 1-2.

Figure 1-2. Applications can run on any system across the network

Supercomputer

.

jupitar

In practice, each user is sitting at a server and can start applications locally to display on the local server or can ste
applications on remote hosts for display on the local server, if the remote hosts have permission to connect to the |
server. All other users in the network are in a similar situation——they can run applications on their own system or ¢
yours, but they will, for the most part, be displaying on their own server. This use of the network is kdsivibated
processingDistributed processing helps solve the problem of unbalanced system loads. When one host machine i
overloaded, the users of that machine can arrange for some of their programs to run on other hosts.

One extreme of this arrangement is the PC server or X terminal. Because these single—task systems can run only "
server (and sometimes a window manager), a user sitting at one of these servers must run all clients on systems a
network, with their results displayed on the PC or X terminal screen. This makes the single—tasking PC or X termir
and work just like X on a multitasking workstation.

1.2.3 Window Management

Another important concept in X programming is that applications do not actually control such things as where a wir
appears or what size it is. Given multiprocessor, multiclient access to the same workstation display, clients must n
dependent on a particular window configuration. Instead, a client lgivissabout how long and where it would like to be
displayed. The screen layout or appearance and the style of user interaction with the system are left up to a separ
program, called th&sindow manager

The window manager is just another program written with Xlib, except that it is given special authority to control the

layout of windows on the screen. The window manager typically allows the user to move or resize windows, start r
applications, and control the stacking of windows on the screen, but only according to the window manager’s wind¢
layout policy. Awindow layout policys a set of rules that specify allowable sizes and positions of windows and icon

Unlike citizens, the window manager has rights but not responsibilities. Programs must be prepared to cooperate v
type of window manager or with none at all (there are fairly simple ways to prepare programs for these contingenci
The simple window managéwrm does not enforce any window layout policy, but clients should still assume that thert
could be one. For example, the window manager must be informed of the desired size of a new window before the
is displayed on the screen. If the window manager does not accept the desired window size and position, the prog
be prepared to accept a different size or position or be able to display a message such as "Too small!"

If you are having trouble visualizing this situation, imagine a window manager where no windows are allowed to ov
This is known as #led window manager. The Siemens RTiled window manager lets only transient windows (such &
pop—up menus) overlap. Thwmwindow manager, on the other hand,referred to ascal-estate—driverbecause
keyboard input is automatically assigned to whatever window the pointer currently happens to be in.

There is at least one other window manager variety that you will encounter, ditedexror click—to-type Its
distinguishing feature is that it assigns all keyboard input to a single window when that window is selected by clicki
with the pointer. A listener may or may not allow windows to overlap. Apple Macintesters will recognize this type ol
interface.

X is somewhat unusual in that it does not mandate a particular type of window manager. Its developers have tried
X itself as free of window management or user interface policy as possible. And, while the X11 distribution inctudes
as a sample window manager, individual manufacturers are expected to write their own window managers and use
interface guidelines. In fact, two commercial window managers with user interface guidelines are already becominc
established. They amwm the OPEN LOOKI window manager from AT&T and Sun, andvm the Motif] window
manager from Open Software Foundation. The OSF Motif window managerand OPEN LOOK window manager
olwm both can be configured to be real-estate—driven or click—to—-type.

In the long run, the developers of X may well have made the right choice, in that the lack of clear user interface gui
will allow a period of experimentation in which the marketplace could come up with better designs than are present
available. Some industry observers, however, decry this move, pointing out that it undercuts X's appeal as a stanc
platform——Xprogramsmay be portable across systems from multiple vendors, but if users have to deal with a differ
user interface on each system, half the benefit of that portability will be lost. Until a clear user interface standard e
from the marketplace, developers must be careful to write their programs in such a way that they can run under dif
window managers and user interface conventions.

1.2.4 Events

As in any mouse-driven window system, an X client must be prepared to respond to any of manyaiffatsriEvents
include user input (keypress, mouse click, or mouse movement) as well as interaction with other programs. (For e
if an obscured portion of a window is exposed when another overlapping window is moved, closed, or resized, the
must redraw it.) Events of many different types can occur at any time and in any order. They are placed on a quel!
order they occur and usually are processed by clients in that order. Event—driven programming makes it natural to
user tell the program what to do instead of vice versa.

The need to handle events is a major difference between programming under a window system and traditional UNI
programming. X programs do not use the standard C functions for getting characters, and they do not poll for inpu
Instead there are functions for receiving events, and then the program must branch according to the type of event
perform the appropriate response. But unlike traditional programs, an X program must be ready for any kind of eve
any time. In traditional programs the program is in control, asking for certain types of input at certain times. In X
programs, the user is in control most of the time.

1.2.5 Extensions to X

The final thing to know about X is that itégtensible The code includes a defined mechanism for incorporating
extensions, so that vendors are not forced to hack up the existing system in incompatible ways when adding featur
These extensions are used just like the core Xlib routines and perform at the same level. Some extensions are stal

the MIT X Consortium, such as the Shape extension, which supports non-rectangular windows, and the X Input ex
which supports input devices other than keyboard and mouse. There is also a standard 3—-D graphics extension c:
with two APIs called PHIGS and PEXIib. Other extensions are under development.

Extensions have both client-side and server-side code. A server vendor is not required to provide support for all t
standard extensions. Therefore, before using an extension, you must query the server to see if the extension is su
At this writing, only the Shape extension is widely supported.

1.3 X Window System Software Architecture

By now, we have described enough to draw a simple picture of the X Window System architecture (see Figure 1-3

Figure 1-3. Clients communicate with the server via Xlib calls

Cliant Client Glient

Applicat
Application {Window Manager} ppllca.::ln

Toolkit

Xib Xib Xib
-

X Window System Evenlts and replies are
protocol requests are passed back to Clients

gent rom Clents

Nelwork

¥ ¥ ¥

X Sarver

Davice Orivers

A display server is a program that runs on each system that supports a graphics display, keyboard, and mouse. TI
release from MIT includes sample monochrome and color servers folD&E®, Hewlett Packard, IBM, Apple Macintosh
and many other systems. Commercially developed servers are available for virtually all major workstation vendors.
addition, companies such as Graphics Software Systems, Interactive Systems, and Locus Computing offer server

implementations for IBM—-compatible PCs. Finally, there are X terminals, which are screens controlled by an X ser
running in ROM. X terminals are available from companies such as Visual, Network Computing Devices, and Gra

Applications communicate with the server by means of calls to a low-level library of C language routines Kxiidwn as

A low-level analog to Xlib exists for Lisp.

Xlib provides functions for connecting to a particular display server, creating windows, drawing graphics, respondin
events, and so on. Xlib calls are translated to protocol requests sent via tcp/ip either to the local server or to anothe
across the network. Some of the many sample applications available on the X releas&terch(deerminal emulator),
xcalc (a calculator)xmh(a mail handler)xclock(a clock), and a troff previewer.

The window manager is just another program written with the X library, except that by convention it is given specia
authority to control the layout of windows on the screen.

Client is a slightly more general term than applicatiafihough they are almost synonymous. All clients except the
window manager are called applications. When a statement in this manual applies only to the window manager or
the applications managed by the window manager, the appropriate term is used. In other instances, whichever ter
more natural is used.

Applications and window managers can be written solely with Xlib or with a set of higher-level subroutine libraries
known astoolkits Toolkits implement a set of user interface featusash as menus or command buttons (referred to
generically as toolkividgety and allow applications to manipulate these features using object—oriented programmin
techniques. Toolkintrinsicsallow programmers to create new widgets.

There are several toolkits distributed with the X11 release, the most notable of them being the Xt Toolkit, which wa
developed by Digital and MIT, and the Interviews toolkit, which was developed by Stanford University. Xt is now
officially part of the X11 standard.

Toolkits can make programming much, much easier and the finished project more thorough. Toolkits have built=in
configurability and built-in code for interaction with the window manager, which will save you a lot of trouble. You .
advised to use a toolkit for most of your X programming. However, all existing toolkits in C also require or allow yo
use Xlib code. And, more than that, they use Xlib internally; so understanding Xlib will help you understand how th
toolkits work.

Another reason to use a toolkit is to take advantage of established user interface conventions. Several of these ar
available, such as OSF’s Motif and Sun’s OPEN LOOK. If you use Xlib for all your X programming, either you will |
to reimplement one of the established conventions such as OPEN LOOK or your program will be an oddball that w
look or respond as people expect.

There are tradeoffs in using toolkits, however. One is that the executable for a given program using a toolkit is
considerably larger than the equivalent program written using Xlib. Another is that the toolkits utilize highly abstrac
concepts and require strict programming conventions because of their object-oriented design. These take time to

This manual describes how to write programs with Xlib. Other volumes in our X Window System series cover the t

1.4 Overview of Xlib

Just what does the X library contain? Table 1-1 groups the Xlib routines according to their major function and lists
chapter in which the group is discussed.

Function Group Description Chapter

Color Routines to change the way colors drawn by an Chapter 7
application are interpreted on the screen.

Cursors Routines to change the shape and colors of the image Chapter 6
that tracks the pointer around the screen.

Data Several mechanisms to associate data with windows Chapter 15

Management or numbers.

Display Routines to connect and disconnect an application Chapter 3

Connection with a display, possibly across the network.

Display and Macros and equivalent functions are provided that Volume One, throughout;V

Server
Specifications
Drawing

Errors
Events

Extensions

Fonts

Geometry
Graphics Context
Host Access
Images
Interclient
Communication
Internationalizatio
n

Keyboard

Pointer
Regions

Resource
Management
Screen Saver
Text

User Preferences
Window Attributes
Window Life

Window
Management

provide information about a particular server
implementation and the connected display hardware.
Routines to draw dots, lines, rectangles, polygons,
and arcs, and an analogous set to fill the last three.
Routines to set the functions called when errors occur.
Routines to get input from the user, from other
applications, and from the server. In X, these are
collectively called events.

Routines to find out what extensions are available on
a particular server and get information about how to
use one.

Routines to list available fonts, load fonts, and find out
their characteristics.

Routines to manipulate and translate geometry
specifications.

Routines to set the way drawing requests are
interpreted.

Routines to control access to a server from other
machines connected in a network.

Routines to get, display, or manipulate screen images.
Routines enabling any client to make available
information for any other client to read.

Functions to handle user input and draw text
independent of language.

Functions to modify the way keyboard input is
handled, including the keyboard mapping.

Functions to modify the way pointer input is handled.
Routines to perform mathematical operations on
polygonal regions.

Routines to make managing user preferences and
command line arguments easier.

Routines to set the operating characteristics of the
daemon that blanks the screen when the keyboard
and pointer have been idle for a time.

Routines for drawing text and for determining the size
of a string to be drawn.

Routines for setting and getting the keyboard click and
auto-repeat settings.

Routines for setting and getting the current
characteristics of a window.

Routines to create or destroy a window.

Routines to allow the manipulation of windows around
the screen, changing their size, their visibility on the
screen, and their apparent position above or below
other windows.

Table 1-1 Xlib Routines by Function

As you can see, Xlib provides a lot of functionality. X was designed to allow any style of user interface, and that
requires a very flexible set of routines. But not all the routines are necessary or intended for writing normal
applications. Many are intended for window management or for other specialized purposes.

Chapter 6
Chapter 2
Chapter 8

Chapter 15

Chapter 6
Chapter 13
Chapter 5
Chapter 15

Chapter 6
Chapter 12

Chapters 6, 10, and 11
Chapter 9

Chapter 9
Chapter 6

Chapter 13, Chapter 14

Chapter 15

Chapter 6
Chapter 9
Chapter 4

Chapter 3
Chapter 16

A more detailed listing that provides the name and a brief description of the routines in each group can be found

in Appendix A, Function Group Summary, of Volume Two, Xlib Reference Manual.

Chapter 2

X Concepts

This chapter introduces the concepts that underlie X programming. You should read this chapter even if you are th
person who likes to jump right into the code. (If you are desperate, you can skip ahead to Chapter 3 and return to
chapter when you get confused.) "An hour or so spent reading about the system in general can save many hours i
programming that leads to a dead end when the approach turns out to be wrong."

When learning a new programming language, many programmers prefer to look at a few code samples and then b
programming right away, looking up more information as they need it. This manual is organized so that most of it i
both as a tutorial and as a reference. There are lots of code samples and fragments in this manual to help the per:
likes to read code more than words. Around the code they will find many of the concepts described that are neces
understanding that particular example.

The "just-look—at-the—examples" approach works up to a point. It allows a sharp individual to get "something" rur
a very short time. Eventually, however, programmers find that in order to get the most out of a system——and some
even to get it do anything useful-—a lot of underlying issues must be understood. In X, there are a lot of interrelate
concepts and assumptions that are so basic that the programmer should know them cold. An hour or so spent rea
the system in general can save many hours of programming that leads to a dead end when the approach turns out
wrong.

This chapter describes those underlying issues and assumptions that are so important to programming with Xlib. |
into considerably more detail than the brief conceptual overview providgdapter 1, "Introduction.” After reading

this chapter, you will be well prepared to understand the rest of this manual and will have a sound idea of what is r
to write an X application. This chapter describes how Xlib works, including a description of window concepts and
characteristics, graphics, and events, and reviews the issues that you will need to think about in order to program.

2.1 How Xlib Works

Let’s start by describing the problem that X was designed to solve and then describe how it goes about solving it.

First of all, X was designed to provide windows on bitmapped terminals. This has been done before but not in a wi
designed to be easily portable to many different brands of hardware, from PCs to supercomputers. The code was
to stress easy portability, even between different operating systems, but still to allow high performance.

Second, X was designed to allow many different types of machines to cooperate within a network. This was one o
major innovations in the X design. There are several standard networking protocols, but there was lacking a widel
adopted standard for a higher—level protocol specifying what should be sent over the network to drive a window sy
The first thing that was determined about X was the protocol used to communicate across the network.

Third, the developers of X decided that it should not require (or even imply) a particular style of user interface. Pra
speaking, X would not have been adopted as a standard by many companies if it had implied a user interface incol
with their proprietary window systems. In addition, the developers of X felt that the issues surrounding the design «
window-based user interface for X were not sufficiently worked out at present. An important design goal was thus
make X "policy free."

To accomplish these goals, the X Window System had to be designed from the bottom up. To work over a networl
had to be programs running at both ends of the connection to send and receive the information and to interpret it.
that controls the display and input devices was named the server. At the other end are clients——programs written 1
Xlib to interface with the X protocol. This is shown in Figure 2-1.

Figure 2-1. Clients and servers

Cliant
Application

Xib

X Sarvar }(—)

Actually, although this manual describes Xlib, the C language intetfattee X protocol, there is also a Lisp interface,
and there are likely to be others. Any language binding that can generate and receive X protocol requests can con
with a server and be used with the X Window System. But, at present, Xlib is the most popular low-level programr
interface used with X, because C is so widely available.

2.1.1 The X Protocol

The X protocol specifies what makes up each packet of information that gets transferred between the server and X
both directions. Even when the server and Xlib are running on the same machine, the protocol is used for commur
through some internal channel instead of the external network. There are four types of packets that get transferred
protocol: requests, replies, events, and errors.

A protocolrequests generated by Xlib and sent to the server. A protocol request can carry a wide variety of informe
such as a specification for drawing a line or changing the color value in a cell in a colormap or an inquiry about the
size of a window. Most Xlib routines generate protocol requests. The exceptions are routines that only affect data
structures local to Xlib and do not affect the server (regions and the resource manager are the primary examples o
exceptions).

A protocolreplyis sent from the server to Xlib in response to certain requests. Not all requests are answered by
replies——only the ones that request information. Requests that specify drawing, for example, do not generate repli
When Xlib receives a reply, it places the requested data into the arguments or returned value of the Xlib routine th¢
generated the request. An Xlib routine that requires a reply is calbeshd—trip request Round-triprequests have to
be minimized in clients because they lower performance when there are network delays.

An eventis sent from the server to Xlib and contains information about a device action or about a side effect of a pr
request. The data contained in events is quite varied, because it is the principal method by which clients get inform
Events are kept in a queue in Xlib and can be read one at a time by the client. The range of types of events that th
sends to a client is specified by the client.

An error tells the client that a previous request was invalid. An error is like an event, but it is handled slightly differe
within Xlib. Errors cannot be read by the Xlib calls that read events. Instead, errors are sent to an error—handling |
in Xlib. The default error handler simply prints a message and exits; it can be replaced by a client-specific error-h
routine.

2.1.2 Buffering

Xlib saves up requests instead of sending them to the server immediately, so that the client program can continue
instead of waiting to gain access to the network after every Xlib call. This is possible because most Xlib calls do nc
require immediate action by the server. This grouping of requests by the client before sending them over the netw:
increases the performance of most networks, because it makes the network transactions longer and less numerou:
the total overhead involved.

Xlib sends the buffer full of requests to the server under three conditions. The most common is when an applicatio
an Xlib routine to wait for an event but no matching event is currently available on Xlib’s queue. Since, in this case
application must wait for an appropriate event anyway, it makes sense to flush the request buffer. Second, Xlib ca

get information from the server require a reply before the program can continue, and therefore, the request buffer i:
and all the requests acted on before the information is returned. Third, the client would like to be able to flush the 1
buffer manually in situations where no user events and no calls to query the server are expected. One good exam
third case is an animated game, where the display changes even when there is no user input.

Let's look at how this works in practice. When the application starts up, all the requests that create the initial appea
the application are queued up by Xlib. Then the application goes into its event loop aklleatisvent() . Since
nothing has yet been sent to the server, there are no windows and therefore no events have yet been generated.
XNextEvent() causes all the requests to be sent to the server, displaying the application. Meanwhile, the applice
still waiting for the first user input. When the user moves the mouse or presses a button or key, the server, sends
to Xlib as soon as the network allows—-it does not queue them or group them (except under rare conditions involvi
grabs discussed Bection 9.4, "Grabbing the Keyboard and Pointer’). Normally, once an event arrives, the
application generates more requests to draw——for example, highlighting the border of a button. These stay queues
until all the events that have already arrived have been processed. Once the application ANieeEgent() and no
more events are in the queue, the queued requests are sent to the server and the process starts again.

Using Xlib calls, the client can flush the connection in thweseys: by calling a routine that requires an immediate reply
routine withQuery , Fetch , or Get in its name); by calling certain event-reading routines when no matching event ¢
on Xlib’s queue; or by calling the routin&$lush or XSync() .

In this manual, whenever you see typewriter font (such as that used for the)(ﬁwm()), it means this word would be typed verbatim into C cod
as a symbol, structure name, structure member, or Xlib routine. Italic typewriter font is used for dummy arguments to Xlib routines, since they ¢
typed into code as shown but are arbitrary. The argument names used in this volume are the same as the names used on the refe@noepages
Two, Xlib Reference Manual

The first of these actions says to the server, "I need some information; please act on these requests right away anc
me the information." The second says, "I'm waiting for a certain kind of event, so I'll check if you already sent the e
over to Xlib. If not, please act on these requests immediately, and then I'll be waiting for the event." The last one ¢
don’t need any information from you now, but | need you to act on these requests immediately." Normally, the last
is not used much because there are enough of the first two types of Xlib calls in the client to make the transactions
enough.

You should already know that Xlib maintains a queue of the events for each server to which an application is conne
shown in Figure 2-2. Whenever events arrive from the server, they are queued until the client reads them.

Figure 2-2. The server’s event queue and a client’s event queue

Neiwork Client1

A pplic ation

Queue

Sarver 1

Queue

Events In

The fact that Xlib queues both input and output is very important in application programming and especially in debt
It means that drawing requests will not appear in a window until the request buffer is flushed. It means that errors
discovered by the server until the requests arrive at the server and are processed, which happens only after Xlib flt
request buffer. Once discovered, the error is reported immediately to the client. In other words, several Xlib routin
be called before an error caused by an earlier routine is reported. These are two of the most visible examples of tt
of buffering. Se&ection 2.6.3, "Debugging an X Application"for more details on how buffering affects programming
and debugging.

2.1.3 Resources

X uses several techniques to reduce network traffic. One major technique is to have the server maintain complex

abstractions such as windows or fonts and have the client allocate an integer ID number for each one as a nicknan
of these abstractions is calledesource A resource can be a window, pixmap, colormap, cursor, font, or graphics co
(these will be described in a moment).

Whenever an operation is to be performed on a window (or any other resource), the ID of the window is used in on
argument to the Xlib routine. This means that instead of an entire structure full of data being sent over the network
Xlib routine call, only a single integer that refers to that structure need be sent. Remember that since the client anc
server may be running on different machines, pointers cannot be used to refer to structures. The caveat of the res
approach is that the client must query the server when it needs information about resources, which, as mentioned :
leads to network delays. As it turns out, clients normally do not need to query the server very often, and the resoul
abstraction greatly simplifies programs.

If any client knows the ID of a resource, that client can manipulate that resource even if some other client created t
resource. That means that more than one client can draw into the same window, although that is not often desirabl
importantly, this is how window managers are implemented——-they can move and resize application windows beca
know the IDs.

Be warned that there is another use of the term "resource" in X that pertains to the resource manager. A resource
context of the resource manager is a user—preference specification that controls user—customizable elements of ar

application. Fortunately, these two uses of the term resource apply to different parts of X and therefore are not too
to keep separate. One use applies to server-maintained data structures, and the other to user customization of an
application.

2.1.4 Properties and Atoms

The developers of X needed a way to allow clients to communicate arbitrary data with each other, and they came
properties. Apropertyis a packet of information associated wahvindow, made available to all the clients running und
a server. Properties are used by clients to store information that other clients might need or want to know and to re
information when set by other clients.

Properties have a string name and a numerical identifier called an atoatorAis an ID that uniquelyidentifies a
particular property. Property name strings are typically all upper case, with words separated by underscores, such
"WM_COLORMAP_WINDOWS". Atoms are used to refer to properties in routine calls so arbitrary—length property
name strings do not need to be sent over the network. An application gets the atom for a property by calling
XinternAtom() . You specify the string name for the property as an argumetihternAtom() , and it returns the
atom. From this point on, the application uses only the atom to refer to that property. Every application that uses tt
procedure will get the same atom for the same property name string, if it is connected to the same server (that has
reset).

Some atoms, calleggredefined atomsre defined when the server initializes. An application does not need to use
XlInternAtom() to get these atoms. Instead, these atoms are available as symbolic constants begir¥wg with
These atoms identify properties whose contents have a certain meaning known by convention to all clients. The pi
themselves do not have any contents until a client or the window manager sets them. Some of the properties desc
this manual have predefined atoms and others do not, for historical reasons. Where predefined atoms are availabl
XA_WM_HINTSwe will use them in the text to refer to the property. For properties with no predefined atoms, we w
the string property name such as WM_COLORMAP_WINDOWS, which does not begin with XA_ and is not in Cou
typeface. This tells you whether you will need to ediiternAtom() before using the property.

A group of related clients or an extension may define other properties and atoms that will have a meaning known t
clients in the group or using the extension.

Atoms for properties are analogous to the IDs used to refer to server resources, except that both an atom and a wi
needed to uniquely identify a property. The same atom would be used to identify a property on one window as on
another——only the window is different in the calls to set or read this property on two windows. Only #iyps ever
used in client code; properties are the underlying data managed by the server.

One of the most important uses of properties is to communin&iemation from applications to the window manager ar
vice versa. The application sets thandard propertie®n its top—level window to specify the range of sizes it prefers fc
its top—level window and other information. These properties are called "standard" because they are the minimum
an application should specify. Properties also communicate the other way; for example, the window manager spec
what sizes of icon pixmaps it prefers.

For more information on properties and atoms,Sstion 12.1, "Properties and Atoms."

2.1.5 The Window Manager

The window manager is just another client written with Xlib, but by convention, it is given special responsibilities. It
mediates competing demands for the physical resources of a display, including screen space and the colormap. U
has a user interface to allow the user to move windows about on the screen, resize them, and start new applicatior

Most window managers decorate the main windows of all applications with a titlebar and various tools for iconifying
resizing the application. The window manager does this by creating a separate window that fits behind the main w
of each application. It is this separate window that has the decorations on it. This is important mainly because yot
application code does not need to handle this drawing. Figure 2—-3 shows the titlebar added to an apptieatjcheby
standard window manager in the MIT distribution asR#f.

Figure 2-3. Titlebar added to applications by the twm window manager

applcation

tithe
icon iy —resize
buton button

Much of the communication between clients and the window manager and vice versa occurs through properties (th
occurring through events). Many of the properties are knowmgsbecause they may not necessarily be honored by t
window manager, even if one is running. An application must be prepared for the window manager to ignore, mod
honor the preferences it indicates through the window manager hints. The properties themselves do not have valic
until applications or the window manager set them.

Quite a few of the features of Xlib (and the X protocol) exist only to give the window manager the mechanism to en
its authority. These are described in Appendiknterclient Communcation Conventigrd Volume Zero, X Protocol
Reference Manughs of the second printing). They will not be needed by normal applications.

One such feature is calledbstructure redirectiarSubstructure refers to the size, position, and overlapping order of tt
children of a window. Redirection refers to the requests by applications to change the configuration of these windc
being sent to the window manager for approval instead of actually getting acted upon by the server. Substructure
redirection allows a window manager to intercept any request by an application to change the size, position, borde|
or stacking order (known collectively as the window configuration) of its top—level windows on the screen. Any
application request to change the configuration of its top—level window will be canceled, and instead an event will k
to the window manager indicating the arguments used in the reconfiguration request. The window manager can th
decide what size, position, and stacking order to grant the application, and the window manager will reconfigure ths
window to those dimensiong:or temporary windows such as pop—up menus and dialog boxes, the substructure red
feature can be turned off using a window attribute.

Substructure redirection may seem obscure, but it has two significant implications for applications. The first is that
application cannot assume that the configuration it specifies for a window will actually be reflected in the window ot
screen. This is true whether the configuration was set by creating the window or by reconfiguring the window. The
means that the application must always determine the new configuration of the window before drawing into it. It ca
this by selecting a certain event type which contains the window configuration.

The second important implication of substructure redirection concerns the mapping of a top—level window. Becaus
window manager can intercept the mapping request, and it might take some time before the window manager deci
window configuration and maps the window itself, an application cannot assume that the window is visible immedi
That means it cannot draw into the window immediately. The application must wait until it receives an event indicat

that the window is visible before drawing into the window.

Communicating with the window manager, and window management in general, is a long story which we’ll describ
fully in Chapter 3, "Basic Window Program," andChapter 12, "Interclient Communication." Chapter 16, "Window
Management," gives an example of a simple window manager and describes communication with applications fron
window manager’s perspective.

Most window managers today also have the ability to start and kill applications. This is known a session managerr
However, they can usually start onfermand a few other basic clients. A trsession manageran be a separate client.
It would be able to start any client and control its command line arguments and save the state of a whole group of (
(before the user logs out) and later restore them to the same position on the screen (when the user logs back in).
of capability is not yet available (but people are working on it). Each application supplies its command line as a hir
that the window or session manager has enough information to restart it in its current state.

Now you should have an idea of how Xlib works. Let's move on to a description of windows.

2.2 What are X Windows?

An X server controls a bitmapped screen. In order to make it easier to view and control many different tasks at the
time, this screen can be divided up into smaller areas called windows. A window is a rectangular area that works i
ways like a miniature screen. Windows on the screen can be arranged so they all are visible or so they cover each
completely or partially. A window may be any size greater than zero.

Each window (on a screen running X) can be involved in a different activity, and the windows currently in use are p
so they are at least partially visible. The window manager lets you move a different window to the top when neces
rearrange the size and position of the windows.

What you may not have realized is that some of these windows, such as the ones created by the meaihheaardlenade
up of many layered windows of various sizes. The scrollbars, titlebar, command buttons, and other features of the
interface are actually separate windows that provide information to the user or allow for input providing convenient
control, as shown in Figure 2—4. There is more here than meets the eye.

Figure 2-4. The windows used to create an instance of the xmh application

/T

A inbox

4 _ ora' cathy Wed Jun 22 0:31% 0570 Inwvoicee

.,—'—"'_f

windows

Zould you please get all invoicee ko me by
£:00 today. [am btrying to close ouk the
monkth of Xay!

aripa

\/

a2

2.2.1 Window Characteristics

Do read this section even if you are already familiar with windowing systems, to make sure you understand X’s particular implementation of win
What are the characteristics of a window? There are many.

First of all, a window always hagparentwindow, which is assigned as the window is created. Each window is contai
within the limits of its parent. The window cannot display output in areas outside itself and cannot receive input fro
keyboard or the pointer while the pointer is outside itself (unlgsateor keyboard focuss in effect, as described in
Sections 8.3.2.1 and 8.3.2.Bvery window fits in a hierarchy set up by its children, its parent, its parent’s parent, an
on. The very first window, the only one that has no parent, is called the root window and fills the entire screen. Th
window is created by the X server as it starts up.

Second, each window has its own coordinate system. As shown in Figure 2-5, the origin of a window is the top-le
corner of the window and the x and y coordinates increase to the right and bottom.

In the X Window System:

. The horizontal axis i, and the vertical axis is

. xandy are 0 at the upper-left corner inside the border (if there is one) of the window currently in use. This pc
referred to as the windowtwrigin.

. Coordinates increase toward the right and bottom of the window.

. Coordinates are integral and coincide with pixel centers.

All measurements for placing graphics and for positioning subwindows are made from the origin. When we say th¢
point isrelative toa window, this means that the x and y coordinates of the point are measured from the window’s o

Each window is given a unique identifying number (ID) when it is created. All the routines that affect a particular w
use a window ID as an argument and act in this window environment, so positions in the window are specified rela
the upper—left corner inside the border. It is not necessary to know the position of a window to correctly locate

subwindows or draw graphics within the window.

For example, to create a window usik@reateWindow() or XCreateSimpleWindow() , you supply an offset
from the upper—left corner of the parent to position the new window. When the parent moves, the new window stay
same position relative to its parent.

Third, a window has position which locates its upper-left corner relative to its parent’s corner, a cgitdiimandheight
of usable pixels within the border, anb@der width These characteristics are shown in Figure 2-5. By convention,
window width and height do not include the border. Since several windows may have the same parent, a window 1
also haveastacking ordeamong these windows to determine which will be visible if they overlap. These four
characteristics are collectively known as wiadow configuratiorbecause they affect the layout of windows on the
screen.

Figure 2-5. Elements of the window configuration

2.y position of
child {relative b
parent origin)

y increasing

To summarize, the window configuration includes:

. A window’s width and height in pixels, not including the border.

. A window’s border. It can vary in width; zero makes the border invisible.

. A window’s particular position on the screen, specified layndy in pixels, measured from the origin of the parent
(the upper-left corner, inside the border) to the upper—left corner of the child, outside its border.

. A window’s particular stacking order among the windows with the same parent.
The width, height, and position are collectively called the wingeametry Applications often allow users to specify the
geometry and border width of the window as a command line argument or through the user defaults mechanism.

Fourth, a window has characteristics referred tegghandvisual which together determine its color characteristics. Tl
depth is the number of bits available for each pixel to represent color (or gray scales). The visual represents the w
values are translated to produce color or monochrome output on the monitor.

Fifth, a window has alassof eitherinputOutput or InputOnly . As the names implynputOutput windows
may receive input and may be used to display outputigdOnly windows are used for input only. There is no suc
thing as an output—only window because certain types of input, called events, are needed by all windows.

Sixth, a window has a set aftributes The window attributes control many aspects of the appearance and response
window:

. What color or pattern is used for the border and background of the window?

. How are partial window contents relocated during resizing?

. When are the contents of the window saved automatically as they become covered and then exposed?

. Which event types are received, and which types are thrown away (hot passed on to ancestor windows)?

. Should this window be allowed to be displayed, moved, or resized without notifying the window manager?

. Which colormap is used to interpret pixel values drawn in this window?

. Which cursor should be displayed when the pointer is in this window?

This may seem like a dizzying array of variables, but in practice, many of them default to reasonable values and ce
safely ignored. And the flexibility they provide makes the system much more powerful. All of these window charact
will be explained in more detail later in this chapter, and most will be covered again later in the manual.

But first, a little more detail is necessary on the basic framework of X: the window hierarchy, the stacking order, ar
concept of wrapping. These are the subjects of the next three sections.

2.2.2 Window Hierarchy

Windows are arranged in a hierarchy like a family tree, except that only one parent is required to create a child win
There is a separate hierarchy for each screen. At the topraotheindow, which fills the entire screen and is created
when the server initializes. The first windows to be created by each client are children of the root window. In the c
first call toXCreateWindow() or XCreateSimpleWindow() (either of which creates a new window), the root
window is the parent.

The children of the root window are special, because they are the top—level windows of each application and they
managed by the window managé&hapter 3, "Basic Window Program," describes the special procedures required of
client before displaying, moving, or resizing this window.

Each child may also have its own child windows. These child windows of the top—level windows are used to create
application features like command buttons and scrollbars.

Figure 2—-6 shows a window hierarchy as it might appear on the screen, and Figure 2-7 shows the same hierarchy
schematic form. Note that the windofshroughG represent subwindows of each application, which may not overlap
like this in real applications. Normally the subwindows are used as command buttons or panes which are laid out i
non—overlapping fashion, as was shown in Figure 2—-4. However, this hypothetical hierarchy serves to demonstrat:
effects of the stacking order and the window hierarchy.

Figure 2-6. A sample window hierarchy on the screen

Figure 2-7. A sample window hierarchy in schematic form

Root Window

——-

Stacking order among
thildren of root

A B c D E F G
Lo A
Stacking order among Stacking order among
ehildren of window 1 children of window 3
— —l
Boltom Top Boltom Top

A child may be positioned partially or completely outside its parent window, but output to the child is displayed and
received only in the area where thkild overlaps with the parent. Figure 2—6 shows that the child windows do not ext
beyond the borders of the parent even when they are positioned in such a way that they would otherwise overlap tl
parent’s edge. (For example, in Figure 2-6, winddwill not be drawn beyond the bottom of wind8weven if its height
would suggest that it should.) If a window is moved in such a way that it would extend beyond the parent, it is clipg
that only the part overlapping the parent is displayed.

These are the terms used to describe subsets of the window hierarchy:

Parent The window used when creating a child window.

Child A window created with another window as parent.

Subwindow Synonymous with child. Not the same as descendant.

Siblings Windows created with the same parent (brothers and sisters).

Descendants The children of a window, their children, and so on. Descendants could also bénéadiec.

This term is more inclusive thamild or subwindowsince it can include several generations in the
window hierarchy.

Ancestors The parent of a window, its parent, and so on, including the root window. Ancestors could alsc
calledsuperiors

2.2.3 Window Stacking Order

When one window overlaps one of its sibling windows, the one on top obscures part of the other. The stacking ord
determineswhich window appears on top. This order can be changed with various routines to raise, lower, or circu
windows relative to their siblings. These routines affect only a group of siblings and their descendants but not theil
ancestors.

Child windows always stay in front of their parent. When a window with children is moved in the stacking order, all
child windows move with it, just as they do (because of the window—-based coordinate system) when the parent is r
around the screen.

Figures 2-6 and 2-7 showed a set of windows on the screen and their hierarchy, and if you look carefully, you can
the stacking order affects each group of sibling windows. Notice that wiRd®above windowC and all the other
children of windowl.

2.2.4 Mapping and Visibility

A newly created window does not immediately appear on the screen. It is an abstract entity that cannot be drawn t
a backing store feature——discussed later in this section——is implemented on that server and turned on with the apg
window attribute)Mappingmarks a window as eligible for display. If it is not obscured by siblings or siblings of
ancestors, it may be visible, and only then can it be drawn to.

XMapWindow() maps a window in its current position in the stacking order, ithapRaised() places the window
at the top of the stacking order of its siblings before mapping it. For a new window never mapped before, these tw
are equivalent, since the initial stacking position of a new window is on top.

You must map a window before you have any chance of seeing it, but that alone is not enough. A number of facto
affect whether any window, newly created or already mapped, is visible:

1. The window must be mapped wiMapWindow() or related routines.
2. All of the window’s ancestors must be mapped.

3. The window must not be obscured by visible sibling windows or siblings of ancestors. If sibling windows are
overlapping, whether or not a window is obscured depends on the stacking order. The stacking order can be
manipulated witlXCirculate Subwindows() , XConfigureWindow() , andXRestackWindows()

4. The request buffer must be flushed by a routine that gets events, with axd@list() , or by a function that
requestsinformation from the server. More information on this topic was provid&gation 2.1.2, "Buffering.”

5. The initial mapping of a top—level window is a special case, since the window’s visibility may be delayed by the
window manager due to substructure redirection that was briefly descriBedtion 2.1.5, "The Window
Manager." For complicated reasons, a client must wait for the Eixplose event before assuming that its window is
visible and drawing into it. It is not important to understand why this is true at this point.

An important consequence of these rules, and one of the reasons for them, is that unmapping a window (with
XUnmapWindow()) erasesthe window and all its descendants from the screen. X allows you (or, actually, the winc
manager) to control the placement and visibility of an entire client made up of a hierarchy of windows simply by
manipulating the top—level window.

The window configuration and window attributes are maintained when a window is unmapped. But it is important t
remember that the X server does not automatically preserve the visible contents of a window. Graphic operations
window that is not visible or that is unmapped have no effect. Graphics visible in a window will be erased when the
window is obscured and then exposed. For these reasons, it is important for the client to be prepared to redraw th
of the window on demands described i®ection 2.5, "Introduction to Events."

On some high performance servers, a "backing store" feature is available that maintains the window contents wher
window is unmapped or covered by other windows, so that the window is automatically refreshed with the current ¢
when it becomes visible again. This feature is expensive in terms of computing resources and should be invoked ¢
windows whose contents are difficult to recreate. On many types of equipment, this feature is not supported, so fo
sake of portability, programs should be capable of recreating the contents of their windows in other ways. This por
is particularly important in X, because network environments often employ various brands of equipment.

Mapping is done with th&¥MapWindow() or XMapSubwindows() routines. Unmapping is done with the
XUnmapWindow() or XUnmapSubwindows() routines.

2.3 Introduction to X Graphics

This section provides a brief introduction to the terms and concepts used in graphics under the X Window System.
will see these terms used in ChapteB&sic Window Prograrand 4,Window Attributesefore we get to a serious
treatment of graphics in Chaptersthie Graphics Contex6, Drawing Graphics and Texand 7 Color.

2.3.1 Pixels and Colors

The X Window System is designed to control bitmapped graphics displays. In the simplest black—and—white disple
is a single bit per pixel: the state of that bit determines whether the pixel will be black or white. In color systems ot
monochrome systems allowing gray—scale displays, there are multiple bits per pixel.

The state of the multiple bits assigned to each pixel does not directly control the color or gray—scale intensity of the
Instead they are used as an index to a lookup table callddranap as shown in Figure 2-8. On a color display, a pixe
consists of separate red, green, and blue phosphors, each sensitive to a separate electron beam; the relative inten
these three colors fools the eye into thinking it sees a single color. Accordingly, the colormap contains an array of
green, and blue (RGB) triples. In other words, if the value of the bits for a given pobetl(&alug is 14, the RGB values
of the fourteenth member of the colormap will be displayed at that location on the screen.

Figure 2-8. Mapping of pixel value into color through colormap

Colormap
R G B R = Red
Frame Buffer G = Gresn
61T 1 B-Be
15
—14 [255(255] o
13
A Fixel Yalue 12
11
10
a
B
7
E
5
d
3
2
1

Each member of a colormap is callecodorcell, each of which translates a pixel value into a specified set of red, gree
and blue values. All bitmapped displays have at least one hardware colormap, though in the case of a single-plan
monochrome screen, it may consist of only two colorcells. In most cases, all clients share the single colormap by

allocating only the number of colorcells they need and sharing as many as possible. When clients have special
requirements, however, X allows them to have private colorcells or to create virtual colormaps which are then sway
into the hardware colormap (if it is writable) when necessary.

Note that each window can potentially specify a different colormap. This is the significance of the fact that the color
a window attribute.

2.3.2 Pixels and Planes

The number of bits per pixel is also referred to as the numipdarsésin the graphics display. Black—and-white system
have asingle plane, color displays have from 4 to 28 planes, and gray—scale displays usually have from 2 to 4 plan
supports up to 32 planes.

As can be inferred from the previous discussion of bits per pixel as an index to the colormap, the number of possib
or shades of gray that can sienultaneouslylisplayed on the screen i8 2vheren is the number of planes in the display.
(Of course, additional colors can be made available even on a system with only a few planes, at the cost of existing
simply by loading different RGB values into the hardware colormap if it is writable.)

All graphics calculations are performed on the pixel values before they are translated into RGBurtégxel values
specified in a drawing request and the destinatiorpixel values are combined according to a plane mask, clip mask,
logical function to arrive at the findlestinationpixel values. The plane mask, clip mask, and logical function are aspe
of a structure called the graphics context (GC) and are describddjmer 5, "The Graphics Context."

The macro8lackPixel() andWhitePixel() return pixel values that map to black and white using the default

colormap for that screen. These macros are intended for use in monochrome programs so that they will work on

monochrome, gray—scale, or color displays. On color hardware, the colors of black and white may not actually be
and white, but they are guaranteed to be contrasting.

2.3.3 Pixmaps and Drawables

A window is not the only valid destination for drawing. Pixmaps are also valid destinations for most graphics reque
pixmapis a block of off-screen memory in the server. Windows and pixmaps are collectively kndrawables

A pixmap is an array of pixel values. It has a depth just like a window. It does not, however, have a position relativ
other window or pixmap, and it does not have window attributes such as a colormap. All of those things affect a pi.
only when it is copied into a window. And a pixmap becomes visible only when copied to a window.

There are several routines for creating pixmaps. The simpé&ré&atePixmap() , which creates an empty pixmap
with undefined contents. Always remember to clear a pixmap created@iglatePixmap() before using it,
otherwise it may contain garbag8everal others create pixmaps and fill a pixmap from data stored in a file. These
functions will be mentioned later in the context of the various uses of pixmaps.

Some routines operate only on pixmaps or only on windows. These routines specifyigittegr or Window as the
argument. If either is allowed, the argument to the Xlib routine will be specifieDaable . All the drawing
routines specify th®rawable argument type.

A pixmap is not susceptible to being covered by other windows. Windows, on the other hand, may only be drawn t
usefully when they are visible, since their contents are not maintained when they are obscured or unmapped (unle:
backing store feature is available and in effect).

To be copied to a window witkCopyArea() , a pixmap must have the same depth as the window it is to be copied 1
Once copied, the colormap associated with the window is used to translate the pixel values from the pixmap to visi
colors. After copying, additional drawing into the pixmap do@sappear in the window. A single plane of a pixmap of

any depth can be copied into any window witbopyPlane()

In short, windows have the disadvantage that, when they are not visible, drawing to them will not do anything. A pi
which represents an area of the screen, resides in memory and can be drawn to at any time. Unfortunately, pixma
be copied into a visible window before the user can see them. This copying can have performance penalties. Perl
importantly, off-screermemory in the server used for pixmaps may be limited in quantity. Therefore, programs that

lot of pixmaps may not work on PC servers and X terminals.

A pixmap of depth 1 is known ash#gtmap though there is no separate type or resource called Bitmap. A bitmap is a
two—dimensional array of bits used for many purposes including cursor definitions, fonts, and templates for two—co
pictures. Each bit represents a single pixel value that is either set (1) or unset (0). Depending on the visual type, tf
values can be interpreted as two colors or simply as black and white.

2.3.4 Drawing and the Graphics Context

As in any graphics language, X provides routines for drawing points, lines, rectangles, polygons, arcs, text, and so
Routines that draw graphics are generically caleghhics primitives But in X, a given graphics primitive does not
contain all the information needed to draw a particular graphic. A server resource caljiegptties contextGC)

specifies the remaining variables, such as the line width, colors, and fill patterns. The ID of a GC is specified as ar
argument to the drawing routine and modifies the appearance of everything that is drawn into the drawable.

The GC must be created by the client before any drawing is didreecreated GC is stored in the server, so that the
information it contains does not have to be sent with every graphics primitive——only its ID is passed. This improve:
performance of drawing significantly since it reduces the traffic over the connection between Xlib and the server. £
settings apply to all graphics drawn using that GC.

More than one GC can be created, and each can be set with different values. This allows a program to switch bet\
and get different effects with the same graphics primitive.

2.3.5 Tiles and Stipples

When pixmaps are used for patterning an area, such as for the background of a window or in a GC, they are often
to as tiles or stipples.

A tile is a pixmap with the same depth as the drawable it is used to pattern. The tile is typically 16 by 16 pixels but
other sizes—-certain sizes are drawn faster—-—depending on the hardwat®@\(segBestTile()). ltis typically
composed of only two different pixel values since this is the easiest type to create, but multiple pixel values are per
Areas drawn by any of the drawing routines can be tiled by placing certain values in the GC. The background and
of windows can be tiled by specifying a pixmap in the window attributes.

A stippleis a pixmap of depth 1. A stipple is used in conjunction with a foreground pixel value and sometimes a
background pixel value to pattern an area in a way similar to a tile. There are two styles of stippling that can be se
graphics context. In one, set bits in the stipple are drawn in the foreground color and unset bits are drawn in the
background color. In the other, only the set bits in the stipple are drawn in the foreground pixel value, and the pixe
destination represented by unset bits in the stipple are not changed. Like tiling, stippling affects only those pixels ti
selected by the graphics request, such as the pixels drawn for a line or a character. Stipples are only present in th
cannot be used for window backgrounds.

Figure 2-9 shows how a tile is used to pattern the background of a window.

Figure 2-9. Tiling of a window background

o o O i & i
o o O o 2 O
o o o £ 5 O
o e O B O O
o o O £ & i
o o o 2 P O
o o O & & O
o o O o 2 O
o B B & 5 W

2.4 More on Window Characteristics

This section expands on the overview of window characteristigedtion 2.2.1, "Window Characteristics"and
describes in more detail the window attributes, window configuration, class, and depth and visual.

2.4.1 Window Attributes

The window attributes consist of information about how a window is to look and act. Each window has a separate
attributes, which can be set witiChangeWindowAttributes() or, in some cases, with routines that change
individual attributes. The attributes control the following window features:

Background
Border

Bit Gravity
Window Gravity

Backing Store

Saving Under

Can be a solid color, a tiled pixmap, or transparent.
Can be a solid color or a tiled pixmap.

Determines how partial window contents are preserved when a window is resized.

Determines how child windows are relocated when a window is resized.

Provides hints about when a window’s contents should be automatically saved while the windc
unmapped or obscured, which display planes should be saved, and what pixel value is to be u
when restoring unsaved planes. Not all servers are capable of backing. Check the value retul
from theDoesBackingStore() macro to determine whether this feature is supported on a
particular screen on your server.

Provides hints about whether or not the screen area beneath a window should be saved while
window, such as a pop—up menu, is in place to save obscured windows from having to redraw
themselves when the pop up is removed. Not all servers can save under windows. You can fi

whether this feature is supported on a particular screen withabeSaveUnders() macro.
Events Indicate which events should be received and which events should not be sent to ancestor wir

Substructure Redirect Override
Determines whether this window should be allowed to be mapped on the screen without interv
by the window manager. This override is usually done for menus and other windows that are
frequently mapped and then almost immediately unmapped again.

Colormap Determines which virtual colormap should be used for this window.
Cursor Determines which cursor should be displayed when the pointer is in this window.

It may clarify the picture to describe the features that window attriblatestaffect. Setting the window attributes does
not determine the size or position of a window, its parent, or its border width; these comprise the window configura
Setting the window attributes does not affect the depth, class, or visual of a window; these are permanently set whi
window is created. Attributes do not determine how graphics requests are interpreted; this is the job of the graphic
context (GC).

2.4.2 Window Configuration

A window’s configuration consists of its position, width and height, border wigltid, stacking position, as described in
Section 2.2.1, "Window Characteristics." These factors are handled differently from the window attributes (even thc
they are stored internally in tb@VindowAttributes structure) for an important reason: changing the configuration
a top-level window (a child of the root window) must be done in cooperation with the window manager.

We will not go into detail here about how the application must interact with the window manager when attempting t
a window or change a window’s configuration. For now, suffice it to say that there are certain rules the application
follow so that the window manager can be responsible for controlling what is on the screen and whehaptees,
"Basic Window Program,” for an introduction to client-window manager interaction @hdpter 12, "Interclient
Communication," for a complete description.

2.4.3 Class: InputOutput and InputOnly Windows

The X Window System provides two classes of windolmgutOutput andIinputOnly . The main difference
between the two classes is thatigoutOnly ~ window cannot be used as a drawable (a destination for a graphics
request). ConsequentipnputOnly windows have a more limited set of window attributes, have no border and a
transparent background, and cannot HapeitOutput ~ windows as children.

InputOnly windows make an invisible area of the screen in which input has a different purpose but the display is
changedinputOnly windows usually are assigned a different cursor to distinguish thgmtOnly windows are
rarely used.

The class of a window is assigned at creation and cannot be changed.

2.4.4 Depth and Visual

The depth and visual of a window are assigned at creation and cannot be changed. The depth is the number of pli
are to be used to represent gray scales or color within a window; depth is also the number of bits per pixel. The mi
depth allowable for amputOutput ~ window is the number of planes supported by the screen with which it is

associated. If a screen has 12 planes, a window may have at most 12 bits per pixel, and therefore there até at mo
possible different shades of gray or color.

The depth of atnputOnly window is always OFor InputOutput windows, the symbdaCopyFromParent , when
used as thdepth argument irXCreateWindow() , copies the depth of the parent window. Most windows use the
default depth, inherited from the root window.

The visual accounts for the differences between various tgpdsplay hardware in determining the way pixel values a
translated into visible colors within a particular window. A screen may support only one visual or several types of v
An XVisuallnfo structure contains all the information about a particular visual. One mem¥¥isofalinfo is the

visual class, which has one of the valDagctColor , GrayScale , PseudoColor , StaticColor

StaticGray , orTrueColor . These values specify the characteristics of the colormaps that can be used with the
window—-—-whether the colormap is read—only or read/write, color or monochrome, split into three primary colors or
composite. Other membersXYisuallnfo specify the valid range of pixel values; how many bits of the pixel are
allocated to red, green, and blue; and several other variables.

Both the depth and visual are inherited from the parent when a window is creat¥€vettie SimpleWindow()
For more information on the visual class, s€bapter 7, "Color."

2.45 lIcons

An iconis a small marker window that indicates that a larger "main" window exists and is available but is not currer
mapped on the screen.

Most window managers allow the useidonify an application to get it out of the way without destroying it. Deiconifyit
an application is faster and more convenient than running the application from scratch. Also, the iconified applicati
keeps running whatever processes it was at work on when iconified (unless the application is programmed to halt \
iconified). When input is required, the program may either wait until the window is deiconified or accept input in the

Figure 2-10 shows artermwindow before and after it is iconified. Tkermapplication does not create an icon pixma
and therefore, the window manag@msimply draws its icon name into the icon. The appearance and placement of
varies between window managers.

Figure 2-10. An application and its icon

B efore lconifying ARer lconifying

YT AT T H BT "]
|) i b 1)
. '1 By e o e il 1 : By e o el o 1

Il s i

T e i e
Wl e ol
el el ol
W Tl

Icon windows are managed and, in many cases, created by the window manager. Through the window manager
(which will be detailed irBection 3.2.8, "Communicating with the Window Manager"andChapter 12, "Interclient
Communication"), an application passes its icon’s name and pixmap to be displayed in the icon window. If an appli
needs to perform operations on its own icon window (perhaps to be able to change the background at any time, as
handlexmhdoes to indicate that mail has arrived), it can create its own icon window and pass the window ID to the
window manager. Otherwise, the window manager will create the icon window.

The window manager may specify in a property on the root window what sizes of icon pixmaps it prefers. If this pr
is set, the application should attempt to provide an icon pixmap of an acceptable size. The window manager may i
specify where icons will be placed. These are optional features of the window manager that may not be present. Ir
most current window managers do not specify icon sizes or control icon location.

2.4.6 Special Characteristics of the Root Window
The root window is created when the X server program is initialized. The root window’s characteristics differ slightly
those of other windows.

The root window is aimputOutput ~ window. It is always mapped. Its size cannot be changed. Its upper-left cornt
always at the upper-left corner of the screen, where the global coordinat@® ard tie root window has a zero—-width
border. Its size is accessible through macros that will be descrikddpter 3, "Basic Window Program."

The default window attributes of the root window include a background pixmap with diagonal cross—hatchings, the
colormap, and a default cursor that is a large X. Any of these can be changed. The event mask attribute can be cl
but by default, no events that occur in the root window are sent to any client. None of the other attributes are appli
the root window. Se€hapter 4, "Window Attributes,” for more information on setting window attributes.

The root window is never iconified by the window manager, because among other reasons, it cannot be unmappec

2.5 Introduction to Events

This section provides a brief introduction to events. You will need this knowledge to fully undézhigmtdr 3, "Basic
Window Program,” and some of the window attributes describeGhiapter 4, "Window Attributes.” Events are
covered completely i@hapter 8, "Events," andChapter 9, "The Keyboard and Pointer."

2.5.1 What is an Event?

Moving the pointer or pressing a keyboard key causes an input event to occur. These are two of the simplest and
common event types, but there are many others. An event is a packet of information that is generated by the serve
certain actions occur and is queued for later use by the client. The queued events can be read at any subsequent
order, but they are usually read and processed in the order in which they occurred.

Here are some other sorts of events:

. Mouse (or other pointer) button pressed or releagdtqnPress , ButtonRelease)

. Window mapped or unmappedgpNotify , UnmapNotify)

. Mouse crossing a window boundangEnferNotify |, LeaveNotify)

These event types are usually used for user input and to control a user interface.

A second group of events reports side effects of window operations. For example, when a window becomes visible

being obscured, it receives Brpose event. When window gravity (a window attribute that controls the position of a
window when the parent is resized) takes effe@ravityNotify event is generated.

A third purpose of events is to allow various clients to communicate with each other and with the window manager.
events that report the following actions are usually used for the second purpose.

. A client may request that all keyboard input be sent to a particular window regardless of the pointer position;
called akeyboard focusvindow. Changing keyboard focus from one window to another c&esesin and
FocusOut events, indicating to the client whether or not it can expect further keyboard events.

. Changing the mapping between keyboard keys and codes they generate MamgiagNotify event to be sent

to all clients.

. Reparenting a window is sometimes done by the window manager to add a frame to windows on the screen.
action causes ReparentNotify event.

. A PropertyNotify event is generated when a client changes a property on a window.

. SelectionClear , SelectionNotify , andSelectionRequest events are used to communicate back ar

forth between a client that is allowing a user to select a section of text (or other information) and a client that i
allowing the user to place the information in its window. Some of these events are sé{8evitiEvent .

At this point, it is only important to understand in general what events are, not precisely what each one is for or hov
them.Chapter 8, "Events," andChapter 9, "The Keyboard and Pointer," will provide complete details.

2.5.2 Selection and Propagation of Events

A client must select the event types that it wants the server to send for each window. The selection is made by cal
XSelectinput() , which sets thevent_mask window attribute, by setting that attribute with the more general
XChangeWindowAttributes() routine, or when calling{CreateWindow()

For example, a scrollbar may require mouse button events but not keyboard events, while the main window of an
application may require keyboard but not mouse events. One would select different event types on each of these \

Keyboard and pointer events are generated in the smallest window enclosing the pointer (or grabbing the pointer,
discussed irsection 8.3.2.2, "Keyboard and Pointer Grabbing’). Then an event of one of these types (only) propaga
upward through the window hierarchy until the event type is found ievitiet_mask or do_not_propagate_mask
attributes of the window. If the event is found inement_mask first (or in both on the same window), then the event
sent as if it occurred in that window, and if it is found goanot_propagate_mask first, then it is never sent. The
ID of the window that finally received the event (if any) is put intirelow member of the event structure.

Thedo_not_propagate_mask can only be set witKChangeWindowAttributes() or XCreateWindow()
Events other than keyboard and pointer events do not propagate. They occur in the window in which they were sel
when the appropriate action occurs.

For most types of events, a copy of an event can be sent to more than one client if each client has selected that ev
on that window. Each client has its own event mask for each window. The client that created the window need no
anything to cooperate. The second client that wants to get an event from a window that it did not create simply nee
find out the ID of the window and then select the desired event typeX8éiectinput() on that window.A

duplicate event is sent to each window, and these events propagate independently up through the hierarchy in the
applications. This is rarely done, because there is usually no reason for any program other than the window mana
play with another application’s windows.

2.5.3 The Event Queue

What do we mean when we say that an event is queued? Each client has its own event queue which receives the
events in the order they are sent by the server, as was shown in Figure 2-2.

The client then can remove each event at any time and process it according to its type and the other information in
event structure. There are several functions that get input, and they differ in how many windows are monitored ani
types of events are sought. The client can also read events on the queue without removing them, remove one and
it back, or clear the queue by throwing away all the events. Events can also be created by a program and sent to t
window manager or other programs.

2.5.4 An Event Structure

Expose is one of the most important event types, and its event structure is shown in Example 2-1. It is generated
an area of a window becomes visible on the screen and indicates that the client must redraw that area. This happ
a window is mapped, moved, resized, or deiconified or when an obscuring window is unmapped. Exposure events
common and can happen at any time, since they may be caused by the actions of other clients.

Example 2-1. An event structure

typedef struct {
int type;
unsigned long serial; /* # of last request processed by
* server */
Bool send_event; /* True if this came from a SendEvent

* request */
Display *display; /* Display the event was read from */

Window window;
intx,vy;
int width, height;
int count; [* If nonzero, more expose events
* follow */
} XExposeEvent;

The type of event is reported in every event structure——iXEhgoseEvent structure, théype field would be the
symbolic constanExpose . The window to which the event propagated is reported iwithdow member, present in all
but five event types (those dealing with selections and graphics exposure). All other information in the event struct
specific to certain event types and is described in detail in Appendixebt Reference

2.5.5 The Event Loop

Because events can arrive in any order, the structure of code to handle them is predetermined. Every program col
event loop in which each event is received and processed. Normally this loop is implemented as avhiifdiniteop,
beginning with an event—getting routine and followed Isyvéich statement that branches according to the event type
Within each branch for an event type, there may be additional branches corresponding to the window in which the
occurred or other fields in the event structure.

The loop will almost always include exposure events. X does not normally keep track of the contents of the obscul
regions of windows. It is the responsibility of the program to make sure that the window contents can be redrawn w
exposure occurs. The program mustprepared to receive and act on an exposure event at any time, meaning at ev
invocation of the event—gathering routine. A program may work perfectly as long as there are no other programs ri
but that is not good enough in a window environment!

When a window is first mapped, the first function of the program must be to read the exposure event that is genera
mapping the window. Then the program can draw the window’s contents. As it turns out, this is also how the prog
should respond when an exposure event arrives at any later time. The first drawing and later redrawing are done i
the same way, using the same code.

Note, however, that another type of ev&tnfigureNotify , must be handled in case the window manager modifie
the size of the application before mapping it and in case the user later resizes the window. More will be said about
Chapter 3, "Basic Window Program."

2.6 How to Program with Xlib

This section reviews what is important to know about X programming before you write any code. Describing what |
into the designing, writing, and debugging of X programs should give you a better start when you begin your own
programming.

The basic program described@mnapter 3, "Basic Window Program" illustrates many of the issues described here.

2.6.1 Designing an X Application
Let’s begin by outlining the major tasks any X application must perform.

From the user’s standpoint, almost any application under any window system will do the obvious things: create av
on the screen of an appropriate size, determine a position for some text and/or graphics within the window, draw in
window, and accept keyboard and/or pointer input, changing the screen accordingly. Essentially, the top—level win
the application is treated very much like the whole screen would be treated on a PC. These tasks are straightforw:
most programmers should find them familiar.

There are, of course, a few complications resulting from the unique features of window systems in general and the
Window System in particular. These complications determine the design requirements for an application that is to
under X.

2.6.1.1 Design Requirements

The following four paragraphs describe the things X applications must do that are not obvious. These are things tr
be done for the application to operate properly under X but that the average user might not notice or know about.

First, X allows workstations to be connected in a networlirich any host or node may run X programs and display
them on any other node, given permission. This means that the program must be able to accept the user’s specific
which display to use. (Remember that each display has its own server, so choosing the display is equivalent to est:
the connection between the client and a particular server.) This requirement turns out to be built in and requires vil
no programming, as is describedSaction 3.2.2, "Connecting to a Server."

Second, the application must be responsible in its use of the limited resources of the display, chiefly screen space
colormaps. This is because there may be many applications running concurrently on a single screen, sharing thos
resources. The client in charge of managing these limited resources is the window manager. There are certain
requirements for communication between each application and the window manager to ensure that competing nee
fairly arbitrated and to help make sure that the user sees a consistent user interface. These requirements are not d
meet for simple applications, but they get more complex for serious applications. This area is desChbpteml?2,
"Interclient Communication."

Third, other clients may be moved over your client and then moved away, requiring your client to redraw its windov
windows. X cannot maintain the contents of an unlimited number of overlapping windows, and it is inefficient for it
to maintain even a few. Your client will be told when redrawing is necessary and in what areas. This requirement i
hard to meet, but it encourages programming in a way that records the current "state" of each window so that it cat
redrawn. The handling of exposure is describeBdation 3.2.13, "Setting Up an Event-gathering Loop."

Fourth, the user may resize your application, so it should be capable of recalculating the dimensions and placemer
subwindows and graphics to fit within the given window.

In a nutshell, these four aspects are all that is required of an X program beyond its basic functionality. Fortunately,
most clients without unique needs such as a custom colormap, these requirements are straightforward to satisfy.

2.6.1.2 The User Interface

The first step in designing an application will be to determine what its features will be. Determining how the user w
invoke those features is probably the next step. This means designing a user interface.

X was purposely designed to be "policy free," and therefore it does not come with a standard user interface like me
window systems do. You will have to write all parts of the user interface yourself, unless you choose to use one of
toolkits that are available. Using a toolkit makes building a user interface much easier and is strongly recommende
Otherwise, you must write menus, command buttons, dialog boxes, and so forth and determine how they are to be
Although there are many ways to write these user interface features, there is a simple implementation of a menu in
winmanprogram shown i€hapter 16, "Window Management," and an example of a dialog box routin€imapter 9,
"The Keyboard and Pointer." The writing of a command button routine should be straightforward.

The key elements that interact in the design of a user interface are the hierarchy of windows and the selection and
processing of events, chiefly pointer and keyboard events. Since these device events propagate through the hiera
depending on whether they are selected for each window, both the hierarchy and the selection together determine
events are received. For every user action, there must be a path (possibly unique, possibly common for several di
user actions) through the event—handling code that yields some sort of response to the user, either by a visible che
message, or a beep. Therefore, the job of the event loop is to distinguish all the possible user actions and invoke t
code. In the main event loop, each case statement for an event type must then have another switch, depending on
window which received the event, before calling the function that performs the action the user requested. The evel
and the window in which it occurred are only two of the most common event structure members——there may be ad
switch statements based on other members, too, such as which keys or buttons were being held while a key or but
occurred.

Especially for complex programs, a careful design of the window hierarchy and selection of events can simplify the
and save hours of debugging. We recommend drawing out the hierarchy of windows and the types of events selec
each one and then drawing in the events that will be propagated to ancestor windows. This helps find problems be

code is written.

2.6.2 Writing an X Application

The best way to start writing an X application is probably to copy the existing application that is most similar to youi
intended purpose or to start from a skeleton program suefis&swin described irChapter 3, "Basic Window

Program.” Select one from the core portion of the standard distribution from MIT, because these are the most likel
follow current conventions.

The following sections describe some basic facts about the actual process of coding and compiling an application.

2.6.2.1 Resources and User Customizability

An application should not hardcode all the options that are possible under X, such as colors and fonts. It should al
user to specify the colors of all windows, the font to use, the display and screen to use, the initial size and position
application, and a large number of other standard and application specific options.

An application should provide command line options, but there are too many variables to support all of them as cor
line options. The developers of X have designed a better way for the user to specify options, called resources. The
places the desired options in a file using a particular format and runs the X apphkedtispecifying this file as a
command lineargument.xrdb places a property on the root window whose value is the contents of this file. Applical
use a set of Xlib routines collectively called the resource manager to eesatting for each variable required. The
routine XGetDefault() makes this process quite easy for the application. If the user has nokadtllealset the
property on the root windowkGetDefault() reads in a file calledXdefaultsn the user's home directory. The
application itself should contain a default value for each variable in case neither of these sources contains a value
them.

This use of the term resource is completely different from thegerver resourcewhich refers to windows and GCs.

A resource specification is a key/value pair. A key/value pair may apply only to a particular window within a partict
application, to an entire application, to a certain class of applications such as editors, or to all applications. The al¢
used to find the value for a particular variable operates quite differently from a normal database manager. Given a
incomplete specification of a key, it uses an algorithm to determine which of the keys in the resource database is tt
match and returns the indicated value. It always returns only one value. This is much different from a normal data
manager which would return many values if the key were too general.

The resource manager and providing user customizability are described in deteipier 13, "Managing User
Preferences."

2.6.2.2 Compiling and Linking X Programs

To use all the functions in the X library, you need to includé X Xlib.h>, <X11/Xutil.h>, <X11/keysym and
<X11/Xresourcek These files define data structures, macros, and symbols and declare the types of functions. Iti
good idea to includeX11/Xos.b, which includes certain header files commonly used in C programs that differ in nar
location between various operating systems, notably System V and BSD. To compile and link your program with a
available Xlib libraries, including a symbol table for a symbolic debugger, use:

cc —g —o outpultfile inputfile.c —-IX11
The-IX11 option specifies linking with the standard X library, Xlib.

A set of routines to make it easier to port programs from X Version 10 to Version 11 is provided in a separate librar
use the X Version 10 compatibility functions, includé¢14/X10.k in your source file and link with both thdX11 and
—loldX options to youcc command. You may wish to includ&¥l.Xos.k if you use system calls, file manipulation, or
string manipulation utilities. This header file includes the right files for various operating systems.

Several other libraries are available in the X distribution from MIT: Xmu, the miscellaneous utilities library, and Xe»
extensions library (which requires additional server—side software in order to function). These are not yet adopted
standards of the X Consortium but are widely available. If you-&au, it must be placed before Xlib on the compiling
command line. All toolkit libraries based on Xlib such as Xt must also appear b&fdton the command line-IXext

can appear before or aftelX11 because it does not use Xlib.

If, when compiling, you get errors about header filesXd ¥Xos.b not being found, you are probably on a System V
system that does not define the synf®8E\V. To solve this problem, adeDSY SWto the command line.

You will probably want to usenaké1) when compiling time could be saved by compiling smaller functions separately
before linking. (For more information, see the Nutshell HandiMerkaging Projects with MakEven better is to use
makein combination withmake which generates makefiles from a portable descriptionfilekeis provided with the X
distribution. For more information sé@&e X Resourgéssue 2, Spring 1992.

2.6.2.3 Naming Conventions

There are a number of conventions for the naming of Xlib functions and constants. You should be familiar with the
conventions in order to name your own functions and constants properly. The major conventions are:

. The names of all Xlib functions begin with an X (capital x). Compound words are constructed by capitalizing
first letter of each word. For example, a typical function nan¥&itcColor()

. The names of most user-visible data structures and structure types begin with an X. The only exceptions art
Depth , Display , GG Screen , ScreenFormat , andVisual . Pointers to these six structures are quite
commonly used in programs, but their members should not be accessed except through pre—existing macros

. The names of all members of data structures use lower case. Compound words, where needed, are constru
underscores ().

. The names of macros do not begin with an X. To distinguish macros from user symbols (which are all caps),
first letter of each word in the macro is capitalized. (The macros used for quarks are an exception to this rule
perhaps because they were once part of a separate library. Their names begimvith

. The names of symbolic constants defined in X header figsfihed) use mixed case, with the first letter of eacl
word capitalized, and do not begin with X. Lowercase symbols are reserved for variables and all uppercase 1
symbols, according to existing convention. The only exception is that predefined atom names use all upperce
letters, with underscores separating the words. Atom names begiXAvitto distinguish them from user symbols.

You should choose constants and routine names that will not be confused with standard Xlib functions, macros, or
constants. User function names should not begin with X and perhaps should have the first letter of the first word Ic
case to avoid confusion with Xlib macros. User constants should be all upper case. Variable names can be lower
usual, with underscores separating the words if desired, since X structure member references will always be accor
by the variable declared as the structure.

2.6.2.4 Using Structures, Symbols, and Masks

Xlib programming takes advantage of many structure definitions and defined constants. This style of programming
unfamiliar to some programmers. We will describe how structures and constants are typically used so that the ide:
familiar when you see the examples.

Pointers to structures are the major way of specifying data to and returning data from Xlib routines. If the routine re¢
data, the returned value will be a pointer to the data structure, unless the routine returns more than one structure, i
case one or all of the structures will be arguments. In some routines (primarily those concerning color), a
pointer—to—structure argument specifies some information and returns some other information.

When setting the characteristics of a server resource, such as a set of window attributes, a graphics context, the ce
colormap, or a hardware characteristic (such as key click), both a structure and a mask are specified as arguments
maskspecifies which values in the specified structure should be read when updating the resource values. One bit il
mask is assigned to each member in the structure, and a special constant is defined in the Xlib header files to repr:
member when constructing the mask. Each of the mask constants has one bhit set. The mask argument is made b
combining any number of the mask constants with the bitwise OR opdjatbo(example, the

CWBackgroundPixmap constant is used to indicate that Heekground_pixmap member of the specified window
attributes structure is to be read and the corresponding member in the resource changed.

The other major use of defined constants in Xlib (other than for masks) is as values for structure members themsel
They indicate which of a number of alternatives is true. For example, several of the structure members can have ¢

valuesTrue orFalse . As another example, thgpe member of each event structure can have one of 33 different
values, each represented by a different defined constant sigp@se . Defined constants are also used as returned
values.

Defined constants are also used for predefined atoms. As describection 2.1.4, "Properties and Atoms'an atom is
an integer value identifying a property. Atoms are used to avoid passing arbitrary—length property name strings ba
forth between the client and the server.

2.6.2.5 Performance Optimizing
While designing, writing, and debugging your application, you can look for ways to improve its performance.

Whenever possible, you should use Xlib functions that do not require protocol replies. That is, in functions that are
frequently, especially in the event loop, avoid Xlib routines with names contalfetch , Get, or Query . Most of

these functions return information from the server, and as such, they are subject to network delays and will slow dc¢
application. Much of this information can be had from events.

In general, keep the feedback loop between the user’s action and the program’s response as short as possible.

2.6.2.6 ANSI-C and POSIX Portability

The MIT Release 5 X distribution is compliant with ANSI-C and POSIX standards, and portable across a wide vari
platforms. While the goal of the ANSI-C and POSIX standards is portability, many systems do not implement these
standards, or do not implement them fully, so the MIT R5 distribution defines new header files that attempt to mask
differences between systems. The header filesXtd/Xfuncproto.hx <X11/Xfuncs.h3<X11/Xosdefs.h>and
<X11/Xos.h> The contents and usage of these header files are described in Chapteed ®rogramming Techniques
None of these files are part of the official R5 standard, so they may not be shipped with your system. But they can
useful in writing portable applications, so we have included them with the code from this book, which you can get a
described in th€reface

2.6.3 Debugging an X Application

All programmers know that debugging is by far the most difficult and time consuming aspect of programming. This
where you catch all the problems caused during the writing stage and often also problems in the design stage. On
rarely foresee all the issues when designing a program.

There are some techniques that make debugging X applications easier. One, of course, is to have good tools. Thi
program checkdint helps find problems such as mismatches inrtbenber of arguments to a function, variables declar
but not used, or misused pointers. Although it often finds something to complain about that you do not consider an
also provides useful information.

Use of a good debugger suchdiixavoids the need to continuallglaceprintf statements in the code and recompile.

The standard applicatiowininfo is good for displaying informatiombout a window, including its window ID and name
parent and children IDs and names, all the window attributes, and the window manager hints set for that window. |
—all option or see thewininforeference page Molume Three, X Window System User’s Guioleinformation on

printing just the needed information.

The standard applicatiogprop, which displays the name, typand value of each property set on a window, is useful in
debugging applications that set or read properties. It can also display font properties. This application is also desc
Volume Three.

If your application generates protocol errors during debugging, it is easier to locate the error if you turn off Xlib's re:
buffering (described iBection 2.1.2, "Buffering”). This is done with th&Synchronize() call placed immediately
after the callto connect with the seveXQOpenDisplay()).

One of the most common places to have difficulty debugging &vent handling. For this reason, we recommend that
programs under development contpiintf ~ statements at the beginning of each branch of their event handling, so t
the programmer can watch the sequence of events in one window and the visible performance of the application in

This print statement can be placed within a compile—tifdef DEBUG , #endif pair. Then define this symbol on
the compiling command line. Later, all the print statements can be taken out of the compiled code by simply chanc
command line when recompiling. Although the event types are coded as numbers and will normally be printed tha
theprintf statements, they are easily translated back into strings that match their symbols using the technique dt
in Section 8.2.5, "Printing the Event Type."

X applications are difficult to test thoroughly. Here are some of the miscellaneous tests you should put your applici
through:

. Be sure to try all combinations of raising and lowering different windows to test the application’s response to
exposure. Does it redraw unnecessarily?

. Try all combinations of pressing and releasing different pointer buttons to see if anything breaks.

. Try operating the program in a busy network environment.

. Try the application on a variety of different servers. Does it work on both color and monochrome systems?
. Try running the application on machines with different architectures and bit and byte orders.

. What happens when you type function keys or other unique keys on a particular keyboard?

. Is it possible to crash the application by specifying the wrong set of resources or command line arguments?
If your application can pass all these tests, you have done a good job.

2.6.3.1 Errors

There are really three levels of error handling in programs using Xlib. The first level you implement yourself by
monitoring the return status of the routines that create server resources. This allows the client to modify the argurr
the request and try again. The second level, protocol errors, is usually caused by a programming error, and the thi
fatal system error such as a crash of the machine running the server or network failure. The second two types are
by two separate error—handling functions that can be set by the client but, by default, simply print a message and €
client.

As an example of the first level of error handling, a client should always check to see whether it was successfully
connected to thalisplay server wittKOpenDisplay() before proceeding. If thisonnection did not succeed, the cliet
should print a messagegtderrindicating what happened and which server it attempted to connect to. This process
be demonstrated i@hapter 3, "Basic Window Program."

X protocol errors occur when routine arguments do not conform to accepted ranges or when IDs do not match exis
resources, etc. These types of errors are seEtmrHandler . Fatal errors, such as a broken connection with the
server, are unrecoverable conditions and invok&tdErrorHandler . Both error handlers by default display an
intelligible (if not intelligent) message and then exit.

The possible X protocol error messages and their general causes are listed in AppemdixNBessages and Protocol
RequestsofVolume Two, Xlib Reference Manu@hese error messages also specify which protocol request caused tt
error, which you can also look up in Volume Two, AppendiEBpr Messages and Protocol Requesisietermine

which Xlib routine may have caused the error. This mapping is not unique because several Xlib routines often gen
same protocol request.

User—defined error—handling routines will be called from the error handlers if you pass procedure names to
XSetlOErrorHandler() or XSetErrorHandler() . If either is passed MULL function pointer, the respective
default handler will be reinstated.

If you write your own error—handling routines, it is recommended that yoX@stErrorText() or
XGetErrorDatabaseText() to get the string describing an error code, so that the codes of extensions can be h
properly. XGetErrorDatabaseText() uses the resource manager to provide error messages from XerfieDB,
located by default ifusr/lib/X11

Only the error—handling routinéErrorHandler (or the one you define) receives error events. These events canno
selected or received by windows.

2.6.3.2 The XErrorEvent Structure
Example 2-2 shows ti¥ErrorEvent structure and its members. The value of each member of this structure is
displayed by the default X protocol error handler.

Example 2-2. The XErrorEvent structure
typedef struct _XErrorEvent {

int type;

Display *display; /* Display the event was read from */
XID resourceid; /* Resource ID */

unsigned long serial; /* Serial number of failed request */

unsigned char error_code; /* Error code of failed request */

unsigned char request_code; /* Major opcode of failed request */

unsigned char minor_code; /* Minor opcode of failed request */
} XErrorEvent;

The following list describes each member of #i&rrorEvent structure in detail:

. Theserial member is the number of requests sent over the network connection since it was opened, startir
1. The difference betweeerial and the last request processed as reported in error messages tells you how
requests to count back in order to find the request that caused the error.

. Therequest_code is a protocol representation of the name of the protocol request that failed; these are det
in Appendix B,Error Messages and Protocol RequestsvVolume Two, Xlib Reference Manual

. Theerror_code is one of the items described in Volume Two, Appendikor Messages and Protocol
Requestssuch aBadwWindow.

. Theminor_code is zero unless the request is part of an extension. If it imitier_code indicates which
request in the extension caused the error.

. Theresource_id indicates one of the server resources (window, colormap, etc.) that was associated with tl
request that caused the error.

2.6.3.3 Synchronizing Errors
Since error events are not displayed precisely when they occur, it is often informative to look up the protocol reque

well as the error code to determine which function the error occurred in. You cannot rely on the debugger to indica
where the error occurred because of Xlib’s request buffering and other delays.

It is useful to us&XSynchronize() to make sure that protocol errors are displayed as soon as they occur. When
XSynchronize() is invoked, the performance of graphics will be drastically reduced. The same result occurs by
the global variable Xdebug to any nonzero value when running a program under a debugger (UNIX only).

2.6.3.4 Software Interrupts

Xlib does not handle software interrupts. Therefore, if yeaursively call back into Xlib from a signal handler, the
program will hang or crash. This is mostly an issue on systems that feature threads or multiple processors. The cc
to handle signals is to never make Xlib calls from signal handlers.

Chapter 3

Basic Window Program

Every Xlib program has a similar structure. This chapter shows a simple program that puts up a window and handl
events in that window. You can use this simple application as a template for your own more complex applications.

This chapter presents a simple program that demonstrates the fundamentals of programming with the X library. Al
will use the techniques described and demonstrated here.

The basic program presented in this chapter fulfills all the requirements for a basic application outlined near the en

Chapter 2, "X Concepts," and illustrates some of the most important X concepts and programming issues. You sht
have readChapter 2, "X Concepts" before proceeding.

The program will perform these operations:

. Connect the client to an X server wKDpenDisplay() , and exit gracefully if the connection could not be mad
. Get information about the physical screen, and use it to calculate the desired size of the window.

. Create a window wittXCreateSimpleWindow()

. Set standard properties for the window manager.

. Select the types of events it needs to receive.

. Load the font to be used for printing text.

. Create a graphics context to control the action of drawing requests.

. Display the window wittKMapWindow() .

. Loop for events.

. Respond to th&xpose event resulting from mapping the window (and any oihgrose event that might come
along later) by calling routines to draw text and graphics. If the window is too small to perform its intended fur
it will display an appropriate message.

. ReceiveConfigureNotify events, indicating that the window has been resized by the window manager. Tl
new window size is provided in the event structure.

. Keep handling events untilkeyPress orButtonPress event arrives, then close the display connection and
exits.

The program does not perform the following operations, which are required of a robust X client:

. Allow the user to specify command line options and read the resource database.
. Handle colors.
For more information on these topics, S#eapter 7, "Color," andChapter 14, "A Complete Application."

3.1 Running the Program

If you have the sample programs (seeRhefacefor how to get them) and a workstation that runs X, you can try out th
program by compilindpasic/basicwin.c See the description of how to compile X progranSention 2.6.2.2,
"Compiling and Linking X Programs."

The program just displays a window with some text and graphics drawn into it. Figure 3-1 shows the output of the
program. The one useful thing it does is tell you the size and depth of the current screen.

Figure 3—1. Output of the basicwin program

Hi! I'm = window, who are your

Screen Dimenaicnat l
l Height - 102%

width - 1280 1280 pixels
' Depth - 4 plane(s] '

- an aa an EE EE E. . -l

To termmipate program; Fressa any key
or ntton while in this window.

Without further ado, let’s begin to look at the code.

3.2 The Main of basicwin

As usual, the code is composed of a main program and several subrotitieasain does everything described at the
start of this chapter except create the GC, load the font, and draw the text and graphics. These tasks are done in t
draw_graphics ,draw_text ,get GC, andload _font |, routines, which are shown with the complete code in
Section 3.2.20, "Complete Code for basicwinbut not described fully untChapter 6, "Drawing Graphics and Text."
You can get the general idea of what they do just by looking at them, though.

In the following sections, the code is shown and described in small pieces. In some cases, the relevant declaration
variables are shown again in each segment of the code as well as at the top of the program (where they would nor
appear). This has been done to increase clarity when showing the individual pieces of the program.

3.2.1 Include Files and Declarations
Example 3-1 shows the include files and declarations Frasicwin.c

Example 3-1. basicwin —— include files and declarations

* Xlib include files */

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <X11/Xo0s.h>

#include <X11/Xatom.h>

/* Standard C include file */

#include <stdio.h>

[* Bitmap data for icon */

#include "bitmaps/icon_bitmap"

#define BITMAPDEPTH 1

[* Values for window_size in main —— is window big enough to be
* useful? */

#define TOO_SMALL 0

#define BIG_ENOUGH 1

/* Display and screen_num are used as arguments to nearly every

* Xlib routine, so it simplifies routine calls to declare them

* global; if there were additional source files, these variables
* would be declared "extern" in them */

Display *display;

int screen_num;

/* Name this program was invoked by; this is global because
* it is used in several places in application routines, not

* just in main */

static char *progname;

void main(argc, argv)

int argc;

char **argv;

{
Window win;
unsigned int width, height; /* Window size */
intx=0,y=0; /* Window position */

unsigned int border_width = 4; /* Border four pixels wide */
unsigned int display_width, display_height;

char *window_name = "Basic Window Program";

char *icon_name = "basicwin";

Pixmap icon_pixmap;

XSizeHints *size_hints; [* Preferred sizes for window man */
XEvent report; [* Structure for event information */

GC gc; [* ID of graphics context */

XFontStruct *font_info; [* Structure containing

* font information */
char *display_name = NULL; [* Server to connect to */

Let's begin with the include files. The three include filéd &/Xlib.h>, <X11/Xutil.k», and X11/Xos.k are needed in
virtually all Xlib programs. The X11/Xlib.h> file contains declarations of structure types used in Xlib functions.
<X11/Xlib.k> in turn includes X11/X.h>, which sets up many defined constant¥1%Xutil.h> contains more structure
definitions and defined constants for certain groups of Xlib functions. Many of the structures and constant definitior
these include files are described in this manual with the functions in which they are used. Structures and constant:
presented on many of the reference pag&®lame Two, Xlib Reference Manyi@lthe routine on that page uses a
structure or defined constant as an argument or return value. App&tidigture Refereng®f Volume Two, Xlib
Reference Manuaprovides an alphabetical listing of structures; Appendigy®ibol Referencef Volume Two, Xlib
Reference Manuaprovides the definitions of constants.

The final include file referenced in the Example 3—-1X4 ¥/Xos.k», which attempts to make programs as portadse
possible by including certain files depending on the operating system for which the program is being compiled. Thit
include file is not standard and is not absolutely necessary, but it is useful.

Now let's move on to all the strange new types that appear in Example 3-Wifld@w, Display , Pixmap ,
XSizeHints , andXEvent types usedn this program are all defined ifXd1/Xlib.l>. A brief description of each is
given here, but you will need to see the code that uses each variable to fully understand them.

Window A unique integer identifier (ID) that is returned ¥ZreateWindow() or
XCreateSimpleWindow() and is thereafter used by the program to refer to the created winc
resource.

Display A large structure that contains information about the server and its screens. It is filled only afte

program connects to a server by callkigpenDisplay()

Pixmap An integer ID likeWindow but for a pixmap resource. The pixmap in this case is a picture to dis
in the icon for the window.

XSizeHints A structure that is used to provide the window manager with information about the preferred si
and size increments for the top—level window of the application.

XEvent A union that stores information about an event. It can be interpreted as one of many individua

structure types depending on the type of event.

These declarations are repeated in the sections of code below in which they are used to avoid the need to flip bact
forth.

3.2.2 Connecting to a Server

XOpenDisplay() connects an Xlib program to a server. Tdwmle shown in Example 3-2 that calls
XOpenDisplay() will appear in all Xlib programs.

Example 3-2. basicwin —— connecting to the server
char *display_name = NULL,;

Display *display;

int screen_num;

Screen *screen_ptr;

progname = argv[0];
/* Connect to X server */
if ((display=XOpenDisplay(display_name)) == NULL)

{

(void) fprintf(stderr, "%s: cannot connect to X server %s\n",
progname, XDisplayName(display_name));
exit(-1);
}
screen_num = DefaultScreen(display);
screen_ptr = DefaultScreenOfDisplay(display);

Thedisplay_name argument t&XOpenDisplay() specifies which server to connect to. This may be any server ¢
the network and could be specified on the command line in a more complete application than this @ecti(®ee
2.6.2.1, "Resources and User CustomizabilityandChapter 13, "Managing User Preferences,'for a discussion of
how to process command line arguments and user-specified default values in an X prograndjsplyemame is

not specified by the user, it should be seXltdL L, which causeXOpenDisplay() to connect to the server specified in
the UNIX environment DISPLAY variable. You can view the current conteftie DISPLAY environment variable by
using the UNIX command:

echo $DISPLAY

It can be changed by typing:

setenv DISPLAY display_name (C Shell)

or:

DISPLAY=display_name ; export DISPLAY (Bourne Shell)

You must be careful to set the DISPLAY variable when you login to a remote machine to make sure that when you
X applications from that terminal, your output will be displayed on the screen from which you typed the command.

Both the DISPLAY environment variable and tisplay_name argument toOpenDisplay() have the same
format. The formats host:server.scregnn whichhostrefers to the namef the machine running the serveerver the
server number on that machine; aodeen the screen number on that server.

MIT’s manual describes this format lagst:display.screerusingdisplayinstead okerver Since most people think of screens and displays as virtually
the same thing, their description leads to confusion. The second member in the string really identifies which server on a particular host to conn
Each of these servers would support a user.

The server number can be thought of as the number of the user on a particular hestverhamber is always zero on a
single—user workstation and may be nonzero only if a single host has a separate keyboard, pointer, and display for
than one user, all connected by wires (not networks) to the central host. Systems that run multiple X servers are rz

The.screenpart is optional and only specifies which screen is returned tyefailtScreen() macro (more on
macros in aminute). You can still use any or all of the screens controlled by the specified server. For example,
Perseus:0.1 instructs the server you are running the program on to connect to @envehe host calleBerseus
and that the default screen on that server for this program will be dcreen

Note that most servers only control a single screen. However, an X server can support multiple screens. The most common example is probat
Apple MacX server for the Macintosh.

TheXOpenDisplay() routine returns a pointer to a structuretgpeDisplay . If the connection is successful, the
structure will be filled with information about the server and each of its screens. If the attempt to create a connectio
XOpenDisplay() returnsNULL The code in Example 3-2 above checks to make thigseeturned pointer is not
NULL before proceeding. The message printed when the connection fails includes the text returned by the
XDisplayName() function. This function returrdisplay_name or, if that iSNULL, the UNIX environment
DISPLAY variable XDisplayName() is necessary, since without it, there would be no waiell the user to what
server an attempt to connect was made.

The client might not succeed in connecting to a server for a number of reasons. Most likkbpldye name variable

or DISPLAY environment variable does not specify a valid server that is connected via the network to the machine
which you are running the program. Or perhaps the network is out of order. Another possibility is that the server ai
use different versions of the X protoco{.Version 11 programs are not compatible with X Version 10 and vice versa,
that if such a connection is attempted, an error message such as "protocol mismatch" should be printed, since the
connection will partially succeed. All releases of X Version 11, howavecompatible since they use the same protoct

The connection will also fail if the host you are running the client on is not droiteccess listf the server you are
trying to display on. The host access list is a simple permission mechanism. A server reads the list of hosts as it s
and may be connected only to clients running on these hosts. There are commands to add and remove hosts frorr
access list, but these can be called only from clients running on the host whose list is being changed. In all these ¢
code shown in Example 3-2 will simply print the name of the server to which the connection failed and no further
information.

In R4, a simple authorization scheme has also been implemented. If the person operating the server has turned
authorization on, Xlib must know a secret code in order to connect to that server. Xlib gets this code from a file, an
server puts it there to grant access.

If Example 3-2 executes successfully past opening the display, we can begin to set up variables for use in the rest
program. The first of these is the global variadiieeen_num , set to the return value of tbefaultScreen()

macro. screen_num will be used throughout the program to indicate which screen on the server our operations art
affect. It is important to use ti@efaultScreen() macro rather than to hardcodles the screen used by the client,
because even without command line parsing in the client, this allows the user to set the default screen by .seteaa tf
element of the DISPLAY environment variable.

The variablescreen_num can actually be any integral value betw8eand the value returned b$g¢reenCount)
(display) - 1), inclusive. The&ScreenCount) macro returns the number of screamsthe connected server.
Since we only intend to use one of the screens, we can be satisfied with using the default screen.

3.2.3 Display Macros

We have just described all the macros used in the context of connecting with a display. They all get their informati
theDisplay structure returned b¥OpenDisplay() . But this is not the only useful information we can get from the
Display structure. There are numerous other macros that supply information about the characteristics of the sen
its screens. We will describe these macros where they come in handy in this manual. The complete set of macros
access the members of Bisplay structure is listed and described in Appendidacros of Volume Two, Xlib
Reference Manual They tell you whether the server supports certain features like backing store and motion history
buffers, the protocol version and release and the name of the server vendor, and much nidisplayhe structure also
provides information about each screen, such as the root window dimensions and the number of planes.

The macros are provided both for convenience and becauBéstilay structure is intended to be opaque; clients shol
not access its members directly. The reason for it being opaque is that Xlib’s authors want to retain the option to c
the members in thBisplay structure without making existing clients obsolete.

3.2.4 Getting Window Information

Most clients need to know the size of the screen so that the output can be tailored to look the same—-or to look go
any display. There are two ways to get this information: you can access meshbeBisplay structure to get
information about the root window or you can XseetGeometry() or XGetWindowAttributes() to get the root
window’s dimensions. The first method, using the macros for accessing information froieplay structure, works
only for the root window but is more efficient. The second and third methods, reading the window geometry or attri
work for any window.

To get the dimensions of a screen in pixels, you can use the nasptsyWidth() andDisplayHeight() . The
macroDisplayWidthMM() andDisplayHeightMM() return the screen dimensions in millimeters. These four
macros get their information locally from tBésplay structure, so they are fast and efficient. The ratio of width in
millimeters to width in pixels gives you a measurement of the spacing between pixels horizontally, and the same pt
can be used to determine the vertical pixel spacing. Gaisbe important because when you draw a circle, it will look
more like an ellipse on screens that do not have the same pixel spacing in both directions (usually inexpensive PC
You can tailor your drawing to compensate for this effect.

The second and third ways to get the geometry of a window are ¥Qe&eometry() or to get all the window
attributes usingKGetWindowAttributes() . The difference between these two routingeshat
XGetWindowAttributes() gets much more information and actually cX@etGeometry() itself. These
methods have the disadvantage that they get information from the server, requiring a round-trip request that is suk
network delays. We show this method here because, for any window other than the root window, this is the only w
get window information.

The following code fragments demonstrate the three ways of getting root window infornietiacwinuses the macros
method because, in this case, we need information about the root window, and this is the most efficient way to get

Example 3-3 shows the macros method; Example 3-X@stGeometry() method; and Example 3-5, the
XGetWindowAttributes() method.

Example 3-3. Code fragment for getting display dimensions —— using macros
Display *display;

int screen_num;

unsigned int display_width, display_height;

[* Open display */
screen_num = DefaultScreen(display);

* Display size is a member of display structure */
display_width = DisplayWidth(display, screen_num);
display_height = DisplayHeight(display, screen_num);

Example 3-4. Another way to get window size —— using XGetGeometry()
Display *display;

int screen_num;

Window root;

intx,y;

unsigned int width, height;

unsigned int border_width;

unsigned int depth;

[* Open display */

[* Get geometry information about root window */

if (XGetGeometry(display, RootWindow(display, screen_num), &root,

&x, &y, &width, &height, &border_width, &depth) == False)
{
fprintf(stderr, "%s: can’t get root window geometry\n",
progname);
exit(-1);

}
display_width = width;
display_height = height;

Note that theoot argument oiXGetGeometry() returns the root window at the top of the hierarchy of the window
being queried. This happens to be useless in this case, because it is the root window we are querying!

Example 3-5. A third way to get window size —— using XGetWindowAttributes()
Display *display;

int screen_num;

XWindowAttributes windowattr; /* (This declaration at top) */

[* Open display */
screen_num = DefaultScreen(display);

/* Fill attribute structure with information about root window */
if (XGetWindowAttributes(display, RootWindow(display, screen_num),

&windowattr) == 0) {
fprintf(stderr, "%s: failed to get window attributes.\n",
progname);
exit(-1);
}
display_width = windowattr.width;
display_height = windowattr.height;

3.2.5 Creating Windows

The next step is to create and place windows. Actually, a window’s position relative to its parent is determined as 1
window is created, since these coordinates are specified as arguments to the routine that creates the window.

Thebasicwinapplication has only one window. Creating the first window of an application is a special case, becaus
window is a child of the root window and, therefore, is subject to management by the window manager. An applice
can suggest a position for this window, but it is very likely to be ignored. Most window managers allow the user to |
the window as it appears on the screen. So most simple applications create the first window with its posit@0)ket to
Example 3-6 shows the simplest call to create a window.

In Chapter 14, "A Complete Application," we will show you a more complete approach that processes command lir
arguments to get the position of the top—level window. When the user specifies a position, there is a technique for
sure that the window manager will honor the position.

Example 3—-6. basicwin —— creating a window
Window win;

int border_width = 4; [* Border four pixels wide */
unsigned int width, height; /* Window size */

int x,y; /* Window position */

[* Open display, determine screen dimensions */
screen_num = DefaultScreen(display);

/* Note that in a real application, x and y would default to 0 but

* would be settable from the command line or resource database */

x=y=0;

[* Size window with enough room for text */

width = display_width/3, height = display_height/4;

[* Create opaque window */

win = XCreateSimpleWindow(display, RootWindow(display, screen_num),
X, Y, width, height, border_width, BlackPixel(display,
screen_num), WhitePixel(display, screen_num));

The only new thing in Example 3-6 is the use of several new macros in the call to create a window.

Let's talk about th&ootWindow() macro. Each screen has its own root window. To create the first of your
application’s windows on a particular screen, you use the root window on that screen as the parent. That window ¢
only be used on that screen. The ID of the root window on a particular screen is returneddnt\Wiedow() macro.
The first generatiorof windows on a screen (known as the top—level windows) should always use this macro to spe:
the parent.XCreateSimpleWindow() makes a new window given arguments for specifying it parent, size, positio
border width, border pixel value, and background pixel value. All other attributes of the window are taken from the
in this case the root window. If we wanted to specify any or all the attributes instead of inheriting them from the pal
would have to us®CreateWindow() instead oXCreateSimpleWindow()

3.2.6 Color Strategy

Applications do not choose pixel values, they choose colors and are returned pixel values by a routine they call tha
allocates colors or they get pixel values from the display m&texkPixel() andWhitePixel()

BlackPixel() andWhitePixel() are no longer constants as they were in X Version 10. Pixel values must not be hardcoded.

This example is a monochrome application, but it will work on both monochrome and color screens. We use the
WhitePixel() macro to specify the background pixel value (in the call to create the window) and set the foregrot
the GC to be the contrasting value returne@lagkPixel() . The border pixel value iglso set t@lackPixel()

The background and border pixel values are set with the last two argumg@eateSimpleWindow() . The
foreground pixel value is set in tget_GC routine in the manner described3action 5.1, "Creating and Setting a
Graphics Context."

As you may recall fronChapter 2, "X Concepts," pixel values represent colors, but they will be translated by a colorr
before being displayed on the scre@&lackPixel() andWhitePixel() return the pixel values corresponding to
two contrasting colors in the default colormap, which might not actually be black and white.

Every application should be made to work in monochrome, because many people have only monochrome screens

How to add color handling teasicwin(or any application) is described@hapter 7, "Color."

3.2.7 Preparing an lcon Pixmap

An application should create an icon design for itself, so that if a window manager is running and the user iconifies
application, the icon will be recognizable as belonging to the particular application. Exactly how to tell the window
manager about this pixmap will be described in the next section, but first let's talk about how to create the pixmap.

The program should take two steps in creating the pixmap: it should find out what sizes of icon are acceptable to t
window manager and then create a pixmap of an appropriate size. Since most current window managers do not sj
icon sizes, and it is difficult to know how to respond in a reasonable way, this issue can be ignored for the present.
Eventually, when standard window managers specify standard icon sizes, applications w¥@dtlemSizes() to
determine which window manager was in operation and have a icon bitmap for each one.

Example 3-7 shows the simple process of creating a pixmap for the icon.

Example 3-7. basicwin —— creating an icon pixmap
#include "bitmaps/icon_bitmap"

void main(argc, argv)

int argc;

char **argv;

{

[* Other declarations */

Pixmap icon_pixmap;

/* Open display, create window, etc. */

[* Might someday want to use XGetlconSizes to get the icon

* sizes specified by the window manager in order to determine

* which of several icon bitmap files to use, but only when

* some standard window managers set these */

/* Create pixmap of depth 1 (bitmap) for icon */

icon_pixmap = XCreateBitmapFromData(display, win,
icon_bitmap_bits, icon_bitmap_width,
icon_bitmap_height);

An icon design can be created using the standard X appliddatioap You runbitmapwith a filename and dimensions a:
command line arguments, like so:

%bitmap icon_bitmap 40x40

Then you use the pointer to draw your bitmap. For more information doitthep editor, se&/olume Three, X Window
System User’'s GuideNormally the icon carries some symbolic representation of the application, so use your imagin
bitmapcreates an ASCII file that looks like Example 3-8. This particular bitmap is a bit small for an icon, being only
pixels on a side. A more typical size would be about 40 pixels on a side.

Example 3-8. Format of bitmap files

#define icon_bitmap_width 20

#define icon_bitmap_height 20

static char icon_bitmap_bits[] = {
0x60, 0x00, 0x01, 0xb0, 0x00, 0x07, 0x0c, 0x03, 0x00, 0x04, 0x04, 0x00,
0xc2, 0x18, 0x00, 0x03, 0x30, 0x00, 0x01, 0x60, Ox00, Oxf1, Oxdf, Ox00,
0xcl, 0xf0, 0x01, 0x82, 0x01, 0x00, 0x02, 0x03, 0x00, 0x02, 0xOc, 0x00,
0x02, 0x38, 0x00, 0x04, 0x60, 0x00, 0x04, 0xe0, 0x00, 0x04, 0x38, 0x00,
0x84, 0x06, 0x00, 0x14, 0x14, 0x00, 0x0c, 0x34, 0x00, 0x00, 0x00, 0x00};

The bitmap format shown in Example 3-8 is not used ondreateBitmapFromData() . Itis also used by the
Xlib functionsXWriteBitmapFile() andXReadBitmapFile() . An application can also read from a file the dat:
used to create a pixmap, instead of including the data, but this is more complicated because it requires processing
filenames.

3.2.8 Communicating with the Window Manager

Before mapping the window (which displays it on the screen), an application must set the standard properties to tel
window manager at least a few essential things about the application.

You may remember froif@hapter 2, "X Concepts," that a property is a collection of information that is readable and
writable by any client and is usually used to communicate between clients. The standard properties are part of the

convention for communication between each application and the window manager.

You may also remember that a property is associated with a particular window. The standard properties are assoc
with the top—level window of the application. This is how the server keeps track of the standard properties of all the
different applications and has them ready for the window manager to read them.

Several routines are provided that allow the application to easily set these properties; analogous routines allow the
manager to read them. The routine designed to set all the most important properties for a normal application is
XSetWMProperties()

The document describing the standard for communication between the application and the window manager is call
Inter—Client Communication Conventions Manyidis reprinted in Appendix Linterclient Communcation Conventigns
of Volume Zero, X Protocol Reference Mandbre information on the conventions can be foun@hapter 12,
"Interclient Communication,” of this manual.

The minimum set of properties that an application must set are:

. Window name

. Icon name

. Icon pixmap

. Command name and arguments (the command line)
. Number of arguments

. Preferred window sizes

. Keyboard focus model

We’'ll say more about each of these after you have seen the code that sets them. Example 3—-9 shows the code thi
standard properties.

Example 3-9. basicwin —— setting standard properties
void main(argc, argv)
int argc;
char **argv;
{
XWMHints *wm_hints;

XClassHint *class_hints;
XTextProperty windowName, iconName;

[* To be displayed in window manager’s titlebar of window */
char *window_name = "Basic Window Program";

[* To be displayed in icon */

char *icon_name = "basicwin";

Pixmap icon_pixmap;

XSizeHints *size_hints; /* Structure containing preferred sizes */

if (!(size_hints = XAllocSizeHints())) {
fprintf(stderr, "%s: failure allocating memory, progname);
exit(0);

}

if (!(wm_hints = XAllocWMHints())) {
fprintf(stderr, "%s: failure allocating memory, progname);
exit(0);

}

if (!(class_hints = XAllocClassHint())) {
fprintf(stderr, "%s: failure allocating memory, progname);

exit(0);
}

[* Open display, create window, create icon pixmap */

[* Before mapping, set size hints for window manager */

/* Note that in a real application, if size or position were

* set by the user, the flags would be USPosition and USSize,
* and these would override the window

* manager’s preferences for this window. */

I* X, y, width, and height hints are taken from the

* actual settings of the window when mapped; note that

* PPosition and PSize must be specified anyway */
size_hints—>flags = PPosition | PSize | PMinSize;
size_hints—>min_width = 300;

size_hints—>min_height = 200;

[* These calls store window_name and icon_name into

* XTextProperty structures and set their other fields

* properly */

if (XStringListToTextProperty(&window_name, 1, &windowName) == 0) {

(void) fprintf(stderr, "%s: structure allocation for \
windowName failed.\n", progname);
exit(-1);
}

if (XStringListToTextProperty(&icon_name, 1, &iconName) == 0) {
(void) fprintf(stderr, "%s: structure allocation for \
iconName failed.\n", progname);
exit(-1);
}
[* Whether application should be normal or iconified
* when first mapped */
wm_hints—>initial_state = NormalState;
[* Does application need keyboard input? */
wm_hints—>input = True;
wm_hints—>icon_pixmap = icon_pixmap;
wm_hints—>flags = StateHint | IconPixmapHint | InputHint;
[* These are used by the window manager to get information
* about this application from the resource database */
class_hints—>res_name = progname;
class_hints—>res_class = "Basicwin";
XSetWMProperties(display, win, &windowName, &iconName,

argv, argc, size_hints, wm_hints,
class_hints);

It is important to realize that these properties are only hints. A hint is information that might or might not be used. 1
may be no window manager running, or the window manager may ignore some or all of the hints. Therefore, an
application should not depend on anything having been done with the information provided in the standard properti
example, take the window name hint. Some window managers will use this information to display a titlebar above
beside each top-level window, showing the application’s name. The proper and obvious thing for the application t
would be to set the window name to be the application’s name. But if the application were an editor, it could try to
window name to the name of the current file. This plan would fall through if no window manager were running.

The icon name and icon pixmap should both set to allow the window manager to use either or both. Most current \
managers often display just the icon pixmap, unless no pixmap is specified, in which case they use the icon name.

icon name is not set, the convention within window managers is to use the window name as the icon name; if the v
name is not specified either, then they will use the first element of the command line.

The UNIX shell command name and arguments are passeudimadn the standard fashion from the command line, as
argv andargc . These can be used directly as arguments in the call to set the standard properties. This informati
might be used by the session manager to restart or duplicate the application when so instructed by the user.

And last but not least, the window size hints property is a structure that specifies the sizes, positions, and aspect re
preferred by the user or the program for this application X8BieeHints structure is shown in Example 3-10.

Example 3-10. The XSizeHints structure

typedef struct {
long flags; /* Marks defined fields
*in this structure */
intx,y; /* Obsolete as of R4 */
int width, height; /* Obsolete as of R4 */

int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

struct {
int x; /* Numerator */
inty; /* Denominator */

} min_aspect, max_aspect;
int base_width, base_height; /* New in R4 */

int win_gravity; /* New in R4 */
} XSizeHints;

You might ask, "How would the user be involved in specifying the size hints when they have to be set even before
window appears?" The answer: applications can be written to let the user specify the position and size of the top-|
window through command line arguments or the resource datahasere complete application would get these values
use them to set the size of the window. To tell the window manager that the user, not the application, supplied thes
the application would set tlilags field to USSize | USPosition instead oPSize | PPosition

All this arranges a priority for the different settings of the position and size of a top—level window. The lowest priori
the application itself. Next higher is the window manager, and highest of all is the user. In Example 3-9, the symkt
used to seflags arePSize andPMinSize . These indicate that the program is specifying its desired size and its
minimum useful size. The symbols used for other membetSiaeHints are shown on the reference page for
XSetWMProperties() in Volume Two, Xlib Reference Manual

Let's describe the other membersx8izeHints . Thex,y, width , andheight members are simply the desired
position and size for the window. In R4 and later, these fields should not be set.

The rest of the size hints give the window manager information about how to resize the windawin_Tieght and
min_width fields should be set to the minimum dimensions (in pixels) required so that the application can still fun
normally. Many window managers will not allow the user to resize the window smallenihawidth and

min_height . max_width andmax_height are analogous tmin_width andmin_height but are less critical for
most applications.

In R4, thebase_width andbase_height fields have been added to ¥BizeHints structure. They are used with
thewidth_inc andheight_inc fields to indicate to the window manager that it should resize the window in
steps—-in units of a certain number of pixels instead of single pixels. The window manager resizes the window to :
multiple of width_inc in width andheight_inc in height, but no smaller thanin_width andmin_height and

no bigger thamax_width andmax_height . If you think about itmin_width andmin_height and

base_width andbase_height have basically the same purpose. Theretmse width andbase_height take
priority overmin_width andmin_height , so only one of these pairs should be set.

Thextermapplication provides a good example of size increments. It wants its window to be resized in multiples of
font width and height, since it uses only constant-width fonts. This way, there are no partial characters along the ¢
the window. What's more, the application can then interpret dimensions specified by the msdtiptes of

width_inc andheight_inc , instead of pixels. The user specifies dimensions in characters (24 by 80 for a stand
size terminal), which the application then translates into pixels by multiplying thendthy inc andheight_inc

Most window managers display the dimensions of the window when the user is resizing ityigitill iihc ~ and
height_inc are set, they will use multiples instead of pixels as units.

In R4, thewin_gravity field has also been added the XSizeHints structure. This field suggests to the window
manager how the window should be placed when mapped or, more accurately, how the position for the window sp
by the user should be interpreted. Normally, when the user specifies a position, either by clicking a pointer button
position a window or through command line arguments, the window manager places the top-left corner of the
application’s top—level window at that point. TWwéen_gravity field requests the window manager to place a differet
part of the window at that point. The values of this fieldGeater , East , North , NorthEast , NorthWest |,

South , SouthEast , SouthWest , andWest. These refer to a corner or edge of the window that should be placed
the specified point. As mentioned, the defauNasthWest , which positions the top-left corner of the window at the
specified point. Few applications need to use this feature.

3.2.9 Selecting Desired Event Types

The next step is to select the event types the application will require. Our simple program must receive events for t
reasons: to redraw itself in case of exposure, to recalculate its contents when it is resized, and to receive a button
press indicating that the user is finished with the application.

The program must select these types of events specifically since, by default, it will not receive the kinds of input it r
Example 3-11 shows the line of code that selects events.

Example 3-11. basicwin —— selecting desired event types

[* Select event types wanted */

XSelectlnput(display, win, ExposureMask | KeyPressMask |
ButtonPressMask | StructureNotifyMask);

The crucial argument ofSelectinput() is the event mask. Each symbol used here selects one of more event tyf
The event mask constants are combined with a bitwise OR since they are really setting bits in a single argument.

ExposureMask selectsExpose events, which occur when the window is first displayed and whenever it becomes
visible after being obscuredxpose events signal that the application should redraw itself.

X provides separate events for depressing and releasing both keyboard keys and pointer buttons and separate syr
selecting each of these types of eveiltsyPressMask selects onlKeyPress events, an@uttonPressMask

selects onlButtonPress events.ButtonRelease andKeyRelease events can also be selected with
ButtonReleaseMask andKeyReleaseMask , but they are not needed in this application.

StructureNotifyMask selects a number of event types, specifid@ligulateNotify , ConfigureNotify ,
DestroyNotify , GravityNotify , MapNotify , ReparentNotify , andUnmapNotify . The only one of these
we need for our application GonfigureNotify , which informs the application of its window’s new size when it ha
been resized. However, there is no way to select just this one event type. We could get away without selecting thi
type, but any real application would use it because it allows an increase in performance. Without this event type, ¢
Expose event the application would have to dX€getGeometry() to find out its current size. This isr@quest that
requires a reply from the server and therefore is subject to network delays.

The rest of the event types selectedSyuctureNotifyMask are described i€@hapter 8, "Events."

XSelectlnput() actually sets thevent_mask attribute of the window. If you create the window with
XCreateWindow() (as opposed t¥CreateSimpleWindow()), you can select events at the same time by setting
theevent_mask attribute in the last two arguments of the call. This is slightly more efficient than calling
XSelectinput() separately. You can also set this attribute throt@hangeWindowAttributes() if, for some
other reason, you need to call this function anyway.

3.2.10 Creating Server Resources

The next step in the application is to create any other server resources that are needed. Server resources are coll
information managed by the server and referred to in the application by an ID nutabres with the type€olormap
Cursor , Font , GG Pixmap , andWindow are server resources. They should be created once and the ID kept rathe

creating and deleting them in frequently called subroutines. That is why they are normally crewi@d an in a
subroutine called only once fromain .

In this program, we have already created two resources: a window and the icon pixmap. We still need to load a fc
the text and to create a graphics context to draw both text and graphics into the window. These operations are dot
routinesload_font andget_GC, called just before mapping the window. We are going to delay describing these
routines until Chapters he Graphics Contexnd 6 Drawing Graphics and Textn order to keep this chapter to
manageable proportions. However, the complete codmficwin including these functions, is listed at the end of this
chapter, in case you want a sneak preview.

3.2.11 Window Mapping

Finally we are ready to display the window. Note that we have done all that preparation before mapping the windo
good reason. The window manager hints must be set so that the window manager can handle the mapping prope!l
events must be selected so that the Ergiose will arrive and tell the application to draw into its window.

Example 3-12 shows the code that maps the window.

Example 3-12. basicwin —— mapping the window
[* Display window */
XMapWindow(display, win);

You may remember froif@hapter 2, "X Concepts," that in order for a window to be visible, it must meet five conditior
These are so important that they bear repeating:

1. The window must be mapped wiMapWindow() or related routines.

2. All its ancestors must be mapped. This condition is always satisfied for the children of the root window, the top
windows of each application.

3. The window must not be obscured by visible sibling windows or their ancestors—-this depends on the stacking
When first mapped, a window appears on top of its siblings, which will be on top of all windows if its parent is th
window.

4. The request buffer must be flushed. This topic will be described in the next section.

5. The initial mapping of a top—level window is a special case, since the window’s visibility may be delayed by the
window manager. For complicated reasons, an application must wait for tleficste event before assuming that
its window is visible and drawing into it.

3.2.12 Flushing the Output Buffer

XMapWindow() causes an X protocol request that instructsd@erer to display the window on the screen. Like all
other X protocol requests, this one is queued until an event-reading routine XNgx#Svent() , a routine that
queries the server (most routinediose names contaffetch , Get, orQuery), or a routine such asFlush() or
XSync() is called. The server operates more efficiently over the network when X protocol requests are sent in gr¢

TheXNextEvent() call performs the flushing frequently enough in applications that take user input. The routines
query the server should be called as infrequently as possible because they reduce performance over the network.
XFlush() command instructghe server to process all queued output requests right Aagh() is generally
necessary only when an application needs to draw periodically even without user input.

3.2.13 Setting Up an Event—gathering Loop

X programs are event—driven, which means that after setting up all the server resources and window manager hint
described up to this point, the program performs all further actions only in response to events. The event—gathering

the standard way to respond to events, performing the appropriate action depending on the type of event and the
information contained in the event structure.

The event loop is normally a closed loop, in which one of the event types with certain contents defined by the appli
indicates thatthe user wants to exit. In some existing applications sugti@s the loop is completely closed, and
therefore the only way to terminate the program is to find the process ID from the shell and kill it or use the window
session manager, but this can be inconvenient.

The choice of which events are received by the application was made earlier when the application selected input o
event_mask attribute. The event loop must make sure to properly handle every event type selected. One of the |
common debugging problems is for there to be a difference between the events handled and those selected.

Have a look at the code in Example 3-13, before we describe it in more specific terms.

Example 3-13. basicwin —— processing events

[* Get events, use first Expose to display text and graphics
* ConfigureNotify to indicate a resize (maybe even before
* first Expose); ButtonPress or KeyPress to exit */
while (1) {
XNextEvent(display, &report);
switch (report.type) {
case Expose:
/* Unless this is the last contiguous expose,
* don't draw the window */
if (report.xexpose.count != 0)
break;
/* If window too small to use */
if (window_size == TOO_SMALL)
TooSmall(win, gc, font_info);
else {
[* Place text in window */
place_text(win, gc, font_info, width, height);
/* Place graphics in window */
place_graphics(win, gc, width, height);
}
break;
case ConfigureNotify:
/* Window has been resized; change width and height
* to send to place_text and place_graphics in
* next Expose */
width = report.xconfigure.width;
height = report.xconfigure.height;
if ((width < size_hints—>min_width) ||
(height < size_hints—>min_height))
window_size = TOO_SMALL;
else
window_size = BIG_ENOUGH,;
break;
case ButtonPress:
/* Trickle down into KeyPress (no break) */
case KeyPress:
XUnloadFont(display, font_info—>fid);

XFreeGC(display, gc);
XCloseDisplay(display);
exit(1);

default:
/* All events selected by StructureNotifyMask
* except ConfigureNotify are thrown away here,
* since nothing is done with them */
break;
} * End switch */
} I* End while */

Example 3-13 is framed by an infinite while loop. Just inside the top of the loopdbléeEvent() statement,
which gets an event structure from the queue Xlib maintains for the application and puts the pointer to it in the vari:
report . You might assume that the event loop could have been written:

while (XNextEvent(display, &event)) {

}
but this is not the caseXNextEvent() returns void; itonly returns when there is an event to return. Errors are hanc
through a separate error—handling mechanism, not through the returned value. So it is necessary to write the ever

while (1) {
XNextEvent(display, &event);

}
Right afterXNextEvent() is a switch statement that branches depending on the event type. There is one case fo
of the four types of event8uttonPress , ConfigureNotify , Expose , andKeyPress .

The ConfigureNotify branch, in all applications, will calculate the values of variables based on the new window
These variable values will then be used to calculate where to draw thing€Expibee branch the next time dxpose
event occurs. ALonfigureNotify event is always followed by one or mdEgpose events.

3.2.13.1 Repainting the Window

Expose events occur when a window becomes visible on the screen, after being obscured or unmapped. They oc
because the X Window System does not normally save the contents of regions of windows obscured by other wind
not mapped. The contents of windows need to be redrawn when they are exposed.

The code folExpose events draws or redraws the contents of the application’s window. This code will be reached
the window is first mapped, and whenever a portion of the window becomes visible.

An application can respond Expose events by refreshing only the parts of the window exposed, or by refreshing th
entire window. The former is possible because the event structure fdExgamée event carries the position and
dimensions of a single rectangular exposed area, as shown in Example 3-14.

Example 3-14. The XExposeEvent structure

typedef struct {
int type;
unsigned long serial;/* # of last request processed by server */
Bool send_event; /* True if this came from SendEvent request */
Display *display; /* Display the event was read from */
Window window;
intx,y;
int width, height;
int count; /* If nonzero, at least this many more */

} XExposeEvent;

SeveraExpose events can occur because of a single window manager operation, as shown in Figure 3-2. IEwind

were raised, fouExpose events would be sent to it. Theight andwidth members in each event structure would
correspond to the dimensions of the area where each of the windows overlappedByiaddwhex andy members
would specify the upper—left corner of each area relative to the origin of wiBd@Mi the Expose eventsgenerated by
a single action are guaranteed to be contiguous in the event queue.

Figure 3-2. Multiple Expose events generated from a single user action

Window E

If Window E & mBed. ..
.. . hese four areas

receie Exposa évents

Whether an application should draw the whole window or just the exposed parts depends on the complexity of the
in the window. If all of the window contents are simple for both the application and the server to draw, the entire wi
contents can be redrawn without a performance problem. This approach works well as long as the window is only
once, even if multipl&Expose events occur because of a single user action. One trick is to monitoutite member of
the Expose event structure and ignore tBgpose events (do not redraw the window) until this membér. igt might
seem an even better method to search the entire queue, remotrgaae events that occurred on the window, before
redrawing. But this is illegal because there may be interve@amdigureNotify events in the queue, and respondin
to anExpose event that follows &€onfigureNotify event too early will result in redrawing the wrong area or not
redrawing at the right time. Onbontiguou&xpose events can be skipped.

On the other hand, if a window has any elements that can be time consuming for either the application or the serve

redraw, then the application should only redraw the time—consuming elements if they are actually within the expost

The issue here is redrawing time, which has two components under the application’s control: the time the applicati
to process the redrawing instructions, and the time it takes for the server to actually do the redrawing. On most sel
user must wait for the server to complete drawing before he or she can move the pointer or go on to other actions.
Therefore, the time taken by the server is critical, since it translates directly into waiting by the user. Since the syst
running X clients is normally multitasking, the time taken by the application to minimize redrawing is not as importa
since the user can still do work.

There are two approaches to assisting the server in redrawing exposed regions quickly. One is to avoid redrawing
regions that have not been exposed. Doing this in an application requires identifying any items to be drawn that dc
extend into any of the exposed areas and eliminating these drawing requests. There are a set of routines that perf
intersecting calculations on regions that may help you implement this.

The second approach is to set the clip mask in the GC to draw only in the exposed areas. This second approach i:
simpler in code, but it delegates the job of eliminating unnecessary drawing to the server. Many servers may not d
elimination, because there is again a tradeoff between the time saved in eliminating requests and the time spent in
calculating which requests to eliminate.

If you are now confused and wondering which redrawing approach to take in your application, the general rules shi
as follows:

. If the window is fast to draw, the whole window can be drawn in response to te&gase event in a contiguous
series; this means drawing only whaount is zero. The definition dastwill vary from server to server, but
anything that uses the more complex features of the GC, such as wide lines or join styles, or that may have I
drawing requests should probably be considered slow.

. For windows that are slow to draw, the application should avoid drawing areas that were not exposed. If the
application can figure out which slow drawing requests would draw only into areas that were not exposed anc
calculations are not time consuming in themselves, then it should eliminate these requests.

. For windows that are slow to draw, the second best approach is to set a clip mask to allow the server to elimi
unnecessary requests. (This will work only if the server has been designed to do so.) The application can co
all the areas in a contiguous series of expose events into a single clip mask and set this clip mask into the G(
code for this is only slightly more complex than the approach for the window that is fast to draw.

Since the image used by thasicwinapplication is simple, the application can redraw the entire window upon receivir
the last contiguouExpose event with little performance penalty. But we will also show you the other approach, as i
window were more complex. Example 3-13 shows the first method from the list above, and Example 3-15 shows
third method.

The second method in the list above is not shown here because it is hard to demonstrate in a way that is transferal
other applications. We will just describe it in a little more detail instead. Let’'s say that we are writing a spreadshee
application and designing the exposure event handling. In the spreadsheet, it would be easy to determine which ¢
affected by the exposure, because the cells are arranged along horizontal rows and in columns. UponEjgttiag an
event, the application could easily determine which cells overlapped the exposed area and then redraw only those.
same could not be said of a painting program, in which some drawing primitives could be diagonal or drawn with w
line styles. It would be very hard to determine whether a particular primitive drawn in the painting program intersec
an exposed region. In general, any application that draws most or all of its graphics horizontally or vertically can b
from this technigue. One example of an application written this weteiisy and you can look at the code for that if you
can get it.xtermredraws only the characters that are in exposed areas.

Example 3-15 shows a technique that could be used for more complicated windows. It createRagiorgle
composed of the union of the rectangles in allEkpose events. Regions are described fullydhapter 6, "Drawing
Graphics and Text," but you should be able to understand this example anyway.

Example 3-15. Handling Expose events for complex window contents
int window_size = BIG_ENOUGH; /* Or TOO_SMALL to display contents */
Region region; [* Coalesce rectangles from all Expose
* events */
XRectangle rectangle; [* Place Expose rectangles in here */

[* Create region for exposure event processing */
region = XCreateRegion();
while (1) {
XNextEvent(display, &report);
switch (report.type) {
case Expose:
if (window_size == TOO_SMALL) {
TooSmall(win, gc, font_info);
break;
}
/* Set rectangle to be exposed area */
rectangle.x = (short) report.xexpose.x;
rectangle.y = (short) report.xexpose.y;
rectangle.width = (unsigned short) report.xexpose.width;
rectangle.height = (unsigned short) report.xexpose.height;
/* Union this rect into a region */
XUnionRectWithRegion(&rectangle, region, region);
/* If this is the last contiguous expose in a group,
* set the clip region, clear region for next time
*and draw */
if (report.xexpose.count == 0) {
[* Set clip region */
XSetRegion(display, gc, region);
/* Clear region for next time */
XDestroyRegion(region);
region = XCreateRegion();
[* Place text in window */
place_text(win, gc, font_info, width, height);
/* Place graphics in window */
place_graphics(win, gc, width, height);
}

break;

Being able to redraw the contents of its windows is important for most applications, but for a few applications, it mig
very difficult or impossible. There is another method that might be used in such a situation. The application could
into a pixmap and then copy the pixmap to the window each time the window needs redrawing. That way the com|
window contents would always be available for redrawing the windolaxpnse events. The disadvantage of this
approach is that the server might not have sufficient memory to store piangps in memory (especially on color
displays) or it might be slow about copying the pixmap into the window. But this would be a logical way to handle
exposure in an application that performs double-buffering.

Double-buffering is an animation technique that hides the drawing process from the viewer. In one implementation, a pixmap is drawn into anc
copied to a window when the image is complete. Another technique called overlays is described in Chapter 7.

On high performance graphics workstations, a feature known as a backing store might also be available to assist ir
redrawing windows. When available, this feature can be turned on for any window that really requires it. With the k
store on, the server can maintain the contents of the window when it is obscured and even when it is unmapped ar
drawing to the window while it is in one of these states. The one situation that the backing store cannot fully take ¢
resizing the window. This is because it is assumed that most applications need to recalculate the dimensions of th
contents to fit a new window size. The application can set an attribute called bit gravity to retain part of the window
a resize, but part of the window is still going to need redrawing if the window is resized larger.

In case you might be wondering, we have intentionally not describellatvetext anddraw_graphics routines
here. They are described in Sections 6.2.7 and 6.1.3. But if you are still curious, they are included in the listing of
basicwinat the end of this chapter.

3.2.14 When Can | Draw?

There is often confusion about when an application is permitted to draw into its windows. You might think it would
to draw immediately after théMapWindow() request that displays a window on the screen. But that will not work w
most styles of window manager. The rule is that no drawing is allowed until thExjrsse event arrives.

The reason involves a feature of X called substructure rediredtitoduced inSection 2.1.5, "The Window Manager"
and described more fully Bection 16.2, "Substructure Redirection."

3.2.15 When Will My Drawing Appear?

Another characteristic of X that often confuses newcomers is the fact that graphics drawn may not appear on the s
immediately. Itis easy to write a program that properly performs a number of drawing calls but that never makes a
appear on the screen. This is a side effect of the fact that X is designed to buffer communications over a network,
described in theoretical terms$ection 2.1.2, "Buffering.”" We will describe it in more practical terms here.

What happens is that the requests (to create windows, to map windows, or to draw into them) are queued up in Xlil
waiting for something to happen that requires an immediate communication with the server. Xlib will not send requ
any kind to the server until such an occurrence. The requests are saved up as a packet so they can be sent over t
more efficiently.

The queue of requests waiting to be sent to the server is callesjthesst buffer The requests are accumulated in the
request buffer until a call to:

1. Any routine which requests information from the X server (for exam{gietWindowAttributes() ,
XLoadQueryFont() , XQueryPointer())

Certain requests for getting eventdfaskEvent() , XNextEvent() , XPending() , XWindowEvent)
XFlush()
XSync()

Actually, a routine in number 2 above that gets events triggers a communication with the server only if there is no €
Xlib’'s event queue that matches what the routine is looking for. Only if the routines are waiting for an event do the!
trigger the exchange. Any of these actions is safllish the request bufferwhich means that all requests up to this poir
will be acted on by the server. Novice programmers who neglect to call one of these routines will notice that their ¢
requests have not been honored. They do not realize that pedmgod their X requests that require communication wi
the server have been honored.

But does it really take a lot of care to make sure that the request buffer gets flushed? Not usually. Since X progral
event-driven, they often call routines that get events. If an application handles event types that occur frequently, s
pointer or keyboard events, there is nothing to worry about. If the application needs to get information from the ser
making a call containing the woFektch , Get, or Query , no problem is likely. On the other hand, an output-only
application that handles onxpose events would certainly need to cdlFlush() once in a while to make sure that its
drawing was honored in a timely fashion.

3.2.16 Handling Resizing of the Window

The ConfigureNotify event tells the application that the window was resized. In this program, we pass this
information to the routines that draw, so that they can position things properly. We also see if the new size is less tl
minimum useful size that we set as a size hint for the window manager. If it is smaller in either dimension, then we
flagwindow_size so that the next time d&xpose event arrives, we display the messdg®o Small” instead of the
usual text.

Example 3-16 shows the code that handle€tfigureNotify event.

Example 3-16. basicwin —— the ConfigureNotify event

case ConfigureNotify:
/* Window has been resized; change width and height to
* send to place_text and place_graphics in next Expose */
width = report.xconfigure.width;
height = report.xconfigure.height;
if ((width < size_hints—>min_width) ||
(height < size_hints—>min_height))
window_size = TOO_SMALL;

else
window_size = BIG_ENOUGH,;
break;
Note that when the window is first mapped, @anfigureNotify event appears on the queusforethe firstExpose
event. This means that the code works even if the window manager modifies the window's size before allowing it t
displayed. The initiaConfigureNotify updates the application’s knowledge of the window size, and the following

Expose event allows the application to draw the window’s contents.

If we had not selectedonfigureNotify events, the code fdExpose would have to be modified to check the
dimensions in the firdExpose event, so that it knew the correct window size. It would also have to query the server
the window size in response to subseq@piose events, because these events describe only the exposed area, not
entire window.

3.2.17 Exiting the Program

This program uses a key or button press to exit. This is not a very demandindgegi@fss andButtonPress
events. For a description of how to use keyboard and pointer events for more advanced purfitisastese® "The
Keyboard and Pointer."

To cleanly exit, a client should free all the memory it has allocated, particularly X resources, and then close the dis|
connection withXCloseDisplay() . Example 3-17 shows the code that performs these functibasiowin

Example 3-17. Closing the display connection and freeing resources
case ButtonPress:

/* Trickle down into KeyPress (no break) */
case KeyPress:

XUnloadFont(display, font_info—>fid);

XFreeGC(display, gc);

XCloseDisplay(display);

exit(1);

It is good practice to uséCloseDisplay() even though the connection to the server is closed automatically when
process exits. Otherwise, pending errors might not be reported.

3.2.18 Error Handling

Although there does not appear to be much in the way of error—handling code in this example, the question of erro
handling has been fully considered:

. On theXOpenDisplay() call, we check for the error returtell the user what server the attempt was made to
connect to, and exit gracefully.

. For all other errors, we depend on the default error—handling mechanisms. These errors might be a protocol
caused by a programming error (all of which we hope to eliminate), a protocol error caused by the server runi
of memory (the chance of which we cannot eliminate), or an IO error such as losing the connection with the s
due to network failure. For protocol errors, the client gets an error event from the server, and Xlib invokes an

handler function. The client is free to provide its own error handler to replace the default handler, which print:
informative message and exits. For IO errors, there is a separate error handler function, which can be separi
replaced by the application. But for this example, we have simply relied on the default handlers.

It is important to note that not all protocol errors cause the error handler to be invoked, though this fact does not sh
in basicwin Some errors, such as failure to open a font, are indicated by returned valuesStdttype on the
appropriate routine (in this casél.oadFont()). The returned values are zero on failure and nonzero on success. In
general, any routine that retur@tatus will need its return value tested, because it will have bypassed the
error—handling mechanism.

3.2.19 Summary
The basic steps that were taken in this program are as follows:

. Open connection to server.

. Make sure connection succeeded, print error and exit if not.
. Get display dimensions.

. Calculate desired size of window and create window.

. Create pixmap for icon.

. Initialize XSizeHint structure.

. Set standard properties for window manager.

. Select desired event types.

. Map window.

. Set up event gathering loop.

. If event is of typeExpose , draw contents of window.
. If event is of typeConfigureNotify , recalculate dimensions of window.
. If event isButtonPress or KeyPress , close the display and exit.

The order of these steps is important up to the point where the window is mapped. Within the event loop, the orde
events cannot be completely predicted.

3.2.20 Complete Code for basicwin

Now look at the complete code foasicwinand make sure you understand everything. Note thatdwe graphics
draw_text ,get GC, andload font routines have not yet been described but will be covered in later chapters.

Example 3-18. basicwin —— in its entirety

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <X11/Xos.h>

#include <X11/Xatom.h>

#include <stdio.h>

#include "bitmaps/icon_bitmap"

#define BITMAPDEPTH 1

#define TOO_SMALL 0

#define BIG_ENOUGH 1

[* These are used as arguments to nearly every Xlib routine, so it
* saves routine arguments to declare them global; if there were
* additional source files, they would be declared extern there */
Display *display;

int screen_num;

[* progname is the string by which this program was invoked; this
* is global because it is needed in most application functions */

static char *progname;
void main(argc, argv)

int argc;

char **argv;

{
Window win;
unsigned int width, height; /* Window size */
intx,vy; /* Window position */

unsigned int border_width = 4; /* Four pixels */
unsigned int display_width, display_height;
unsigned int icon_width, icon_height;
char *window_name = "Basic Window Program";
char *icon_name = "basicwin";
Pixmap icon_pixmap;
XSizeHints *size_hints;
XlconSize *size_list;
XWMHints *wm_hints;
XClassHint *class_hints;
XTextProperty windowName, iconName;
int count;
XEvent report;
GC gc;
XFontStruct *font_info;
char *display_name = NULL;
int window_size = 0; /* BIG_ENOUGH or TOO_SMALL to
* display contents */
progname = argv|[0];
if (!(size_hints = XAllocSizeHints())) {
fprintf(stderr, "%s: failure allocating memory, progname);
exit(0);
}
if (!(wm_hints = XAllocWMHints())) {
fprintf(stderr, "%s: failure allocating memory, progname);
exit(0);
}
if (!(class_hints = XAllocClassHint())) {
fprintf(stderr, "%s: failure allocating memory, progname);
exit(0);
}
[* Connect to X server */
if ((display=XOpenDisplay(display_name)) == NULL)
{

(void) fprintf(stderr, "%s: cannot connect to X server %s\n",
progname, XDisplayName(display_name));
exit(—-1);
}
[* Get screen size from display structure macro */
screen_num = DefaultScreen(display);
display_width = DisplayWidth(display, screen_num);
display_height = DisplayHeight(display, screen_num);
/* Note that in a real application, x and y would default
* to 0 but would be settable from the command line or
* resource database */
X=y=0;
[* Size window with enough room for text */
width = display_width/3, height = display_height/4;
[* Create opaque window */
win = XCreateSimpleWindow(display, RootWindow(display,screen_num),

X, Y, width, height, border_width, BlackPixel(display,
screen_num), WhitePixel(display,screen_num));
[* Get available icon sizes from window manager */
if (XGetlconSizes(display, RootWindow(display,screen_num),
&size_list, &count) == 0)
(void) fprintf(stderr, "%s: Window manager didn't set \
icon sizes — using default.\n", progname);
else {

/* A real application would search through size_list
* here to find an acceptable icon size and then
* create a pixmap of that size; this requires that
* the application have data for several sizes of icons */
}
[* Create pixmap of depth 1 (bitmap) for icon */
icon_pixmap = XCreateBitmapFromData(display, win,
icon_bitmap_bits, icon_bitmap_width,
icon_bitmap_height);
[* Set size hints for window manager; the window manager
* may override these settings */
/* Note that in a real application, if size or position
* were set by the user, the flags would be USPosition
* and USSize and these would override the window manager’s
* preferences for this window */
I* x, y, width, and height hints are now taken from
* the actual settings of the window when mapped; note
* that PPosition and PSize must be specified anyway */
size_hints—>flags = PPosition | PSize | PMinSize;
size_hints—>min_width = 300;
size_hints—>min_height = 200;
[* These calls store window_name and icon_name into
* XTextProperty structures and set their other fields
* properly */
if (XStringListToTextProperty(&window_name, 1, &windowName) == 0) {
(void) fprintf(stderr, "%s: structure allocation for \
windowName failed.\n", progname);
exit(-1);
}

if (XStringListToTextProperty(&icon_name, 1, &iconName) == 0) {
(void) fprintf(stderr, "%s: structure allocation for \
iconName failed.\n", progname);
exit(-1);
}
wm_hints—>initial_state = NormalState;
wm_hints—>input = True;
wm_hints—>icon_pixmap = icon_pixmap;
wm_hints—>flags = StateHint | IconPixmapHint | InputHint;
class_hints—>res_name = progname;
class_hints—>res_class = "Basicwin";
XSetWMProperties(display, win, &windowName, &iconName,
argv, argc, size_hints, wm_hints,
class_hints);
}
[* Select event types wanted */
XSelectlnput(display, win, ExposureMask | KeyPressMask |
ButtonPressMask | StructureNotifyMask);
load_font(&font_info);

[* Create GC for text and drawing */
getGC(win, &gc, font_info);
[* Display window */
XMapWindow(display, win);
[* Get events, use first to display text and graphics */
while (1) {
XNextEvent(display, &report);
switch (report.type) {
case Expose:
/* Unless this is the last contiguous expose,
* don’t draw the window */
if (report.xexpose.count != 0)
break;
/* If window too small to use */
if (window_size == TOO_SMALL)
TooSmall(win, gc, font_info);
else {
* Place text in window */
place_text(win, gc, font_info, width, height);
[* Place graphics in window */
place_graphics(win, gc, width, height);
}
break;
case ConfigureNotify:
/* Window has been resized; change width
* and height to send to place_text and
* place_graphics in next Expose */
width = report.xconfigure.width;
height = report.xconfigure.height;
if ((width < size_hints—>min_width) ||
(height < size_hints—>min_height))
window_size = TOO_SMALL,;
else
window_size = BIG_ENOUGH,;
break;
case ButtonPress:
[* Trickle down into KeyPress (no break) */
case KeyPress:
XUnloadFont(display, font_info—>fid);
XFreeGC(display, gc);
XCloseDisplay(display);
exit(1);
default:
/* All events selected by StructureNotifyMask
* except ConfigureNotify are thrown away here,
* since nothing is done with them */
break;
} I* End switch */
} * End while */
}
getGC(win, gc, font_info)
Window win;
GC *gc;
XFontStruct *font_info;
{
unsigned long valuemask = 0; /* Ignore XGCvalues and
* use defaults */
XGCValues values;

unsigned int line_width = 6;

int line_style = LineOnOffDash;

int cap_style = CapRound;

int join_style = JoinRound;

int dash_offset = 0;

static char dash_list[] = {12, 24};

int list_length = 2;

[* Create default Graphics Context */

*gc = XCreateGC(display, win, valuemask, &values);

* Specify font */

XSetFont(display, *gc, font_info—>fid);

I* Specify black foreground since default window background

* is white and default foreground is undefined */

XSetForeground(display, *gc, BlackPixel(display,screen_num));

[* Set line attributes */

XSetLineAttributes(display, *gc, line_width, line_style,
cap_style, join_style);

[* Set dashes */

XSetDashes(display, *gc, dash_offset, dash_list, list_length);

load_font(font_info)
XFontStruct **font_info;
{
char *fonthame = "9x15";
/* Load font and get font information structure */
if ((*font_info = XLoadQueryFont(display,fontname)) == NULL)
{
(void) fprintf(stderr, "%s: Cannot open 9x15 font\n",
progname);
exit(—-1);
}
}
place_text(win, gc, font_info, win_width, win_height)
Window win;
GC gc;
XFontStruct *font_info;
unsigned int win_width, win_height;
{
char *stringl = "Hi! I'm a window, who are you?";
char *string2 = "To terminate program; Press any key";
char *string3 = "or button while in this window.";
char *string4 = "Screen Dimensions:";
int lenl, len2, len3, len4;
int width1, width2, width3;
char cd_height[50], cd_width[50], cd_depth[50];
int font_height;
int initial_y_offset, x_offset;
/* Need length for both XTextWidth and XDrawString */
lenl = strlen(stringl);
len2 = strlen(string2);
len3 = strlen(string3);
[* Get string widths for centering */
widthl = XTextWidth(font_info, stringl, lenl);
width2 = XTextWidth(font_info, string2, len2);
width3 = XTextWidth(font_info, string3, len3);
font_height = font_info—>ascent + font_info—>descent;
[* Output text, centered on each line */
XDrawsString(display, win, gc, (win_width — width1)/2,

font_height,
stringl, lenl);
XDrawsString(display, win, gc, (win_width — width2)/2,
(int)(win_height — (2 * font_height)),
string2, len2);
XDrawsString(display, win, gc, (win_width — width3)/2,
(int)(win_height — font_height),
string3, len3);
[* Copy numbers into string variables */
(void) sprintf(cd_height, " Height — %d pixels",
DisplayHeight(display,screen_num));
(void) sprintf(cd_width, " Width — %d pixels",
DisplayWidth(display,screen_num));
(void) sprintf(cd_depth, " Depth — %d plane(s)",
DefaultDepth(display, screen_num));
[* Reuse these for same purpose */
lend = strlen(string4);
lenl = strlen(cd_height);
len2 = strlen(cd_width);
len3 = strlen(cd_depth);
[* To center strings vertically, we place the first string
* so that the top of it is two font_heights above the center
* of the window; since the baseline of the string is what
* we need to locate for XDrawString and the baseline is
* one font_info —> ascent below the top of the character,
* the final offset of the origin up from the center of
* the window is one font_height + one descent */
initial_y_offset = win_height/2 - font_height -
font_info—>descent;
x_offset = (int) win_width/4;
XDrawsString(display, win, gc, x_offset, (int) initial_y_offset,
string4,len4);
XDrawsString(display, win, gc, x_offset, (int) initial_y_offset +
font_height,cd_height,lenl);
XDrawsString(display, win, gc, x_offset, (int) initial_y_offset +
2 * font_height,cd_width,len2);
XDrawsString(display, win, gc, x_offset, (int) initial_y_offset +
3 * font_height,cd_depth,len3);
}
place_graphics(win, gc, window_width, window_height)
Window win;
GC gc;
unsigned int window_width, window_height;
{ .
intx,y;
int width, height;
height = window_height/2;
width = 3 * window_width/4;
X = window_width/2 — width/2; /* Center */
y = window_height/2 - height/2;
XDrawRectangle(display, win, gc, X, y, width, height);
}
TooSmall(win, gc, font_info)
Window win;
GC gc;
XFontStruct *font_info;

{

char *stringl = "Too Small";

inty offset, x_offset;

y_offset = font_info—>ascent + 2;

x_offset = 2;

[* Output text, centered on each line */

XDrawsString(display, win, gc, x_offset, y_offset, string1,
strlen(stringl));

Chapter 4

Window Attributes

The window attributes control a window’s background and border pattern or color, the events that should be queue
and so on. This chapter describes how to set and get window attributes and provides a detailed description of eac
attribute. Everyone should read this chapter.

Now that you know the basic X concepts and you have seen the code for an X application, we can go back and ste
describe various aspects of Xlib in full detail. This chapter describes the window attributes thoroughly. The windo\
attributes were introduced 8ection 2.2.1, "Window Characteristics"and described in more detail$ection 2.4.1,
"Window Attributes." You should read those sections before proceeding.

The setting of window attributes becomes necessary when yo(QusateWindow() instead of the simpler
XCreateSimpleWindow() . However, it is not essential that you set any window attributes other than the window
background and border. Therefore, this chapter is mainly about optional features that you may find useful.

You will continue to find this chapter useful as a reference even when you are an experienced X programmer. A us
quick reference to the window attributes is also provided inside the back cat@uofe Two, Xlib Reference Manual

4.1 Setting Window Attributes

Window attributes can be set while creating a window iflmeateWindow() or afterward with a call to
XChangeWindowAttributes() . When creating a window witkCreateSimpleWindow() , most of the
attributes are inheriteffom the parent. There are also several routines for changing individual window attributes,
including theevent_mask , background and border.

The procedure for setting the attributes is the sameX@treateWindow() or XChangeWindowAttributes()
You set the members of aSetWindowAttributes structure to the desired values, create a mask indicating whict
members you have set, and call the routine to create the window or change the attributes.

4.2 The Window Attribute Structures

There are actually two structures associated with window attridOféimdowAttributes is a read—-only structure that
contains all the attributes, whik¥SetWindowAttributes is a structure that contains only those attributes that a
program is allowed to set. We will not show yWindowAttributes until Section 4.4, "Information from the
XWindowAttributes Structure,” since it is used in programming only for getting the values of the window attributes

Example 4-1 shows the structure that is used to set the window attributes.

Example 4-1. The XSetWindowAttributes structure

typedef struct _XSetWindowAttributes {
Pixmap background_pixmap; /* Pixmap, None, or ParentRelative */
long background_pixel; /* Background pixel value */
Pixmap border_pixmap; /* Pixmap, None, or CopyFromParent */
long border_pixel; /* Border pixel value */

int bit_gravity; /* One of the bit gravity symbols */
int win_gravity; /* One of the window gravity symbols */
int backing_store; /* NotUseful, WhenMapped, or Always */
long backing_bitplanes; /* Planes to be preserved, if possible */
long backing_pixel; /* Value to use in restoring planes */
Bool save_under; /* Should bits under window be saved */
long event_mask; /* Events that should be queued */
long do_not_propagate_mask; /* Events that shouldn’t propagate */
Bool override_redirect; /* Override redirected configuration
* requests */
Colormap colormap; /* Colormap associated with window */
Cursor cursor; /* Cursor to be displayed or None */
} XSetWindowAttributes;

To set the window attributes, you need to set the elements ¥SgtVindowAttributes structure to the desired
values and then setvaluemask argument that represents whichembers are to be changed in the server’s internal
structure. A symbol specifying each member to be changed is combined with the bitwise OR dperEtesé symbols
are shown in Table 4-1. They begin with the let@&{"Create Window" or "Change Window") because the routines
they are used in have those capital letters in their names.

Member Fla Bit
background_pixmap CWgBackPixmap o
background_pixel CWBackPixel 1
border_pixmap CWBorderPixmap 2
border_pixel CWBorderPixel 3
bit_gravity CWBItGravity 4
win_gravity CWWinGravity 5
backing_store CWBackingStore 6
backing_planes CWBackingPlanes 7
backing_pixel CWBackingPixel 8
override_redirect CWOverrideRedirect 9
save_under CWSaveUnder 10
event_mask CWEventMask 11
do_not_propagate_mask CWDontPropagate 12
colormap CWColormap 13
cursor CWCursor 14

Table 4-1 Window Attribute Mask Symbols

For example, if you want to set the initial values of the background and border pixel values, you would follow the
procedure shown in Example 4-2.

Example 4-2. Setting window attributes while creating a window

Display *display;

Window parent, window;

intx,vy;

unsigned int width, height, border_width;

int depth;

int screen_num;

Visual *visual;

unsigned int class;

XSetWindowAttributes setwinattr;

unsigned long valuemask;

/* (Must open display) */

screen_num = DefaultScreen(display);

valuemask = CWBackPixel | CWBorderPixel;

setwinattr.background_pixel = WhitePixel(display, screen_num);

setwinattr.border_pixel = BlackPixel(display, screen_num);

window = XCreateWindow(display, parent, X, y, width, height,
border_width, depth, class, visual, valuemask, &setwinattr);

If the window already exists, you can change those same attributes with the procedure shown in Example 4-3.

Example 4-3. Changing window attributes of existing window
Display *display;

Window window;

XSetWindowAttributes setwinattr;

unsigned long valuemask;

/* (Must open display, create window) */

valuemask = CWBackPixel | CWBorderPixel;
setwinattr.background_pixel = WhitePixel(display, screen_num);
setwinattr.border_pixel = BlackPixel(display, screen_num);
XChangeWindowAttributes(display, window, valuemask, &setwinattr);

You can also use separate callX&etWindowBackground() = andXSetWindowBorder() to set these particular
attributes. These and a few other attributes have routines for setting them individually. (These routines are referrec
convenience routinesThey are provided for the attributes that most often need to be set without modifying any othe
attributes.) Table 4-2 lists the attributes that can be set individually and the routines that set them. But it is importe
realize that each of these routines would generate a separate protocol request to the server, so if more than one at
to be set, it is more efficient to use the procedures shown above in Examples 4-2 and 4-3.

Attribute Routine for Setting It

background_pixmap XSetWindowBackgroundPixmap()
background_pixel XSetWindowBackground()

border_pixmap XSetWindowBorderPixmap()

border_pixel XSetWindowBorder()

event_mask XSelectinput()

colormap XSetWindowColormap()

cursor XDefineCursor() or XUndefineCursor()

Table 4-2 Attributes that can be Set Individually

Section 4.3, "Settable Attributes" describes all of the attributes and the routines for setting them.

4.3 Settable Attributes

The sections that follow describe the options and default values for each membetSdtivendowAttributes
structure. The attributes control a wide variety of ways for a window to act. They can be grouped loosely to help y
understand when you might want to set each attribute.

One group of attributes controls the appearance of a window. Thasacaground_pixel , background_pixmap ,
border_pixel , border_pixmap ,colormap , andcursor . Most clients will set the border, background, and

cursor but use the default colormap.

A second group is provided to allow clients to improve their redrawing performance under certain conditions. Thest
backing_pixel , backing_planes , backing_store , bit_gravity , andsave_under . These attributes do
not affect the appearance or operation of a client. It is advisable to cdriideavity when designing a client, but
the code for using these attributes can be added after a client’s functionality is complete.

Theevent_mask anddo_not_propagate_mask attributes control the selection and propagation of events. Thes
attributes are described briefly in this chapter but also in much more detdidpter 8, "Events."

Thewin_gravity attribute provides a means for relocating a window automatically when its parent is resized.
Applications can take advantage of this feature to simplify the code that positions their subwindows when they are

Theoverride_redirect attribute controls whether requests to map or reconfigure the window can be intercepte
the window manageroverride_redirect is meant to be set for the most temporary types of windows such as
pop—up menus. In practice, this attribute only affects the top—level windows of an application (all children of the ro
window).

As described in Chapter 2, there are two window classestOutput andIinputOnly . The class of a window is
specified in the call tiXCreateWindow() , or isInputOutput if the window is created with
XCreateSimpleWindow()

InputOutput windows have all of the attributes described in the sections béfgutOnly windows have only the
following subset of attributes:

. win_gravity

. event_mask

. do_not_propagate_mask

. override_redirect

. cursor

Any attempt to set attributes other than these five dn@ntOnly window will cause an X protocol erroB@dMatch).

4.3.1 The Window Background

The background of a window is the drawing surface on which other graphics are drawn. It may be a solid color, or
be patterned with a pixmap. This choice is mostly an aesthetic decision for the programmer. However, users expe
able to specify the background color on the command line or in the resource database. Therefore, if a pixmap is u:
code for creating the pixmap should use two colors specified by the us8e$iem 6.1.5, "Creating Bitmaps, Pixmaps,
Tiles, and Stipples" for information on creating pixmaps).

The two attributes that control the backgroundtarekground_pixmap andbackground_pixel , set by
XSetWindowBackgroundPixmap() andXSetWindowBackground() , respectively.

These two attributes are not independent since they affect the same pixels. Either attribute can take precedence c
other, the winner being the one that is set last. If both are set in the sameXCakkabeWindow() or
XChangeWindowAttributes() , thebackground_pixel value is used.

The background of exposed areas of windows is automatically repainted by the server, regardless of whether the
application select&xpose events.

However, changes in background attributes will not take effect until the server generates Exposxtevent on that
window. If you want the new background to be visible immediately X&lkarWindow() and flush the request buffer
with XFlush()

Applications must set one or the other for all windows. Otherwise, the results are undefined. Most applications sel
backgrounds to a solid color by setting Haekground_pixel attribute. The easiest way to do this is by setting the |
argument oXCreateSimpleWindow() to BlackPixel orWhitePixel()

4.3.1.1 background_pixmap

If the background is set to a pixmap, the background is tiled with the piXitiag.is the laying out of a pixmap to cover

an area. The first pixmap is applied at the origin of the window (or its parent’s origin if using the parent’s backgrou
pixmap by specifyindgParentRelative , as described below). Another copy of the same pixmap is applied next to

one and another below it and so on until the window is filled.

The pixmap may be any size, though some sizes may be tiled faster than others. To find the most efficient tile size
particular screen, calQueryBestTile()

A pixmap must be created wikCreatePixmap() or XCreatePixmapFromBitmapData() before being set as
thebackground_pixmap attribute. The pixmap must have the same depth as the window and be created on the
screen. These characteristics are assigned to a pixmap as it is created. (For more information on creating pixmag
seeSection 6.1.5, "Creating Bitmaps, Pixmaps, Tiles, and Stipples."

Thebackground_pixmap attribute has the following possible values:

None (default)
Specifies that the window has no defined background pixmap. The window background initially
be invisible and will share the bits of its parent but only ifdhekground_pixel attribute is not
set. When anything is drawn by any client into the area enclosed by the window, the contents
remain until the area is explicitly cleared wKRlearWindow() . The background is not
automatically refreshed after exposure. The main purpose of the $éttiiegs a minor
performance improvement. If the application is simply going to cover the entire window with
graphics (i.e., there is no reasonable "background” that the application can set), then why bott
forcing the server to spend time painting the backgroudd?e might also be useful for a
subwindow when that subwindow will never be moved in relation to its parent.

a pixmap ID The background will be tiled with the specified pixmap, but not until thefbepdse event or
XClearWindow() call. The background tile origin is the window origin. If the pixmap is not
explicitly referenced again, it can be freed, since a copy is maintained in the server. Because
server copies the pixmap, changes to it after you sébitlground_pixmap attribute are not
guaranteed to be reflected in the window background. For consistent results, therefore, you ne
reset the attribute after each change to the pixmap.

ParentRelative
Specifies that the parent’s background is to be used and that the origin for tiling is the parent’s
(or the parent’s parent if the parerttackground_pixmap attribute is als®arentRelative
and so on). The difference between setilagentRelative and explicitly setting the same
pixmap as the parent is the origin of the tiling. The difference betiR@emtRelative and
None is that forParentRelative , the background is automatically repainted on exposure.

The window must have the same depth as the parenBatMatch error will occur. If the parent
has backgrountilone, then the window will also have backgrouohe. The parent’s background
is re—examined each time the window background is required (when it needs to be redrawn di.
exposure). The window’s contents will be lost when the window is moved relative to its parent,
the contents will have to be redrawn.

Changing théackground_pixmap attribute of the root window thlone or ParentRelative restores the default
background, which is server-dependent.

By the way, the symb@opyFromParent is not used for setting the background, but it will not cause an error, since
value is the same &one.

4.3.1.2 background_pixel

If the background pixel value is specified, the entire background will take on the color (or shade of gray) indicated f
pixel value in the current colormap.

We should inform you here that a pixel value is not something you choose yourself; you choose a color name, and the pixel value is returned to
BlackPixel or WhitePixel() or one of the routines that allocate colors. We go into this subject in deZ4iajter 7, "Color."

Thebackground_pixel attribute has the following possible values:

undefined (default)
Indicates that the background is as specified ib#ukground_pixmap attribute. This value is
possible only by creating a window wi¥CreateWindow() and not setting the
background_pixel attribute.

a pixel value The background is filled with the specified pixel value. This can be set with the last argument
XCreateSimpleWindow() , XCreateWindow() , or XChangeWindowAttributes()

4.3.2 The Window Border

Like the window background, the window border may have a solid color or may be tiled with a pixmap. This choice
again up to the programmer, though the user should be allowed to determine the color or colors.

Unlike changes to the window background, changes to a window’s border attributes are reflected immediately. No

XClearWindow() or call to flush the request buffer iecessary. This feature makes it possible to use the window
border for indicating a client’s state. But you cannot use the border of the top-level window, since some window
managers manipulate this border to indicate the keyboard focus windo®e(stemn 8.3.2.1, "The Keyboard Focus
Window" for a description of the keyboard focus).

The design of a pattern for the border will be different from the background pixmap, because the border width is us
narrow (at most four pixels).

The two attributes that affect the borderlaoeder_pixmap andborder_pixel
XSetWindowBorderPixmap() andXSetWindowBorder() can be used to set these attributes. Like the window
background, whenever one of these routines is called, it overrides the previous setting of the border. If they are bc

simultaneously wittXCreateWindow() or XChangeWindowAttributes() , theborder_pixel attribute takes
precedence.

Most applications simply set thmrder_pixel to BlackPixel or WhitePixel() in the next-to-last argument of
XCreateSimpleWindow()

4.3.2.1 border_pixmap

If the border_pixmap is set to a pixmap, the border is tiled with the pixmap. Tiling is performed as described
previously for the background pixmap; the border tile origin is the same as the background tile origin.

Theborder_pixmap attribute has the following possible values:

CopyFromParent (default)
Specifies that the border pixmap is to be copied from the parent. (NoGotngEromParent
will cause protocol errors if the window's depth is different from its parent’s.) Subsequent chat
to the parent’s border attributes do not affect the child, but changes to the pixmap used by the
may be reflected in the child border (server—-dependent).

None Specifies that the window has no border pixmap. If the window has no border pixel value eithe
then it uses the same border pixel value as the parent.

a pixmap ID Specifies a pixmap to be tiled in the border. The border tile origin is always the window origin;
not taken from the background tile origin. If the pixmap is not explicitly referenced again, it cal
freed since a copy is maintained in the server.

For the root windowCopyFromParent indicates that the default border will be inherited by subsequently created
children of the root window, instead of any other border that was set for the root window. Setbioiglénepixmap
of the root window t&CopyFromParent restores the default border pixmap for later inheritance.

4.3.2.2 border_pixel

If a border pixel value is specified, the entire border will take on the color (or shade of gray) indicated for that pixel
in the current colormap.

Theborder_pixel attribute has the following possible values:

undefined (default)
Indicates that the border is as specified inbeer_pixmap attribute. This value is possible
only by creating a window witKCreateWindow() and not setting thiorder_pixel
attribute.

a pixel value Overrides the default and abgrder_pixmap given, and fills the border with the specified pixel
value. This is set by the next—-to—last argumen{@feateSimpleWindow()

4.3.3 Bit Gravity

When an unobscured window is moved, its contents are moved with it, since none of the pixel values need to be ci
But when a window is enlarged or shrunk, the server has no idea where in the resulting window the old contents st
placed, so it normally throws them out. Thie gravity attribute tells the server where to put the existing bits in th

larger or smaller window. By instructing the server where to place the old contents, bit gravity allows some clients
can take advantage of it) to avoid redrawing parts of their windows.

Bit gravity is nevenecessaryn programs. It does not affect the appearance or functionality of the client. It is used tc
improve performance in certain cases. Some X servers may not implement bit gravity and may throw out the wind
contents on resizing regardless of the setting of this attribute. This response is the default for all servers. That is, tl
default bit gravity id~orgetGravity ~ , which means that the contents of a window are always lost when the window
resized, even if they are maintained in backing store or becausaed aunder (to be described in Sections 4.3.5 and
4.3.6).

The window is tiled with its background in the areas that are not preserved by the bit gravity, unless no backgrounc
defined, in which case the existing screen is not altered.

There is no routine to set thé_gravity individually; it can be set only witKChangeWindowAttributes() or
XCreateWindow()
Thebit_gravity attribute has 11 possible values:

ForgetGravity (default)
Specifies that window contents should always be discarded after a size change. Note that sor
servers may not implement bit gravity and mayhksgetGravity in all cases.

StaticGravity Specifies that window contents should not move relative to the origin of the root window. This
means that the area of intersection between the original extent of the window and the final ext
the window will not be disturbed.

Each constant below specifies where the old window contents should be placed in the resized window.

NorthWestGravity

Upper-left corner of the resized window.
NorthGravity Top center of the resized window.
NorthEastGravity

Upper-right corner of the resized window.
WestGravity Left center of the resized window.
CenterGravity Center of the resized window.
EastGravity Right center of the resized window.
SouthWestGravity

Lower-left corner of the resized window.
SouthGravity Bottom center of the resized window.
SouthEastGravity

Lower-right corner of the resized window.

Here are two examples of applications that could take advantage of bit gravity. Figure 4-1 shows a fictional applic
that draws a two—axis graph in a window, with the origin at the lower-left corner. If that window were resized, the
application would want the old contents to be placed against the new lower—-left corner, no matter which sides of th
window were moved in or out. That application would setihegravity attribute of this window to
SouthWestGravity . Figure 4-1 shows the response of this window to resizing with this bit gravity setting.

Figure 4-1. bit_gravity for a graphing application

1

1

1

|

1

1

1

1

1

|

1

1

1

- 1

BRI TTT T[T TTTT{TTT71 !

1

1886 188T 1888 1888 1880 :

e e e e e e L_.]

e —_— !

e s FETTTreTT| |

. !

Tl 1086 188T 1HEB 1080 1880 :

SouthWestOravity
1 1 I—____'_'__—___'—'______'_'__—___I
1 1 1 1
1 1 | |
1 1 1 1
1 1 1 1
1 1 | |
1 1 1 1
1 1 1 1
1 1 | |
1 1 1 1
: : ' '
| |
1 1
! Press here ! : Press here :
1 1
1 1

I I | |
1 1 | |
1 1 | |
1 1 1 1
| | | |
1 1 1 1
1 1 | |
1 1 | |
1 1 1 1
1 1 1 1
e oo_—-— - L. | |

Centerdravity

Each compass constant, suclsasthWestGravity , indicates the placement of the retained region in the window a

resizing. In this case, the lower—left corner of the existing pixels is placed against the lower-left corner of the result
window. When arfExpose event arrives, the application need only redraw the two new strips of the window at the t
and right side. Nd&xpose event will be generated on the area that was saved becaitseyrdvity

For another example, think of a window containing centered text. If that window were resized either larger or small
would still like the text to be centered. In this casepthegravity should be set t€enterGravity . Then only if

the window is resized smaller than the length of the text would we have to redraw the area and only then to break t
or use a shorter message. We could see whether changing the message would be necessary by looking at the
ConfigureNotify event that occurs as a result of the resizel{asiewinin Chapter 3, "Basic Window Program").
The window would still have to be redrawn if it were obscured and then exposed, of course——bit gravity oslgrsaves
of the redrawing that would otherwise have to be done.

If the constant werdlorthGravity , the top center of the pixels in the window before the resize would be placed ag
the top center of the resulting window. This would be appropriate if we had a line of text centered at the top of the
that we wished to preserve when possible.

4.3.4 Window Gravity

Thewin_gravity attribute controls the repositioning stibwindows when a parent window is resized. The attribute
set on the children. Normally, each child has a fixed position measured from the origin of the parent window. Winc
gravity can be used to tell the server to unmap the child or to move the child an amount depending on the change i
the parent. The constants used taasat gravity are similar to those for bit gravity, but their effect is quite different.

NorthGravity specifies that the child window should be moved horizontally by an amount one-half as great as t!
amount the window was resized in the horizontal direction. The child is not moved vertically. That means that if th
window was originally centered along the top edge of the window, it will also be centered along the top edge of the
window after resizing. If it was not originally centered, its relative distance from the center may be accentuated or |
depending on whether the parent is resized larger or smaller.

Window gravity is only useful for children placed against or very near the outside edges of the parent or directly in |
center. Furthermore, the child must be centered along one of the outside edges or in a corner. Figure 4-2 shows t
child positions where window gravity can be useful and the setting to be used for each position.

Figure 4-2. Child positions where window gravity is useful

a3 3T b At by

L

e o T

A

Chidren Farent

If any other setting is used for any of these positions, the window gravity may move the child outside the resized pe
since there are no checks to prevent this. The application can try to prevent it by getting the new position of the ch
a ConfigureNotify event (se&ection 3.2.16, "Handling Resizing of the Window)' and moving the child inside if

necessary. But this will cause a flash when the child window is automatically placed incorrectly and then moved to
correct position by the application. And if an application has to go to the trouble to check the position and move thi

it might as well just forget about window gravity and place the child itself.

NorthWestGravity (the default) indicates that the child (for which this attribute is set) is not moved relative to its
parent.

UnmapGravity specifies that the subwindow should be unmappkén the parent is resized. This might be used wh
a client wishes to recalculate the positions of its children. Normally, the children would appear in their old positions
the client could move them into their recalculated positions. This can be confusing to the user. By setting the
win_gravity attribute toUnmapGravity , the server will unmap the windows. They can be repositioned at the
client’s leisure, and then the client can remap them QdapSubwindows()) in their new locations.

There is no routine to set thén_gravity attribute individually; it can be set only with
XChangeWindowAttributes() or XCreateWindow()

Thewin_gravity attribute has the following possible values:

UnmapGravity Specifies that the child is unmapped (removed from the screen) when the parent is resized, ar
UnmapNotify event is generated.

StaticGravity Specifies that the window contents should not move relative to the origin of the root window.

One of the compass constants below
The list below shows the distance the child window will be moVi; the amount the parent was
resized in width, an#l is the amount the parent was resized in height:

NorthWestGravity (default) (0, 0)
NorthGravity (W/2, 0)
NorthEastGravity (W, 0)
WestGravity (0, H/2)
CenterGravity (W/2, H/2)
EastGravity (W, H/2)
SouthWestGravity (0, H)
SouthGravity (W/2, H)
SouthEastGravity (W, H)

4.3.5 Backing Store

A backing storeautomatically maintains the contents of a window while it is obscured or even while it is unmapped.
Backing is like having a copy of the window saved in a pixmap, automatically copied to the screen whenever neces
keep the visible contents up to date. Backing store is only available on some servers, usually on high performance
workstations.

These servers can be instructed when to back up a window and which planes to save, through the backing store a
Even when it is available, the backing store should be avoided since it may carry a heavy performance penalty on
server. You can find out whether backing is supported on a particular screen \RitefgackingStore() macro.

A client might use this feature to back up a window the client is incapable of redrawing for some reason or to be ak
draw into a window that is obscured or unmapped.

Three separate attributes control backibgcking store , backing_planes , andbacking_pixel . There are
no routines for setting these attributes individually €bhangeWindowAttributes() or XCreateWindow()).
Thebacking_store attribute determines when and if a window’s contents are preserved by the server. The
backing_planes attribute specifies which planes must be preservedbacking pixel specifies the pixel value
used to fill planes not specifiedliacking_planes . The X server is free to save only the bit planes specified in
backing_planes and to regenerate the remaining planes with the specified pixel value.

When the backing store feature is active and the window is larger than its parent, the server maintains complete cc
not just the region within the parent’s boundaries. If the server is maintaining the contents of a &ipise, events

will not be generated when that window is exposed.

Use of the backing store does not make a window immune to the other window attributebit Ifytaeity is
ForgetGravity , the contents will still be lost whenever the window is resized.

Thebacking_store attribute has the following possible values:

NotUseful (default)
Advises the server that maintaining contents is unnecessary. A server may still choose to mair

contents.

WhenMapped Advises the server that it would be beneficial to maintain contents of obscured regions when tt
window is mapped.

Always Advises the server that it would be beneficial to maintain contents even when the window is
unmapped.

Thebacking_planes attribute specifies a mask (default all 1's) that indicates which planes of the window hold
dynamic data that must be preserved in the backing store.

Thebacking_pixel attribute specifies a pixel value (default 0) to be used in planes not specified in the
backing_plane attribute.

4.3.6 Saving Under

Thesave_under attribute controls whether the contents of the screen beneath a window should be preserved just
the window is mapped and replaced just after it is unmapped. This attribute is most useful for pop—up windows, wh
need to be on the screen only briefly. Bdgpose events will be sent to the windows that are exposed when the pop-I
window is unmapped, saving the time necessary to redraw their contents.

Pop-up windows are usually children of the root window and, therefore, are not constrained to appear within the
application’s top—level window. Therefore, with@ave under both your application and other applications on the
screen would need to redraw areas when the pop—up window is unmapped.

Settingsave_under is never necessary, but it can improve the performance of the server running clients that freqt
map and unmap temporary windows. The user would otherwise have to wait for the area under the menu to be re«
when the menu was unmapped.

There is no routine for setting teave_under attribute individually; it can only be set with
XChangeWindowAttributes() or XCreateWindow()

Thesave_under attribute is different from the backing stosaye_under may save portions of several windows
beneath a window for the duration of the appearance of the window on the screen, while the backing store saves tl
contents of a single window while it is mapped or even when unmapped, depending on the attributes.

Not all servers are capable of saving under windows. You can find out whether this feature is supported on a parti
screen with th®oesSaveUnders() macro.

Thesave_under attribute has the following possible values:

False (default)
Specifies that covered clients should be &qiose events when the window is unmapped, unles
they are preserved in the backing store.

True Specifies that the server should save areas under the window and replace them when the wini
unmapped.

Setting thesave_under attribute toTrue does not prevent aiixpose events on the area underneath. For example,
assume there is a window whdse gravity is ForgetGravity , and this window lies under a window that has th
save_under attribute set tdrue . The contents of the obscured window will be lost if the underlying window is res
while partially obscured, anixpose events will be generated even on the saved area.

4.3.7 Event Handling

Theevent_mask anddo_not_propagate_mask attributes control the propagation of events through the window
hierarchy. Thevent_mask attribute is normally set witKSelectinput() , but it can also be set directly with
XChangeWindowAttributes() or XCreateWindow()

Theevent_mask attribute specifies which event types apgeued for the window when they occur. The
do_not_propagate_mask attribute defines which events should not be propagated to ancestor windows when tt
event type is not selected in this window. Both masks are made by combining the constants listed below using the
OR operator [}.

Button1MotionMask KeyPressMask
Button2MotionMask KeyReleaseMask
Button3MotionMask LeaveWindowMask
Button4MotionMask NoEventMask
Button5MotionMask OwnerGrabButtonMask
ButtonMotionMask PointerMotionHintMask
ButtonPressMask PointerMotionMask
ButtonReleaseMask PropertyChangeMask
ColormapChangeMask ResizeRedirectMask
EnterWindowMask StructureNotifyMask
ExposureMask SubstructureNotifyMask
FocusChangeMask SubstructureRedirectMask
KeymapStateMask VisibilityChangeMask

Much more information on setting the event masks, including examples, is presetiegter 8, "Events.” This is a
very important topic.

4.3.8 Substructure Redirect Override
A feature calledubstructure redirecallows a window manager to intercept any requests to map, move, resize, or chi

the border width of windows. This allows the window manager to modify these requests, if necessary, to ensure th
meet its window layout policy.

Setting theoverride_redirect attributeTrue for a window allows a window to be mapped, moved, resized, or it
border width changed without the intervention of the window manager. This override is usually done for menus the
frequently mapped and almost immediately unmapped again.

Under properly designed window managers, there is a property you can set to tell the window manager to allow a \
to pop up with minimal interventiolX®@ WM_TRANSIENT_FOQRThis is used for dialog boxes, as describe8ention
12.3.1.4.6, "Transient Window Field."

There is no routine for setting tbeerride_redirect attribute individually; it must be set with
XChangeWindowAttributes() or XCreateWindow()

Theoverride_redirect attribute has the following possible values:

False (default)
Specifies that map, move, and resize requests may be processed by the window manager.

True Specifies that map, move, and resize requests are to be done verbatim, bypassing any windov
manager involvement.

4.3.9 Colormap
Thecolormap attribute specifies which colormap should be used to interpret the pixel values in a window.

For the large majority of clients without special color needs, this attribute can be left in its default state. By default,
colormap attribute from the parent is taken, which, if all ancestors of the window have used the default, will be the
default colormap. This means that the default colormap for the screen will be used to translate into colors the pixel
drawn into this window.

If the client requires its own colormap for some reason, the client can create a colormap arzbb®tihe attribute to
the ID of the new colormap. A colormap ID is of typelormap .

The window manager will read this attribute and install the specified colormap into the hardware colormap when th
indicates that the application should be active. If the system only has one hardware colormap, all other application
appear in false colors. This is one good reason that applications are encouraged not to create their own colormap:
use the default colormap instead.

To understand this process, you need to know more about colormaps in X, and for tbagmee 7, "Color."

XSetWindowColormap() sets thecolormap attribute, which can be set to the following values:

CopyFromParent (default)
Specifies that the colormap attribute is to be copied from the parent (subsequent changes to tt
parent’s attribute do not affect the child), but the window must have the same visual type as th
parent and the parent must not have a colorm&jooé (otherwise 8adMatch error occurs).

a colormap ID The specified colormap will be used for displaying this window, at least while the window man:
considers the application active.

4.3.10 Cursor

The cursor is the object that tracks the pointer on the screen, sometimes called the spriteutsoXisaa server resource
which defines a cursor pattern, its colors, and the point within the pattern that will be reported in events (called the
hotspo}. The ID of a cursor is of typ@ursor .

Most clients will define a suitable cursor for their top—-level window and other cursors for each subwindow if needec
example xtermspecifies the thin text cursor for the main window and a vertical bidirectional arrow for the scrollbar.

A cursor can be associated with dngutOutput or InputOnly window using theursor attribute. Then the
specified cursor will track the pointer while the pointer is within the window’s borders.

A primary purpose for having a different cursor in a window is to indicate visually to the user that something differe:
happen to keyboard or button input while in the window. Another reason might be to change a cursor’s color to inc
its visibility over the background of certain windows (although there is another way to obtain contrast, with the curs
mask). There are probably other uses for a separate cursor.

A call to XDefineCursor() sets this attribute to@ursor , and a call taUndefineCursor() setsit back to
None, which means that the cursor of the parent is used. The re§Shwsm must be created before calling
XDefineCursor() . This can be done witkCreateFontCursor() . XCreateGlyphCursor() , or
XCreatePixmapCursor() , as described iBection 6.5.1, "The Standard Cursor Font."Thecursor resource can
be freed witiXFreeCursor() when no further explicit references to it are to be made.

Thecursor attribute has the following possible values:

None (default)
Specifies that the parent’s cursor will be used when the pointer is in the window.
a cursor ID Specifies a cursor that will be used whenever the pointer is in the window.

The cursor of the root window is initially a large X, but this may be changed like the cursor in any other window if di
However, this should only be done by the window manager or by the user usisgttioetapplication. Se&olume
Three, X Window System User’s Gulifite a description oksetroot

4.3.11 Default Attributes

Table 4-3 summarizes the default attributes fdnpntOutput ~ window. Only five of the attributes are relevant for
InputOnly windows: cursor , do_not_ propagate_mask ,event_mask , override_redirect , and
win_gravity . These attributes have the same defaults dagotOutput ~ windows.

The background, border, apdent_mask attributes need to be set for virtually all windows.

Member Default Value
background_pixmap one
background_pixel Undefined
border_pixmap CopyFromParent
border_pixel Undefined
bit_gravity ForgetGravity
win_gravity NorthWestGravity
backing_store NotUseful
backing_planes All 1 ’s (ones)
backing_pixel 0 (zero)
override_redirect False
save_under False
event_mask 0
do_not_propagate_mask 0

colormap CopyFromParent
cursor None

Table 4-3 Default Window Attributes

4.4 Information from the XWindowAttributes Structure

We have been describing the programmable window attributes storedXi8dh&indowAttributes structure. Many
of the other window characteristics describe@lvapter 2, "X Concepts," including the window configuration, are also
stored with the window attributes by the server but are not programmableX@iamgeWindowAttributes() . For
example, depth, class, and visual are assigned at window creation and cannot be changed. The window size, posi
border width are changed with a separate mechanism, because for top—level windows there must be cooperation f
window manager.

The current state of most of the programmable attributes, the read-only attributes, and the window configuration ci
read withXGetWindowAttributes() . All this information is returned in aiXWindowAttributes structure (not
an XSetWindowAttributes structure).

Example 4-4 shows the fields of tK&VindowAttributes structure that are not present in
XSetWindowAttributes

Example 4-4. Read-only XWindowAttributes members
typedef struct {
/* Members writable with XChangeWindowAttributes omitted */

/* Window geometry —— set by window configuration functions
* in cooperation with window manager */

intx,y; [* Location of window */

int width, height; /* Width and height of window */

int border_width; /* Border width of window */

/* This is the event_mask attribute set by XSelectinput */

long your_event_mask; /* My event mask */

/* Set when the window is created, not changeable */

Visual *visual, [* The associated visual structure */
int class; /* InputOutput, InputOnly */
int depth; /* Depth of window */

Screen *screen; /* Pointer to screen the window is on */
[* Server sets these members */

Window root; /* Root of screen containing window */
Bool map_installed; /* Is colormap currently installed */

int map_state; /* IsUnmapped, IsUnviewable, or

* |sViewable */
long all_event_masks; /* Events all clients have interest in */
} XWindowAttributes;

As you can see, the membersVindowAttributes that cannot be directly written with
XChangeWindowAttributes() are separated into four groups.

The first group provides a way to get the window geometry. This information is returdggdgeometry() , butit
might be useful to uskGetWindowAttributes() instead if you need both the geometry and a few attributes.

Theyour_event_mask member can be useful if you want to add event mask symbols to those already selected.
call toXSelectinput() , you must always specify all the desired event masks. If you do not know which event m
are already selected or do not want to bother passirgeart_mask argument into one of your routines, you could rea
the existing event mask here. Then you could OR in any additional event mask symbols before calling
XSelectinput() or XChangeWindowAttributes() . SeeChapter 8, "Events," for more information on the use
of event masks.

Thedepth , class ,visual , andscreen members are set when the window is created. If the window was create(
with XCreateSimpleWindow() , they were inherited from the parent. If the window was created with
XCreateWindow() , these members were specified as arguments, eso@en , which is indirectly specified by the
parent argument. Thecreen member points to a structure that tells you about the screen on which this window
created. This is one of tlsereen structures from the list in thHBisplay structure, and therefore, the information it
contains can also be gotten from the macros as descriBedtion 3.2.3, "Display Macros"and Appendix CMacros of
Volume Two, Xlib Reference ManuAbain, these should only be needed for convenience to avoid having to pass arc
these values as arguments or global variables.

Theroot member tells you the ID of the root window on the screen on which your window was created. It is usual
more convenient to use tRmotWindow() macro.

Themap_installed member can be monitored to tell your application whether the colormap it has set in its

colormap attribute is currently installed. If not, the application may be displayed in false color€h&ser 7,
"Color," for more details.

Themap_state member can be monitored by a program and used to turn off processing while a window is unview
Some applications that continuously poll for input or draw (such as in action games) can stop doing so and save pr
cycles when there is no chance of getting input or no point in drawing.

Theall _event_masks member tells you all the event types that are selected by all clients on the window reques
This is the OR of all thevent_mask attributes for that window for all clients. By contrgstir_event_mask
specifies only the events selectedyloyr client.

Also note thalXWindowAttributes is missing a few fields that are presenKBetWindowAttributes . This
means that there are some fields that can be set but not queried. These fields are the background and border pixe
and pixmap and the cursor. The designers of X decided to make these fields nonreadable to reduce restrictions on
implementation of backgrounds, borders, and cursors in the server.

Chapter 5

The Graphics Context

The graphics primitives supplied with X are quite simple. Most of the details about how graphics are to be drawn a
stored in a resource called a graphics context (GC). GCs are stored in the server, thus reducing the amount of infc
that needs to be transmitted for each graphics request. This chapter describes how to use GCs and provides deta
member of the XGCValues structure. Everyone should read this chapter.

The X routines that draw graphics are catlealphics primitivesThey draw dots, lines, text, images, and tile or fill areas
and will be described fully in Chapter Brawing Graphics and TextBut a given graphics primitive does not contain all
the information needed to draw a particular graphic. A server resource cgtigohics contex{GC) contains values for

variables that apply to each graphics primitive. The appearance of everything that igleapmogranis controlled by
the GC that is specified with each graphics primitive. (The border and background of a window are not affected or
controlled by the GC—--they are controlled by window attributes, and are datine servey What is drawn into a
pixmap is also controlled by the GC used in the drawing to the pixmap and, again, possibly with a different GC, if tt
pixmap is copied into a window. To draw, you must first create a GC and set its values, then specify that GC as an
argument in the graphics primitive.

There are two performance-related reasons X was designed to use GCs. First, they reduce the traffic between Xilit
server because the GC information is held in the server and needs to be sent only once before the first graphics re
Each subsequent primitive that specifies the same GC will use the same values. When a few settings of the GC ni
changed, only the selected few need to be sent, not the entire GC. Second, you can create several GCs and then ¢
specify which GC you want applied to each graphics request. This has important performance benefits on servers
capable of caching multiple GCs in their display hardware.

The GC also allows for more convenient programming, since to provide the same flexibility without the GC, you wo
need to specify an absurd number of arguments every time you called a graphics primitive.

A few more words are needed regarding the distinction between the roles of the graphics primitive and the GC. Yo
think of a graphics primitive as specifying the general shape to be drawn, while the GC specifies how to draw it. F¢
example, a primitive that draws a filled rectangle specifies the top—left corner of the rectangle in the drawable and i
dimensions, while the GC specifies its color or the pattern applied to it (among other things). Note that both the gr:
primitive and the GC play a role in selecting exactly which pixels are drawn. For example, the graphics primitive sp
the start and end points for lines (including unfilled arcs, rectangles, and polygons), while the GC specifies the widt
line and the shape of the joints and ends of the li@#ker components of the GC affect pixel selection with other

graphics primitives. For all primitives, the GC includes a clip mask that you can use to restrict which pixels are dra

To predict the effect of particular GC settings on a particular graphics primitive, it is useful to visualize the drawing
process in a number of stages, even though in reality the drawing of each bit of each pixel is performed by the sen
single equation.

| am indebted to Ollie Jones of PictureTel Corp. for the idea of thinking of the graphics context as affecting several independent stages in drawi
he calls the "graphics pipeline."

1. The first stage is pixel selection. As we just described, pixel selection is specified by the graphics primitive, in
cases along with tHame_width | clip_mask , and other elements in the GC. The result of the first stage is a
bitmap—-a single rectangle of bits, with the pixels to be drawn set to one and the pixels not to be drawn set to z

2. The second stage applies one or two colors or a pattern to the results of the first stage, resulting in a pixmap wt
the same depth (number of bits per pixel) as the drawalie. output of the second stage is referred to later in this
chapter as thesource

ForXCopyArea() this second stage is skipped, since the pixels taken from the source drawable must already have the same depth as
destination drawable.

3. In the third stage, a plane mask may be applied to select which planes of the drawable can be affected by the ¢
request. This is done to play tricks with color, such as to draw temporary graphics that can be erased without €
other things already drawn in a window, as demonstrated in Chafitefor, By default, the plane mask is all ones
and therefore has no effect on what is drawn.

4. In the fourth stage, the pixel values resulting from stage three can be combined with what is already on the scre
using so—calledbgical functions Most graphics are drawn by simply overwriting the existing graphics using a log
function of GXcopy, but there are useful tricks that can be played by using certain other logical fun@m@nsuch
effect is calledubber-banding the window manager uses thischnique to show you the outline of a window you a
moving or resizing.

Figure 5-1 illustrates these four stages used in drawing a wide line, and the GC elements that can be used to cont
stage. The sections below that describe the various members of the GC are organized according to the stage that"
affect. This information is summarized in one of the GC-at—a—glance tables inside the back cover of Volukiib Two,
Reference Manual

Since we are not yet using any of the tricks that require use pfahe_mask or logicalfunction , the third and

fourth stages in Figure 5-1 use the default values of these GC elements. They therefore do not modify the result ¢
graphics primitive.

To make this overview complete, it's important to mention that the GC also has the following two features (describ¢
completely inSection 5.6, "Graphics Exposure"andSection 5.7, "Subwindow Mode"):

. Thegraphics_exposures member lets you sele@raphicsExpose andNoExpose events,to indicate
whether areas being copied usgopyArea() andXCopyPlane() requests are visible or invisible. (This is
important because invisible areas cannot be copied, and must be drawn some other way.)

. Thesubwindow_mode member lets you specify whether subwindows obscure graphics drawn on the parent.
default isTrue , and usually needs changing only for rubber—banding.

Now we will discuss how to create and set the GC, before moving on to details of individual members of the GC.

Figure 5-1. Four stages in drawing a line

PHmitlve GC Componanets

Affecting Plxel Selecdan
Selection Lext Famt
fllledsar ar_made
fillled palygans £111 rule
all clip mask, clip x arigin, clip
flil_style GC Compenents Used
Color
andior
Falterning Fil1Stippled | stipple, faregraund
FillOpaquest iq]l =dApple, foreground, hackground
line_style GC Components Used
L ineGn0ffDash
Flane D |
Seleclion RRR |

Com Bining new pivel |:
valles with existing
pivelvakies,

5.1 Creating and Setting a Graphics Context

Before a GC can be used, you must create it by callibiggateGC() . XCreateGC() requires only four arguments:
display ,drawable ,values , andvaluemask .

. Thedisplay argument (pointer toRisplay structure) should be familiar by now; it specifies the connection
the X server. Thdisplay argument is used in virtually every Xlib routine.

. Thedrawable argument is a window or pixmap ID. You migtitink that thelrawable argument specifies
which window or pixmap the GC is to be used in, but this is not necessarily the case. It really indicates which
the GC resource is associated with and the depth of windows it can be used with. A GC can be used on any
or pixmap of the same depth and on the same screen as the drawable specified. (Drawables were introduce
Section 2.3.3, "Pixmaps and Drawables)'This implies that if you want to draw into a pixmap of depth one, yot
need to create that pixmap first, and then use it adrélveable argument in creating the GC.BadMatch error
when drawing usually indicates you did not use the right drawable when creating the GC.

. Thevalues argument is aXGCValues structure (showrin Example 5-1) filled with the desired settings for the
GC.

. Thevaluemask argument specifies which members of ¥&CValues structure are actually read. The membel
not represented by a bit set to one intlleiemask are given the default values listed3ection 5.10, "Querying
the Graphics Context." The symbols used to make this bitmask correspond to the memb@£yalues shown
in Table 5-1.

The GC is set very much like the window attributes are set, descrilSetttion 4.2, "The Window Attribute

Structures." Of course, there is a different structure and there are different masks for specifying which members a
set. One other difference in practice is that every member of the GC can be set with an individual "convenience ro
You may prefer, therefore, to create a default GC and then modify it with the individual routines rather than to set a
members in both the structure and the mask before yoXCedlateGC() orXChangeGC() . Both approaches are
demonstrated below.

Example 5-1 and Table 5-1 present ¥&CValues structure and the masks used when cak@geateGC() or
XChangeGC() .

Example 5-1. The GCValues structure

[* Data structure for setting graphics context */

typedef struct {
int function; /* Logical function */
unsigned long plane_mask; /* Plane mask */
unsigned long foreground; /* Foreground pixel */
unsigned long background; /* Background pixel */

int line_width; /* Line width */
int line_style; /* LineSolid, LineOnOffDash,
* LineDoubleDash */
int cap_style; /* CapNotLast, CapButt, CapRound,
* CapProjecting */
int join_style; [* JoinMiter, JoinRound, JoinBevel */
int fill_style; /* FillSolid, FillTiled, FillStippled,
* FillOpaqueStippled */
int fill_rule; /* EvenOddRule, WindingRule */
int arc_mode; [* ArcChord, ArcPieSlice */
Pixmap tile; [* Tile pixmap for tiling operations */
Pixmap stipple; [* Pixmap of depth 1 */
intts_x_origin; [* Offset for tile or stipple operations */
intts_y origin;
Font font; [* Font for text operations (except

* XDrawText) */
int subwindow_mode; /* ClipByChildren, Includelnferiors */

Bool graphics_exposures;

/* Should events be generated on

* XCopyArea, XCopyPlane */

int clip_x_origin;
int clip_y_origin;
Pixmap clip_mask;
int dash_offset;
char dashes;

} XGCValues;

/* Origin for clipping */

/* Bitmap for clipping */
/* Patterned/dashed line information */

The meaning and possible values for each member are described in Sections 5.3 through 5.7.

Table 5-1 shows the symbols used to specify which members ¥f26&alues structure actually contain meaningful
values. Thesaluemask is made up of these symbols combined by means of a bitwisg.OR (

Member Mask S Default
et
Bi
t
function GCFunction 0 GXcopy
plane_mask GCPlaneMask 1 alll'’s
foreground GCForeground 2 0
background GCBackground 3 1
line_width GCLineWidth 4 0
line_style GCLineStyle 5 LineSolid
cap_style GCCapStyle 6 CapButt
join_style GClJoinStyle 7 JoinMiter
fill_style GCFillStyle 8 FillSolid
fill_rule GCFillRule 9 EvenOddRule
arc_mode GCArcMode 22 ArcPieSlice
tile GCTile 10 pixmap filled with foregrounc
stipple GCstipple 11 pixmap filled with 1 ’s
ts_x_origin GCTileStipXOrigin 12 0
ts_y_origin GCTileStipYOrigin 13 0
font GCFont 14 (implementation dependent)
subwindow_mode GCSubwindowMode 15 ClipByChildren
graphics_exposures GCGraphicsExposures 16 True
clip_x_origin GCClipXOrigin 17 0
clip_y_origin GCClipYOrigin 18 0
clip_mask GCClipMask 19 None
dash_offset GCDashOffset 20 0
dashes GCDashlList 21 4 (i.e., the list [4, 4])

Table 5-1 Symbols for Setting the XGCValues Structure

Table 5-1 lists the default values for each element of the GC. A useful quick reference to the graphics context is p
inside the back cover &folume Two, Xlib Reference Manual

A valuemask composed of the symbols shown in Table 5-1 is us¥€hangeGC() , XCopyGC() , and

XCreateGC() . InXCopyGC(), though, thevaluemask

indicates which members are copied from the source GC t

the destination GC, and the rest of the members in the destination are left unchantfedangeGC() , the specified
members are changed and the rast left unchanged.

Example 5-2 shows a simple way to set some of the values for a GC before creating it. This example uses the de
values except for the foreground and background pixel values. You must always set at least the foreground compao
the GC, and also the background component if it is used in what you intend to draw. This is because the default va
the foreground and background components, zero and one respectively, are not guaranteed to be black and white
contrasting. (The relationship between pixel values and colors is explained in Ch&uter.7,

Example 5-2. Example of setting a GC while creating it
GC gc;
XGCValues values;

unsigned long valuemask;
[* Open display, create window, etc. */

values.foreground = BlackPixel(display,screen_num);

values.background = WhitePixel(display,screen_num);

gc = XCreateGC(display, RootWindow(display, screen_num),
(GCForeground | GCBackground), &values);

/* Now you can use gc in drawing routines */

In Example 5-2, the foreground pixel value is set to the value returned Biatidixel() macro. This will result in
a color of black if the default colormap is installed (more on th@hapter 7, "Color"). To obtain a pixel value that
represents any color other than black or white, you will need to allocate the color as descTieutén 7, "Color."

Convenience functions are also available to change most elements of a GC after it is created. These functions are
Sections 5.3 through 5.7, which describe each GC element in detail. Example 5-3 performs the same functions as
Example 5-2 but by creating a default GC and then modifying the contents with convenience functions.

Example 5-3. Example of setting default GC then changing it
GC gc;

[* Open display, create window, etc. */

gc = XCreateGC(display, RootWindow(display, screen_num), 0, NULL);
XSetForeground(display, gc, BlackPixel(display,screen_num));
XSetBackground(display, gc, WhitePixel(display,screen_num));

/* Now you can use gc in drawing routines */

Note:

You may wonder which of these two ways is more efficient, setting@@Values andvaluemask , or calling
the convenience functions. Actually, there is not much difference, since in both cases, the individual reque
change the same GC are packaged into a single protocol request before being sent to the server. This opti
is implemented by Xlib. The method you should choose is mainly a matter of personal preference.

Also note that Xlib provides the functidfFlushGC() to defeat Xlib’'s caching of GC changes by sending them to the
server immediately instead of waiting until the GC is needddushGC() is used mainly in extensions that have
drawing requests which otherwise would not trigger Xlib’s cache.

5.2 Switching Between Graphics Contexts

One purpose of the GC is to store information about how to interpret graphics requests so that the same informatic
not have to be sent with every request. Another useful feature of the GC concept is that you can create several G(
the different characteristics you need and then switch between them. Example 5-4 demonstrates how this is done
creates two slightly different GCs with swapped foreground and background pixel values.

Example 5-4. Example of switching graphics contexts
GC gcl, gez;

XGCValues values;

unsigned long valuemask;

[* Open display, create window, etc. */

values.foreground = BlackPixel(display,screen_num);

values.background = WhitePixel(display,screen_num);

gcl = XCreateGC(display, RootWindow(display, screen_num),
(GCForeground | GCBackground), &values);

values.foreground = WhitePixel(display,screen_num);

values.background = BlackPixel(display,screen_num);

gc2 = XCreateGC(display, RootWindow(display, screen_num),
(GCForeground | GCBackground), &values);

/* Now you can use either gc in drawing routines, thereby

* quickly swapping the foreground and background colors */

Whether it is faster to switch between GCs or to modify a few values of a single GC depends on the particular serv
implementation. On some types of display hardware, several or many GCs can be cached. On these servers, it is
switch between GCs than to change members of them. On servers that do not cache or that cache only one GC, i
to change one or two elements of the GC than to switch between two slightly different GCs. There is no way for th
application to tell which of these two server types is in use. Therefore, accepted practice is to compromise by creat
small number of GCs (more on thisSection 5.9, "GCs and Server Efficiency).

Now that you know how to create, set, and modify the GC, and how to set up multiple GCs, we can go into more di
about each element of the GC. The following sections describe each member of the graphics context, grouped act
the how they affect the drawing process: Pixel Selection, Coloring and Patterning, and Graphics Tricks.

5.3 Controlling Pixel Selection

As previously described, pixel selection can be thought of as the first of four stages in the drawing process. The pi
drawn are selected by a combination of the graphics primitive and various members of the graphics context. This ¢
describes those GC elements.

5.3.1 Line Characteristics

Six of the graphics context components are line characteristics. These components obvioustyeadieqthics
primitives that draw lines, but they also affect those that draw unfilled rectangles, arcs, and polygons. Here are the
characteristics:

line_width Specifies the width of the line in pixels. Zero means to draw using the server’s fastest algorith
with a line width of one pixel, with some loss of accuracy.

line_style Specifies whether the line is solid in foreground, dashed in foreground, or alternating foregrout
background. Possible values BmeeSolid |, LineOnOffDash , orLineDoubleDash

cap_style Controls the appearance of the ends of a line and in some cases the ends of dashes in a line.
values are€CapButt , CapNotLast , CapProjecting , andCapRound.

join_style Controls the appearance of joints between consecutive lines drawn within a single graphics
primitive. Possible values ad®inBevel ,JoinMiter , andJoinRound .

dashes Specifies a pattern of dash lengths for custom-designed dashed lines. (Used only if the
line_style is LineOnOffDash orLineDoubleDash)

dash_offset Specifies the starting point of the dash pattern for custom-designed dashed lines. (Used only
line_style is LineOnOffDash orLineDoubleDash)

Theline_width , line_style ,cap_style , andjoin_style components can be set using

XSetLineAttributes() , while dashes anddash_offset can be set witiKSetDashes() . Now we’ll describe

each of these line characteristics in more detail, followed by an example that sets them.

5.3.1.1 Line Width

Theline_width member oiXGCValues is measured in pixels. The line width can be set with
XSetLineAttributes()

A line_width greater than or equal to 1 is consideredde line, and the value 0 is a special case, consideitad a
line. Wide and thin lines often use different drawing algorithms. The thin line is intended to be a fast algorithm for
drawing a line of width 1 but may not be as uniform as a wide line between different servers.

Wide lines are drawn centered on the path described by the graphics request. A wide line draxinyfignto[[x2 ,y2]
always draws the same pixels as a wide line drawn fr@y2] to [x1 ,y1], not counting cap and join styles. This is not
necessarily the case for thin lines.

Unless otherwise specified by the join or cap style, the bounding box of a wide line with enatpoigty , [x2 ,y2]
and widthw is a rectangle with vertices at the following real coordinates:

Lower Left: [x1—(w*sin(0)/2), y1+(w*cos(0)/2)]
Upper Right: [x1+(w*sin(0)/2), y1-(w*cos(0)/2)]
Lower Left: [x2—(w*sin(0)/2), y2+(w*cos(0)/2)]
Lower Right: [x2+(w*sin(0)/2), y2—(w*cos(0)/2)]

where is the angle of the line measured from horizontal.

A pixel is drawn if the center of the pixel is fully inside the bounding box (which is viewed as having infinitely thin ec
If the center of the pixel is exactly on the bounding box, it is part of the line only if the interior of the box is immedia:
the pixel's right. Pixels with centers on a horizontal edge are part of the line only if the interior of the box is immedi
below the pixel.

Thin lines (ine_width ==) are one—pixel-wide lines drawn using an unspecified, device—dependent fast algo
The set of points comprising thin lines will not be affected by clipping.

A wide line of width 1 and a thin line witne_width 0 drawn between the same two points may not be exactly alik
Because of their different drawing algorithms, thin lines may not mix well with wide lines, aesthetically speaking. F
precise and uniform results across all displays, uise awidth of 1 rather than 0. If speed is the goal, use a
line_width of 0.

5.3.1.2 Line Style

Theline_style member oiXGCValues defines which sections of a line are drawn and in which pixel value, as sf
in Figure 5-2. The line style can be set WtbetLineAttributes() . The actual length of each dash and gap is s¢
by thedashes member oiXGCValues, described irBection 5.3.1.5, "Dash List and Offset." The constants used to se
line_style are as follows:

LineSolid Specifies that the full path of the line is drawn using the foreground pixel value.
LineOnOffDash Specifies that only the dashes are drawn, with the foreground pixel valueg@ratyle applied
to the ends of each dash (except tbapNotLast is treated a€apButt for dash ends).

LineDoubleDash
Specifies that the full path of the line is drawn, dashes with the foreground pixel value, gaps wi
background pixel values, af@apButt style always used where dashes and gaps meet.

Figure 5-2. The line styles

Lirmgolid

Lirwdrf fhash

LirwDoublalash

- fareground

5.3.1.3 Cap Style

Thecap_style member oiXGCValues defines how the endpoints of lines are drawn, as shown in Figure 5-3. The
style can be set witKSetLineAttributes() . The constants used to sap_style are as follows:

CapNotLast Is equivalent taCapButt , except that for hne_width of 0 or 1, the final endpoint is not
drawn. If specified withine_style LineOnOffDash orLineDoubleDash , the ends of the
dashes or where even and odd dashes meet are tre@apBadt .

CapButt Specifies that lines will be square at the endpoint with no projection beyond. The end is
perpendicular to the slope of the line.

CapRound Specifies that lines will be terminated by a circular arc with the diameter equalitetheidth |
centered on the endpoint (equivalenCapButt for line_width of O orl).

CapProjecting Specifies that lines will be square at the end but with the path continuing beyond the endpoint
distance equal to half thiee_width (equivalent taCapButt forline_width of 0 or 1).

5.3.1.4 Join Style

Thejoin_style member oiXGCValues defines how corners are drawn for wide lines drawn within a single graph
primitive, as shown in Figures 5-4 and 5-5. The join style can be seX@&tthineAttributes() . The constants
used to sejpin_style are as follows:

JoinMiter Specifies that the outer edges of the two lines should extend to meet at an angle. If the angle
between the two lines is less than 11 degr&@iaBevel is used.

JoinRound Specifies that lines should be joined by a circular arc with diameter equalliteethgidth
centered on the join point.

JoinBevel SpecifiesCapButt endpoint styles, with the triangular notch filled.
Figure 5-3. The line cap (end) styles

End Faint

CapMotLast

vapkutt

Ficel nom ally filled if over
ha K iz within circle.
{2ewer dependent]

CapProject it

Figure 5-4. The line join styles

JoinMitaer JoinBeyal

JoinRound

Ines

[-wide |

—pixe

Detail of JoinRound for 8

Figure 5-5.

R A AR
gl e]
4B B e Bkl RS

L BCHEEY ERCIREEIRIEED

Entargement of jpint

Endpaint of
bath Enes

5.3.1.5 Dash List and Offset

Thedashes member oiXGCValues can only be directly set to a single, nonzero value specifying the length in pixel
both the dashes and the gaps. More complicated patterns can be set oxatithshes()

In XSetDashes() ,thedash_list argument is a redist, with each value representing the length of a single dash «
gap in the line. The initial and alternating memberdasth_list are the length of thevendashes; the others are the
odddashes (gaps). All members must be nonzero. The lengthd#ghelist is also an argument to

XSetDashes() . Thedashes element oXGCValues is equivalent to specifying a two—memisiash_list [N, N]

in XSetDashes() , whereN is the single value specified ¥XGCValues.dashes

Thedash_offset for XSetDashes() defines the phase of the pattern, specifying how many pixels into the pattel
the line should actually begin. Figure 5-6 shows the same line drawn with and without offset to demonstrate its eff

Example 5-5 shows a code segment that creates and sets the line dashes of five GCs. Figure 5-6 shows the line:
result from drawing with these GCs.

Example 5-5. Code segment specifying five styles of dashed line in five GCs
#define NUMLINES 5
#define DOTTED_LIST LENGTH 2
#define DOT_DASHED LIST LENGTH 4
#define SHORT_DASHED LIST LENGTH 2
#define LONG_DASHED_ LIST LENGTH 2
#define ODD_DASHED_LIST LENGTH 3
void main(argc, argv)
int argc;
char **argv;
{

GC gca[NUMLINES];

[* Open display, create windows, etc. */
set_dashes(gca);
while (1) {

XNextEvent(display, &report);

switch (report.type) {

case Expose:

if (report.xexpose.count == 0)
draw_lines(win, gca, width, height);

break;
}
set_dashes(gca)
GC geall;
{

XGCValues gev;

int i

static int dash_list_length[] = {
DOTTED_LIST_LENGTH,
DOT_DASHED LIST LENGTH,
SHORT_DASHED_LIST_LENGTH,
LONG_DASHED_LIST _LENGTH,
ODD_DASHED_LIST LENGTH

3

/* Must be at least one element in each list */

static unsigned char dotted[DOTTED_LIST LENGTH] =

{3, 1}
static unsigned char dot_dashed[DOT_DASHED_LIST LENGTH] =
{3,4,3,1};
static unsigned char short_dashed[SHORT_DASHED_LIST LENGTH] =
{4, 4};
static unsigned char long_dashed[LONG_DASHED_ LIST LENGTH] =
{4, 7}
static unsigned char odd_dashed[ODD_DASHED_ LIST LENGTH] =
{1, 2,3}
static unsigned char *dash_list[] = {
dotted,
dot_dashed,
short_dashed,
long_dashed,
odd_dashed,
h
int dash_offset = 0;
[* Open display, create window, etc. */
gev.line_style = LineOnOffDash;
for (i=0 ;i< NUMLINES; i++) {
gcali] = XCreateGC(display, RootWindow(display, screen_num),
GClLineStyle, &gcv);
XSetDashes(display, gcali], dash_offset, dash_list]i],
dash_list_lengthli]);
}

}
draw_lines(win, gca, window_width, window_height)
Window win;
GC geall;
unsigned int window_width, window_height;
{ . .
int i;
for (i=0;i < NUMLINES; i++) {
XDrawLine(display, win, gcali],
window_width/4, 40 + (10 * i),
3 * (window_width/4), 40 + (10 *i));

}

Figure 5-6. Lines drawn with GCs set in Example 5-5

Firat pixel Lastpieel

in Ene in Ene
dottad (3,1} e ——— —— — —— ——
dot dashed {3,4,3,1} == s S——— e
short_dashed (4,4} == —— ——
lorg dashed (4,7} [r—— (e —
odd dashed 41,2,3} = (=== = e | — -
dotted (3,1} with [[e——— ———— ——— —— —
daslt offset 2

1 88 « 8 6T B 9101121814 151E1716 19202122

Piek

5.3.1.6 Example of Setting Line Characteristics

Example 5-6 demonstrates how to set the line characteristicX 84t ineAttributes() . This routine and
XSetDashes() (which sets dashes, demonstrated in Example 5-5) are the only ways to set line characteristics, o
than withXCreateGC() or XChangeGC() .

Example 5-6. Setting line characteristics in a GC
set_line_attributes(gc)
GC gc;
{
unsigned int line_width = 3; /* 0 would be fast line of width 1 */
int line_style = LineSolid; /* If LineOnOffDash or LineDoubleDash,
* must set dashes */
int cap_style = CapRound; /* else CapNotLast, CapBultt, or
* CapProjecting */
int join_style = JoinRound; /* else JoinMiter or JoinBevel */
XSetLineAttributes(display, gc, line_width, line_style,
cap_style, join_style);

5.3.2 The Font

Thefont member of a GC specifies which font will be used in text—-drawing graphics primitives that use this GC, a
be set withXSetFont() . If the specified font has not been loaded by this client, a graphics primitive that tries to dre
text will not fail; it just will not draw. Therefore, you should make sure you load the font.

The X server actually loads a requested font into memory only WheadFont() or XLoadQueryFont() is called
and if the specified font has not already been loaded by another client. A font is unloaded when the last program u
font exits or unloads it. Duplicate copies of a font are never stored in the server.

There are several ways to deal with fonts. Most programs wikueadQueryFont() to load a font and get
information about the dimensions of each charactéoadQueryFont() returns a pointer to aiFontStruct . The
font in the GC can then bset toXFontStruct.fid . (SeeChapter 6, "Drawing Graphics and Text," for details.)

The default font is always loaded, but it is not the same on all seSection 6.2.2, "Loading Fonts"describes how a
program can find out about the default font on the particular server it is connected to.

5.3.3 Fill Rule

Thefill_rule member ofXGCValues defines which pixels are drawn for paths giveXHillPolygon()
requests.Thefill_rule is also an argument ¥PolygonRegion() , which is described iBection 6.3, "Regions."
Thefill_rule in the GC is set witiXSetFillRule() . Thefill_rule may beEvenOddRule (the default in

the GC) oWindingRule

As shown in Figure 5-FEvenOddRule means that if areas overlap an odd number of times, they are not drawn.
Technically, it specifies that a point is drawn if an infinite ray with the point as origin crosses the path an odd numb:
times.

WindingRule , also shown in Figure 5-7, means that overlapping areas are always filled, regardless of how many
they overlap. Technically, this rule specifies that a point is inside the filled area if an infinite ray with the point as or
crosses an unequal number of clockwise— and counterclockwise—directed path segments.

Since polygons are drawn as a series of points connected by lines, the order of the points determines the direction
line. A clockwise—directed path segment is one which crosses the ray from left to right as observed from the point.
counterclockwise—directed segment is one which crosses the ray from right to left as observed from the point. The
where a directed line segment is coincident with the ray is uninteresting, because you can simply choose a differer
is not coincident with a segment.

All calculations are performed on infinitely small points, so that if any point within a pixel is considered inside, the e
pixel is drawn. Pixels with centers exactly on vertical boundaries are considered inside only if the filled area is to th
On horizontal boundaries, the pixel is considered inside only if the filled area is below the pixel.

Figure 5-7. fill_rule constants for filling closed polygons

Qutline of polygon t fl EvandddRula AirdingRula

5.3.4 Arc Mode (for Filling)

Thearc_mode member oiXGCValues controls filling of arcs drawn witKFillArc andXFillArcs() . The
arc_mode is set withXSetArcMode()

An arc is specified foXFillArc or XFillArcs() as follows:

. The arc is bounded by a rectangle whose center is the center of the arc.
. The position of the upper-left corner of the rectangle is relative to the origin of the destination drawable.

. Two angles indicate the starting and stopping position of the arc. These are measured in sixty—fourths of a d
starting from the three—o’clock position, with positive angles indicating counterclockwise measurement.

The meanings of the arc specifications are demonstrated in Figure 6-1.

Thearc_mode can be eitheArcPieSlice orArcChord . Figure 5-8 demonstrates the two modes. AteChord ,
the arc and the single line segment joining the endpoints of the arc create a closed figure toAiltPie&lice |, the
arc and the two line segments joining the endpoints of the arc with the center point create a closed figure to fill.

Figure 5-8. arc_mode constants for filling arcs

AreChord ArePieflice

5.3.5 Clip Mask

Clipping allows you to limit the effect of graphics requests to a particular area or to particular pixels of the window ¢
pixmap. Theclip_mask member oXGCValues is a bitmap that indicates which pixels of the destination drawable
to be affected by graphics requests. By default, all pixels in the destination drawable are affected.

Pixels not represented by a set bit in the clip mask will not be drawncliphemask can be set with

XSetClipMask() , XSetClipRectangles() , or XSetRegion() . XSetClipMask() sets a clip mask compose(
of an arbitrary set of bitSetClipRectangles() specifies an array of rectangles that will collectively be used as
clip mask.XSetRegion() is another way to set the clip mask to a set of rectangles, sometimes more convenient tl
XSetClipRectangles() . XUnionRectWithRegion() can beused to add the rectangle fromExpose event
into a region. TheiXSetRegion() sets the GC to clip output to those areas. This is useful for redrawing only the ai
that have been exposed. See Example 3-15, which uses this technique. Figure 5-9 shows a relgtanuasér |,

which could be set witKSetClipMask() , XSetClipRectangles() , or XSetRegion()

If the clip_mask is set manually witiXSetClipMask() or while creating the GC, a pixmap of depth 1 must be use
Then the only pixels drawn are those for whichdliyg_mask has a set bit. This pixmap must have the same root as
GC, or aBadMatch error will be generated.

Figure 5-9. Use of clip origin to locate the clip_mask relative to drawable

telip x origin

Destinaton Drawakble

.t

clip_mask
Y \[

This area of graphics
primitive not drawn

The clip origin, which places thdip_mask relative to the destination drawable, is specified by two other members
the GC structureclip_x_origin andclip_y_origin . Figure 5-9 shows how these coordinates specify the
upper-left corner of the clip mask relative to the upper-left corner of the destination drawable specified in the grapl
request. The origin of tredip_mask can be set witikSetClipOrigin() . The gray area in the figure represents tt
data to be drawn. The rectangle filled with unshaded squares represents the clip mask, which has all bits set to on
lighter gray at the bottom shows the area outside the clip mask; this data will not be drawn.

5.4 Controlling Coloring and Patterning

The first stage of the drawing process (pixel selection) results in a bitmap with bits set to one indicating the pixels t
drawn. However, a window on a color display (or a pixmap to be copied to a color display) must have multiple bits |
pixel to represent colors. The second stage of the drawing process colors the pixels.

There are four ways of coloring the pixels, controlled byfithestyle member of the GC. One of them uses a sing
color, and the other three apply patterns in different ways. You can pattern anything you can draw, including text, a
lines of width O are not patterned.

We will begin by discussing the simple case, drawing with only the foreground coloffillsstgle of
FillSolid . Then, to understand the effect of the patterning values fditltistyle , we must digress into a short
description of tiles and stipples, followed by a discussion of the three styles of patterning.

5.4.1 Drawing in Foreground Only

Basic drawing is done using thrreground member of the GC. THereground specifies the pixel value to be
applied to the pixels selected by the graphics primitive, whefillthstyle is FillSolid . The uses of the
background color are restricted and are describ&ation 5.4.5, "Drawing in Foreground and Background."

For practical purposes, you can loosely think of a pixel value as the "color" in which an object will be drawn, though it applies to both color and
monochrome systems. Even on a color system, the actual color resulting from the specified foreground or background pixel value will depend ¢
plane mask and logical function, as well as the red, green, and blue values stored in the colormap entry to which the resulting value points! Lat
references in this chapter to drawing in the "foreground color" should be interpreted in this light.

You can set thioreground with XSetForeground()

Figure 5-10 shows the use of fbeeground pixel value when drawing a character witBrawString() . We will

contrast this later with a string drawn usiDBrawimageString() , which will also draw the bounding box with the
background pixel value.

Figure 5-10. Use of foreground in XDrawString() character

- foreground [7]- not drawn

Now we move on to describe patterning. If you are familiar with tiles and stipples, you can skip Sections 5.4.2 and
and jump tcSection 5.4.4, "Fill Style."

5.4.2 Tiles

A tile is a pixmap used to pattern the pixels selected by the first stage of the drawing procgles. Theember of the GC
can be set witiXSetTile()

Tiles are so named because they are laid out next to each other in an array like bathroom tile. The origin of the firs
specified withts_x_origin andts_y_origin , Which are relative to the origin of the destination drawable. These
members of the GC are set wKIsetTSOrigin() . Only pixels specified by set bits in the first stage bitmap are tiled
Figure 5-11 shows how tiles are used to pattern an area. Instead of being filled with a solid color (or shade of gray
area is filled with the tile pattern.

Figure 5-11. Tiling an area

o = i &
o o W O O
o o o T o
o e W & O
= = o & T
- -+ B+ 4
o B 0 O S O
o o W O O
o o B &

A i

Creating a tile is described 8ection 6.1.5, "Creating Bitmaps, Pixmaps, Tiles, and StipplesThe tile pixmap must be
created on the same root window and have the same defitle dgstination drawable. If these conditions are not
satisfied, 8BadMatch error is generated. If a pixmap is used simultaneously in a graphics request both as a destin.
and as a tile, the results are not defined.

Note that on monochrome displays, tiles are often used to simulate different levels of gray. For example, a checke
tile of black and white dots will appear gray on the screen. Wightife pixmaps with different arrangements of black ar
white dots, it is possible to develop several distinguishable levels of gray.

5.4.3 Stipples

Stippling is similar to tiling, except that a stipple is a pixmap of depth 1, not of the depth of the drawable. The pixel
used to draw the pattern are fheeground andbackground in the GC.

Just like tiles, stipples are laid out starting from the position specifiedsvixh origin andts_y_origin , Which
are relative to the origin of the destination drawable.

Creating a pixmap of depth one to be used as a stipple is describection 6.1.5, "Creating Bitmaps, Pixmaps, Tiles,
and Stipples.” The stipple pixmap must be created on the same root window and have the same teptiestination
drawable. If these conditions are not satisfietBadMatch error is generated. If a pixmap is used simultaneously in a
graphics request both as a destination and as a stipple, the results are not defined.

Thestipple member of the GC may be changed witBetStipple() . If both thestipple andtile members of
the GC are set, tHdl_style determines which is used. Both cannot be used in a single graphics request.

5.4.4 Fill Style

We have demonstrated the simplest case, drawing using the foreground orfily \sitte of FillSolid . Now

that you know about tiles and stipples, we can describe the values fitlr tide that cause patterning. The
fill_style member oiXGCValues controls whether the source graphics are drawn with a solid color, a tile, or or
the two techniques using a stipple. Titlestyle member of the GC may be changed wWtBetFillStyle()

Remember that only the bits that are set to one in the first stage bitmap are affected by coloring or patterning. The

fill_style affec

FillSolid

FillTiled
FillStippled

FillOpaqueStippled

When the depth of

ts all line, text, and fill requestsxcept lines drawn witlne_width zero. Possible values are:
Specifies that graphics should be drawn usingdheground pixel value and in some cases als(
thebackground pixel value.
Specifies that graphics should be drawn usingithe pixmap.

Specifies that graphics should be drawn usingdheground pixel value masked Istipple
In other words, bits set in the source atigple are drawn in théoreground pixel value.

Specifies that graphics should be drawn usitigple , using theforeground pixel value for
set bits in stipple and tHeckground pixel value for unset bits in stipple.

the drawable is one, there is no difference between tilirfgl vétile of FillTiled and

stippling withfill_style of FillOpaqueStippled

Figure 5-12 demonstrates the four fill styles demonstrated on small pixmaps.

Figure 5-12. fill_style demonstrated on small pixmaps

GC foreground Tile
GC background
Undrawn Pixals] AL
Stipple |0 |1 |0
gi|1]|0
Fillgolid FillTilad Fillftipplad FillOpaogueftipplad

Odd dashes (numbering starting from zero) in dotted lines are a special case. For the gaps (odd dashes) in lines v
line_style of LineDoubleDash , FillSolid means to draw the gaps in theckground pixel value, and
FillStippled means to draw in tHeackground pixel value masked bstipple . With aline_style of

LineDoubleDash

, FillTiled andFillStippled have the effect of wiping out the odd dashes, so that the line

looks likeLineOnOffDash with the specified fill style.

5.4.5 Drawing in Foreground and Background

Thebackground is used for unset bits in the first stage output in just four situations: when using

XDrawlmageString() (seeSection 6.2.5, "Positioning of Text), usingXCopyPlane() (seeSection 6.1.6,
"Copying and Clearing Areas"), drawing withline_style of LineDoubleDash (seeSection 5.3.1.2, "Line
Style"), and with any primitive when thidl_style isFillOpaqueStippled (seeSection 5.4.4, "Fill Style").

Figure 5-13 shows the use of fbeeground andbackground values when drawing a character with
XDrawlmageString() . This primitive draws both the character and its bounding box. The character itself is dra
the foreground pixel value; the remainder of the pixels in the bounding box are drawn with the background pixel va

Figure 5-13. Use of foreground and background in XDrawlmageString() character

[- foreground [3]- background

Thebackground member of the GC is set wiXSetBackground()

5.4.5.1 Tile and Stipple Sizes

A pixmap of any size can be used for tiling or stippling, but on some types of hardware, particular tile or stipple size
much faster than arbitrary size¥QueryBestSize() returns theclosest tile or stipple size to the one you specify an
also the largest allowable cursotQueryBestTile() andXQueryBestStipple() perform the same functions,
but only for tiles and stipples, respectively.

Section 6.1.5, "Creating Bitmaps, Pixmaps, Tiles, and Stipple®xplains how to create a tile or stipple.

5.5 Controlling Graphics Tricks

The GC provides a flexible way to control exactly which planes are affected by graphics requests and how the soul
old destination pixel values are used to compute the new destination pixel values. These features are needed only
playing certain tricks like rubber—banding, and nondestructively overlaying graphics. We will demonstrate these

techniques later in the book (in Chapters 14 and 7 respectively), but describe the corresponding GC components h

Example 5-7 shows the types of the logical operation and plane mask components of the GC.

Example 5-7. Members of XGCValues that control combining of source and destination pixels
int function; [* Logical function */
unsigned long plane_mask; /* Plane mask */

The source (result of stage 2 of the drawing process) and existing destination pixels are combined by performing a
function on the corresponding bits for each pixel. plame_mask restricts the operation to a subset of planes, so the
some bits in the source may be excluded from the computationcliphmask restricts the operation to a subset of thi
pixels, likewise eliminating some pixels from the result.

The source, destination, apthne_mask are combined using the algorithm shown below to yield the new destinatiol
pixel values. For each bit in each pixel that has been selected and colored in the first two drawinthstémksying
expression defines whether that bit is set in the destination drawable:

((src FUNC dst) AND plane_mask) OR (dst AND (NOT plane_mask))

That is, if theplane_mask bit is set, the source and existing destination pixels are combined using the logical funct
represented bFUNC If theplane_mask bit is not set, the existing bit in the destination is not changed.

In the next two sections, we’'ll look at the actual values that can be specified for these members.

5.5.1 Logical Function

Thefunction member of the GC selects a logical functioogical functionscontrol how thesourcepixel values
generated by a graphics request are combined wittidraestinatiorpixel values already present on the screen or
drawable to result in thiinal destinatiorpixel values. Logical functions are also sometimes calister operations
raster opsordisplay functions The logical function can be changed by a cak$@tFunction()

The source is the output of a graphics primitive or an area of the screen or drawablX@opgArea()); the
destination is the area of the drawable or window that is to receive the olitigul6 logical functions defined in
<X11/X.h> are shown in Table 5-2.

Logical Function Hex Code Definition

GXclear 0x0 0

GXand Ox1 src AND dst
GXandReverse 0x2 src AND (NOT dst)
GXcopy 0x3 src

GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst

GXxor 0x6 src XOR dst

GXor 0x7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa (NOT dst)

GXorReverse Oxb src OR (NOT dst)
GXcopylnverted 0Oxc (NOT src)

GXorlnverted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Table 5-2 Logical Functions in the GC

Figures 5-14a, 5-14b, and 5-14c illustrate the effect of three logical functions on a single pixel of an eight-plane <
given a particular set of source and destination pixel values.

Figure 5-14a. The effect of logical function GXcopy

S0UrCe
{generated by

graphica regquest) new pixel value

(new contents of
sereen)

» funchion »
—» {GEoopy)

destination
{exkating pitel value-cuwent
contents of screen)

GXcopy, the default logical function, is the most frequently used because it copies without reference to the existing
destination pixels, with predictable effects on both monochrome and color dis@lAyer andGXinvert are also used
quite frequently. Rarely, programs may use other functions in concert with particular planes of a color display. Hel
some more detail on the most frequently used logical functions:

GXcopy Ignores the bits already in the destination drawable. It is used for both monochrome and color.

GXinvert Ignores the source and inverts the old destination. This logical function is used to change blac
white and vice versa when modifying only one plane. This can be used for highlighting on
monochrome or color screens, but is not as go@a®r on color screens.

GXxor Combines the source and existing bits in such a way that, if the operation is repeated, the drau
returned to its condition just before the two operations. It is important that these two operation
occur without intervening manipulation of the selected bits (for windows, the server should be
grabbed but for a very short time).

When the server is grabbed, the client that grabbed it has sole control over the server and the screen. All other client:
on hold; the server saves up events queued for them and does not change the screen on their behalf until the server ¢
released. The server is grabbed and releasedé@habServer() andXUngrabServer() , but this should

be done only when really necessary.

Otherwise, the second XOR operation will not leave the drawable unch&Xpeat. has these
properties on both monochrome and color screens.

Figure 5-14b. The effect of logical function GXxor

sourse
{generated by
graphlcs regueal]

new pixel value
(new contents of
sereen)

3 Minction
T e temeor)

e stination
{exiating pieel value-cunent
sontents of screen)

Figure 5-14c. The effect of logical function GXand

source
{generated by
graphits regquest)

new pixel value
(new contents of
sereen)

""" __ » function
K P (EKand) EE—

e stination
(exkting pi el value-cuwent
sontents of screen)

5.5.2 Plane Mask
Theplane_mask member ofXGCValues determines which planes of the destination drawable are modified. By

default, all planes are modified. Thiane_mask can be changed by a callX&etPlaneMask()

Destination planes represented by a bit set to 1 ipléme_mask can be changed by the graphics primitive, and the
other planes cannot. The defined constdiRRlanes() providesaplane_mask with all bits set, which can be used
when every plane is to be affected (this is also the defaulpjare_mask of 0 cancels the effect of the graphics
primitive. A plane_mask with only 1 bit set is useful for highlighting on both color and monochrome displays. Oth
tricks using theplane_mask are described in Chapter@glor. The macrdisplayPlanes() returns thenumber of
planes available on the screen. However, the depth of the window is the upper limit on the number of meaningful t
theplane_mask . Figure 5-15 illustrates the effect of fhlane_mask .

Figure 5-15. The effect of the plane_mask on a 12—-plane display

Eource Piel Yalue Fhlne Mask Destination Pixel Yalue
funotion = Soopy

-ibite []-obits [- unchanged bits

5.6 Graphics Exposure

When usingXCopyArea() andXCopyPlane() to copy data from one drawable to another, it is possible that certai
portions of the source region will be obscured, unmapped, or otherwise unavailable. If this is the case, it may be d
to generate an event to signal the client that one or more areas in the destination window could not be copied to ar
be redrawn some other way.

Thegraphics_exposures flag in the GC specifies whether or not events should be generated in such a case. T
are actually two event types that can be generatgdjihics_exposures is set toTrue :

. One or morésraphicsExpose events are sent when a destination region cannot be completely drawn becat
source region was obscured, unmapped, or otherwise unavailable.
. A singleNoExpose event occurs when the specified source region is completely available.

These event types are not selecte&X8glectinput() or in theevent_mask attribute; setting
graphics_exposures to True is the only way to select them. Thephics_exposures member of the GC can

be set withXSetGraphicsExposures()

Figure 5-16 shows a typicACopyArea() request where the source region is obscured. It shows the areas that wc
be specified in th&raphicsExpose events generated.

As shown in Figure 5-16, a singt&€opyPlane() orXCopyArea() can result in more than o&raphicsExpose
event, since the resulting area to be redrawn may be composed of several rectangles. A copy such as the one shc
Figure 5-16 would generate t@raphicsExpose events. One rectangle is specified by each event. If windows A ¢

B are removed and the copy repeated, a siMgExpose event is generated.

Whengraphics_exposures is False , neither of these events is sent under any circumstances. By default,
graphics_exposures is True .

Figure 5-16. Copying a partially unavailable area

5.7 Subwindow Mode

Thesubwindow_mode member oiXGCValues controls whether subwindows obscure their parent for purposes of

drawing on the parent. This member is set WiSetSubwindowMode()

The valueClipByChildren sets the default condition, iwhich drawing into the area of a window obscured by its
visible children produces no effect.

If the subwindow_mode is set tdncludelnferiors , drawing appears through visible children even when they h
opaque backgrounds. The usdrafludelnferiors on a window of depth 1 with mapped inferiors of differing depi
is not illegal, but the results are not defined in standard Xlib.

One familiar use ofncludelnferiors is the window manager’s "rubber banding" of window outlines while they a
being moved or resized. The outline is drawn on the root window with the GCliselutdelnferiors

5.8 Sharing GCs Between Clients

Despite the fact that a GC is a server resource and theoretically shareable, separate clients should not attempt to ¢
because of the way GCs are implemented.

5.9 GCs and Server Efficiency

Some servers can cache a limited number of GCs in their display hardware. These systems achieve highest perfo
when the number of GCs created by an application is less than the number that can be cached at one time. Furthe
each GC takes up some amount of server memory. Therefore, it is a general principle that an application should ¢
few GCs as reasonably possible.

However, this should not be taken to extremes. For example, all applications could be written to use only one GC,
changing it frequently every time different characteristics are needed. But this defeats two of the purposes of the C
which are to reduce network traffic and simplify programming. There are also performance costs when GCs are ct
too often.

Deciding how many GCs to create and when to change them is a trade—off between the benefits of a more efficien
against the benefits of reduced network traffic and simpler programming. The designers of X still think that using a
number of GCs is, overall, the best approach.

5.10 Querying the Graphics Context

When you call a number of the GC convenience routines, su¢8etsoreground() and

XSetLineAttributes() , you might expect each to generate a separate protocol request to change the GC. Bu
not what happens. Xlib saves up the changes in an internal structure and makes a single request to the server jus
the GC is actually used by a drawing request.

The typeGCis a pointer to this internal structure. All Xlib routines use a pointer to this internal structure, not a integ
as we have previously implied. However, this fact does not impact how you write Xlib code at all. In practice, a po
an opaque structure and an integer ID such as a window ID are treated exactly the same.

In R4, theXGetGCValues() function has been added to allow clients to read Xlib’s cache of the fields in each GC.
This can save an application from having to maintain its own cache of GC values, when it needs to change the GC
several different places in ways that depend on the current contents.

Note thatXGetGCValues() is not a true round-trip query to the server—-there is no protocol request that actually
the server for these values. This has good and bad consequences. The good paG&@@values() s fast because
it is not subject to network delays. The bad side is that the values in Xlib’s cache do not include the default values
certain of the GC members. Ttie ,stipple , andfont fields contain invalid IDs wheXGetGCValues() is

called on a default GC. Therefore, even though there is actually a default font that is always loaded on a server, yo
useXGetGCValues() to find outits ID. To get information about the default font, pass the default GC to

XQueryFont() and it will get information about the default font. Neither is there any obvious reason for needing t
IDs of the tile and stipple in the default GC.

Also note that thelip_mask anddashes members of the GC cannot be queried.

5.11 The Default GC Versus Default Values of a GC

The server creates one GC, called the default GC, when it starts up. This GC is returnetDefab#GC() and the
DefaultGC() macro. It contains foreground and background colors that are guaranteed contrasting (but not nec
black and white), and it contains a default font that is guaranteed to be loaded, but is not necessarily the same font
servers. The values in the default GC must not be changed.

The default GC can be used in simple applications. But it is not very useful since all applications should provide us
customization of fonts and colors, and few can avoid the need to modify other GC components as well.

When you create a GC of your own, its default values are slightly different from the values of the default GC. Its
foreground and background values are 0 and 1, respectively, so they are not necessarily black and white or contra
That's why you must always set foreground and background when you create a GC. Also, the default font is
implementation dependent, and it may not be loaded. Therefore, you must always load the font before attempting
with it.

Table 5-3 shows the default values for all members of a graphics context you create.

Component Value
function GXcopy

plane_mask alll’s

foreground 0

background 1

line_width 0

line_style LineSolid

cap_style CapButt

join_style JoinMiter

fill_style FillSolid

fill_rule EvenOddRule
arc_mode ArcPieSlice

tile Pixmap filled with foreground pixel
stipple Pixmap filled with 1 ’s
ts_x_origin 0

ts_y_origin 0

font (Implementation dependent)
subwindow_mode ClipByChildren
graphics_exposures True

clip_x_origin 0

clip_y_origin 0

clip_mask None

dash_offset 0

dashes 4 (i.e., the list [4, 4])

Table 5-3 The Default Values of a Graphics Context

A useful quick reference to the graphics context is provided inside the back cdaumie Two, Xlib Reference Manual

Chapter 6

Drawing Graphics and Text

This chapter describes the routines used to draw lines, geometrical figures, and text. It also discusses the use of ti
pixmaps, images, and regions. You should be familiar with the use of the graphics context before attempting to us
routines.

Drawing with computers is a little like drawing by hand. Holding the pencil is not hard, but getting anything recogni:
to appear on the page is a different matter. Similarly, drawing with X is quite easy, but designing what to draw and
can be a challenge. We can do little more in this chapter than tell you how to hold the pencil; the rest is up to you.

This chapter describes various techniques that have to do with drawing: drawing lines, rectangles, and arcs; using
placing and drawing text; using regions; creating and using cursors; and using images.

Thedraw_text anddraw_graphics routines called in thbasicwinprogram inChapter 3, "Basic Window
Program,” are used as examples in this chapter. Also described here are various versiodswi thex routine,
which is called in the simple window managénmandescribed irChapter 16, "Window Management."

Note that, before you draw anything, you must set up a graphics context to specify, at minimum, the foreground an
background pixel values for drawing and the font if you are drawing text. For monochrome applications, you shoulc
these values using ttstackPixel() andwWhitePixel() macros described i@hapter 3, "Basic Window

Program.” For color applications, you should use one of the color allocation routines desciitiezpier 7, "Color."
While the default foreground and background values in an@pwork on some servers, they are hardcoded (0 and 1) ¢
shouldnot be relied upon by any client, since they will give inconsistent results on color displays.

6.1 Drawing

The X drawing primitives are easy—to—use routines capable of drawing points, connected lines (polylines), disconn
lines (disjoint polylines), rectangles, and circles, ellipses, or arcs. Separate primitives are provided that fill rectangle
polygons, circles, ellipses, and arcs.

These primitives select the source pixels that will be operated on according to the graphics context. The GC is des
Chapter 5The Graphics ContextThe most common error generated while drawirBgidMatch . If you get this error, it
means the drawable artie GC specified in the drawing call are not the same depth. The safest way to prevent this
always create the drawable first, and then use the drawable as an argument when creating the GC that will be use:
into it.

XDrawPoint() requires only the coordinates of the point to be draBrawPoints() requires a pointer to an array
of coordinates for the points, the number of points, and a mode flag which controls whether the coordinates are int
relative to the origin of thelrawable or relative to the previous point drawn.

XDrawLine() is similar toXDrawPoint() but requires two points, a beginning and an exidrawLines() works
just likeXDrawPoints() but draws lines between consecutive points in the list. If the first and last points coincide
lines will be joined properly according to tjuén_style in the GC.

XDrawSegments() draws lines that are not necessarily connected end to end. It requires an array of pairs of end
There is no mode flag fotDrawSegments() , so the coordinates are always relative to the origin of the drawable. I
end point of one segment and the beginning of the next coincide, the lines will be joined accordijajrtostiyée in
the GC. The remaining end points will be drawn according todpestyle in the GC.

XDrawRectangle() draws the outline of a rectangle when given the upper-left corner and the height and width.
XDrawRectangles() draws multiple rectangles from an array of corner coordinates and dimensions. The actual
and height of a rectangle is one pixel larger than the dimensions specified, according to the X protocol, as shown i
6-2. These actual dimensions maintain consistency with the definition of a filled rectangle or a clipping region, whi
exactly the size specified. The corners of rectangles are drawn accordingpto_thyle in the GC.

XDrawArc() is similar toXDrawRectangle() , except that it draws an arc that fits inside the rectangle. This funct
can draw circles and ellipses (or parts thereof) whose axes are ptvahel window coordinates. An elliptical arc occur:
if the rectangle is not a square. The extent of the arc is specified by two angles: the first is the starting angle relati
three—o’clock position, and the second is the angle relative to the starting position. The angles are signed integers
sixty—fourths of a degree (0 to 360 * 6g a complete circle), with positive values drawing the arc counterclockwise. T
scale factor is required so that angles can be specified more accurately than allowed by integral values between 0
degrees. Figure 6—1 demonstrates the arguments needddréawArc()

Figure 6-1. Angle measurement for XDrawArc or XDrawArcs()

l/ width \,l
12 o'chek
%, ¥} Lrgla = 90xEd
\ Angle = -1{270xk4}
L '
| Center of bounding
I rectangle.
H |
'g'- 1
o 9 o'shck :r 53 o'uheok
4| ingle = 180x64 ingla = @
Argle = -f180xk4} :
1
i) -
b o'chok
Angle = 2T70xed=1T240
Ingle = -{90xed}=5TR0
Ezample 1. Example 2.
A from A1 o AZ, Counterclockwie A from B1 to B2, Clockwhke
A1 w00 X 54 Bi1w 270X 54
Al m 45X B B2 = -{45X Bd)

X Version 11 also supports tiéraw() andXDrawFilled() routines that were available in X Version 10, though tt
performance of these is low. These routines are described in Appendid Biompatibility

Xlib does not provide routines for drawing Bezier or cubic spline curves.

6.1.1 The Request Size Limit

One caveat of all the Xlib routines that draw multiple objects is that there is a maximum number of objects that can
drawn with a single call, and this number varies according to the server your application is connected to. In Releas
affects the callXDrawArcs() , XDrawLines() , XDrawPoints() , XDrawRectangles() ,

XDrawSegments() , XDrawText() , XDrawTextl6() , XFillArcs() , andXFillRectangles() . In Release 5
and later, it affects onB{DrawArcs() , XDrawLines() , XDrawText() , andXDrawTextl6() , because the other
calls are divided into multiple requests. (This cannot be donéDoawArcs() orXDrawLines() because this would
disturb the server’s joining of the lines.)

To determine how many objects you can draw in a single call, you find out your server's maximum request size usi
XMaxRequestSize() . Subtract 3, and this is the maximum number of points you can draw in a single
XDrawPoints() request. You can draw one-half this many lines, segments, or rectangles, and one-third this me
arcs.

ForXDrawText() , XDrawText16() ,XwcDrawText() , andXmbDrawText() , which draw a series of strings as
will be described later, the maximum number is based on the number and length of these strings.

6.1.2 Scaling Graphics

All drawing measurements in X are made in pixels. The positions you specify are relative to the origin (upper-left (
inside border) of the window specified in the drawing request. The width and height of a rectangle or bounding bo»
arc are also specified in pixels.

Scaling based on pixels has a weakness caused by the fact that pixels are not always the same size on the screen
desktop publishing application. Its goal is to make everything drawn on the screen as close as possible to what wil
on the printed page. People may run the application from a PC which has a 9.5" by 7.25" screen with an 640 by 4¢
of pixels or from a workstation which has a 13.5" by 10.5" screen with an array of, perhaps, 1152 by 900 pixels. Th
lines drawn by the application would look much different on the two screens if their sizes were not adjusted accordi
The application should calculate the ratio of the size in millimeters of the screen to its size in pixels, in both directio
The required information is returned by BsplayHeight() , DisplayHeightMM() , DisplayWidth() , and
DisplayWidthMM() macros.

This correction of size distortion also solves a second, smaller problem. The relative density of pixelaralyhe
directions on the screen may vary. For example, a square drawn with equal width and height may appear rectangt
the screen, since some (but, fortunately, not many) screens have more space between rows of pixels than betweel
By correcting for size variation, this problem goes away. It is also possible to allow size variations but correct for tt
aspect ratio distortion by multiplying the height measurements in pixels by the ratio:

DisplayHeight/DisplayHeightMM()

DisplayWidth/DisplayWidthMM()

or by multiplying the width measurements in pixels by the inverse of this ratio. Do not multiply both the width and
measurements.

6.1.3 Example of Drawing Graphics
All drawing routines are used in essentially the same way:

. First, create and set the graphics context.
. Then calculate the dimensions and placement of what you want to draw.
. Finally, do the actual drawing.

Example 6-1 shows a routine namdrdw_graphics that places and draws a rectangle. As you can tell from the
brevity of the routine, most of the trouble goes into setting the GC properly and positioning the item to be drawn. T
actual drawing is very simple.

This routine is called from tHeasicwinprogram described i@hapter 3, "Basic Window Program.” By the time it is
called, we have already done many things. The display is opened, windows and resources created (including the ¢
window manager hints set. Most importantlyaw_graphics is called only in response Expose events. It is used
to draw the window for the first time and to redraw the contents of areas exposed later.

Example 6-1. The draw_graphics routine
draw_graphics(win, gc, window_width, window_height)
Window win;
GC gc;
unsigned int window_width, window_height;
{ .
intx,y;
unsigned int width, height;
height = window_height/2;
width = 3 * window_width/4;
x = window_width/2 — width/2; /* Center */
y = window_height/2 - height/2;
XDrawRectangle(display, win, gc, X, y, width, height);

The calling routine gets theindow_width andwindow_height arguments fronConfigureNotify events
because the window being drawn into is a top—level window which might get resized by the window manager. Rot
draw into descendents of the top—level window may also require size arguments if the sizes of the windows will be
adjusted in response to a resized top—level window.

6.1.4 Filling

The XFillArc() , XFillArcs() , XFillPolygon() , XFillRectangle() , andXFillRectangles()
commandsact much like the drawing routines described at the st&#afon 6.1, "Drawing” except that they fill an
area instead of drawing the outline.

Surprisingly, the filling and drawing versions of the rectangle routines do not draw the same outline if given the san
arguments. The routine that fills a rectangle draws an outline one pixel shorter in width and height than the routine
draws the outline, as shown in Figure 6-2. It is easy to adjust the arguments for the rectangle calls so that one dre
outline and another fills a completely different set of interior pixels. Simply add &andy and subtract 1 frowidth
andheight

The XFillPolygon() routine is somewhat different from the other filling routines, since there is no directly analoc
routine that draws a polygon with lines (thougbrawLines() can be used to draw a polygon). Like the other routine
XFillPolygon() uses an array of points to specify the nodes to be connected, but it connects the first and last p
form a closed figure and then fills the resulting shape. shlape flag (which can be one dhe symbolsComplex ,
Convex, orNonconvex) is a hint that may enable the server to improve the performance of the filling operation. 1
mode argument indicates whether the coordinates of the vertices are interpreted relative to the origin of the drawak
relative to the previous point.

Thefill_rule member of the GC controls how complex, self-intersecting polygons are filledVifidengRule
setting of thdill_rule specifies that overlapping areas of a polygon drawn in a single call are filled. With

EvenOddRule , areas overlapping an odd number of times are not filled S&a®n 5.3.3, "Fill Rule" for more
information.

Figure 6-2. The pixels affected by XFillRectangle() vs. XDrawRectangle() with the same arguments

20 pieels |

12 plxals

¥Drawkactangle{display, drawable, gqeo, O, &, 19, 111;

20 pheels

12 plxals

¥XFillRartanglei{display, drawable, gqeo, O, &, 19, 111;

6.1.5 Creating Bitmaps, Pixmaps, Tiles, and Stipples
Bitmaps, tiles, and stipples are all forms of pixmaps, all of Bigsap . Applications often need to create pixmaps for
icon patterns, cursors, and tiles.

The data used to create a pixmap for any purpose can be included in a program at compile time or read in at run ti
both methods, you must have a bitmap file created YithiteBitmapFile() or thebitmapapplication.

In the first method, you use &include statement to read the bitmap file at run time and then call
XCreateBitmapFromData() or XCreatePixmapFromBitmapData() if you want a pixmap with depth for a

window background or a tile.

In the second method, you create a single—gRaxmap with XCreatePixmap() and callXReadBitmapFile() to
fill the Pixmap with the data from the file. Then if you want a pixmap with depth for the background of a winrdiow

a tile, you can create another pixmap of the desired depth aiCogdiyPlane() to copy the bitmap into the pixmap.
Normally, an application would choose reading the data from a file if the user needs to be able to change the bitma
between invocations of the client.

XWriteBitmapFile() can be used to write the contents of a bitmap into a file conforming to X Version 11 bitmaj
format.

Example 6-2 shows some bitmap data in standard X11 bitmap file format and two subroutines, one that creates a
from included data and the other that reads the bitmap data from a file.

Example 6-2. Creating a stipple from included data and from data read from a file
#define icon_bitmap_width 40
#define icon_bitmap_height 40
static char icon_bitmap_bits[] ={
0xc3, 0xc3, 0x7f, 0x00, 0x78, 0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00,
0x00, 0x00, 0x80, 0x38, 0x00, 0x40, 0x00, 0x80, 0x24, 0x00, 0x00, 0x00,

0x0c, 0x30, 0x18, 0x00, 0x84, 0x04, 0x60, 0x0e, 0x00, Oxdc, 0x02, 0x80,
0x03, 0x00, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00};

void main(argc, argv)

int argc;

char **argv;

{

Pixmap stipple;
unsigned int stip_width, stip_height;
char *filename = "bitmaps/icon_bitmap";
if (create_included_stipple(&stipple, &stip_width,
&stip_height) == False)
fprintf(stderr, "basic: couldn’t create included bitmap\n");
printf("stipple is %dx%d\n", stip_width, stip_height);
if (create_read_stipple(&stipple, filename, &stip_width,
&stip_height) ! = BitmapSuccess)
fprintf(stderr, "basic: can't read bitmap\n");
printf("stipple is %dx%d\n", stip_width, stip_height);

}
create_included_stipple(stip, width, height)

Pixmap *stip; /* Returned created stipple */
unsigned int *width, *height; /* Returned */
{
if ((*stip = XCreateBitmapFromData(display,
RootWindow(display, screen_num), icon_bitmap_bits,
icon_bitmap_width, icon_bitmap_height))
== False)
return(False);
*width = name_width;
*height = name_height;
return(True);

}

create_read_stipple(stip, filename, width, height)
Pixmap *stip; /* Returned created stipple */
char *filename;
unsigned int *width, *height; /* Returned */
{
int value;
int x_hot, y_hot; /* Don'’t care about these unless for
* cursor */
value = XReadBitmapFile(display, RootWindow(display, screen_num),
filename, width, height, stip, &x_hot, &y _hot);
if (value == BitmapFilelnvalid)
fprintf(stderr, "Filename %s contains invalid bitmap data\n",
filename);
else if (value == BitmapOpenFailed)
fprintf(stderr, "Filename %s could not be opened\n”,
filename);
else if (value == BitmapNoMemory)
fprintf(stderr, "Not enough memory to allocate pixmap\n");
return(value);
[* Returns BitmapSuccess if everything worked */

}
To create a pixmap with depth from included data, you can substiireatePixmapFromBitmapData() for
XCreateBitmapFromData() in the example above. However, to create a pixmap with depth from data read fror

file, you must create a bitmap wikReadBitmapFile() as shown above, then create a pixmap with depth using
XCreatePixmap() , then copy from the bitmap to the pixmap usi@€ppyPlane()

6.1.6 Copying and Clearing Areas

XClearWindow() clears an entire window. If the windohas éackground_ pixmap attribute, then the window
is redrawn with this tile. If the window haackground_pixmap or background_pixel attributeNone, then the
contents of the window are not changed. No exposure events are genevé@daryindow() , since the usual intent
of this command is talear the window, not to refresh the old contents (which would be the normal response to an
exposure event). ConverseKClearWindow() is not needed to clear a window before redrawing it due Expase
event, because the server automatically draws the exposed area with the background pixel value or pixmap.

XClearArea() s like XClearWindow() but acts on goarticular area within a window defined by the caXsy,
height , andwidth arguments. If theeight orwidth argumentis 0, then some special rules take effect that clea
area to the right and/or the bottom of the window, as shown in Figure 6-3.

Figure 6-3. XClearArea() —— area cleared with various width and height arguments

W ind ow W ind ow

Window Window

7

If the width argument is O, the left edge of the cleared argaaisd the right edge is the right border of the window. If
theheight is 0O, the top iy and the bottom is the bottom of the window. If bog¢ight andwidth are 0, then the
area betweer andy and the bottom and right sides of the window are cleared.eXj@sures argument indicates
whether arExpose event is generated on the cleared area.

XCopyArea() is used for many purposes, including copyioff-screen pixmaps to the screen and copying one scree
area to another. You need to specify the source and destination drawlablepper—left corner of the source and
destination locations, and the width and height of the area. Note that the source and destination drawables must h
same depth, or an error occurs.

Areas of the source that are not visible, not preserved in the backing store, or outside the boundaries of the source
are not copied. If the destination has a background tile attribute othéMdhanthe destination areas corresponding to
the uncopyable areas of the source are filled or tiled according to the background attributes.

The operation oKCopyPlane() is quite different fronXCopyArea() . A single plane of the source regiongs/en

"depth" by "coloring" it with théoreground andbackground pixel values from the GC, before being written into tt
destination drawable. In other words, set bits in the source plane are given the foreground pixel value in the destin
drawable, while unset bits are given the background pixel value. Thepé@opyPlane() is useful for translating a
pixmap of depth 1 (a bitmap) into a pixmap of the same depth as a window where it can be displayed. If the
graphics_exposures member of the GC i§rue , then one or mor@raphicsExpose events aregenerated on the
destination region when part of the source region could not be copied or d\oigleose event is generated if all the
source region could be copied. This is the case forX@tipyArea() andXCopyPlane() requests.

That's about all there is to say about simple drawing, filling, copying, and clearing. Now we’ll move on to drawing t

6.2 Fonts and Text

A font in X is a set of bitmaps and may represent text, a set of cursor shapes, or perhaps some other set of shapes
other purpose.

The following sections describe the character format, how to load fonts, character metiégriti&truct and
XCharStruct structures, placing text, font properties, and more.

6.2.1 Character Format

Every X function that draws text has two versions: one that handles single—-byte (8-bit) fonts and one for two—byte
(16-bit) fonts. The difference between these two is that a single—byte font is limited to 256 characters, while a two
font may have up to 256 rows each with 256 characters, a total of 65,536 characters. Large numbers of characters
necessary for Oriental languages.

On many servers, only single—byte fonts can be used with the routines whose names do not end in 16 and only twi
fonts may be used with the routines that do end in 16. However, some servers may handle either type in either rot
the moment, there is only one two-byte font on the standard X distribution, the Kanji font useétbyntiprogram, a
terminal emulator for Japanese.

6.2.2 Loading Fonts

A font must be loaded before being used. If one or more clients are using the same font, they share the same cop
server, but each must request that the font be loaded, if only to get the font ID. The available fonts are stored in a ¢
that is accessible with thé€ListFonts() andXListFontsWithInfo() commands.

XListFonts() lists the fonts that match the specified pattémith wildcards) that are available on the current server.
The list of font names generated XlistFonts() can be freed when no longer needed uZiRgeeFontNames()
See the next section for how to specify font names.

Once the desired font name is found, it can be used as a st{hgadFont() . Some fonts, such as "fixed" and "9x15
are almost always available and should not require a search through the list of fon¥_og8d&ont() command loads
a font and returns the font ID, which is used in all subsequent references to that font. The font ID X Settbim()

to associate thdont with a GC to be used in drawing teXiLoadFont() returns a value that must be checked to mak
sure the loading succeeded.

If the font is constant width, then it is ready for use as soon as it is loaded. If the font is proportionally spaced and '
program needs to calculate the extent of many strings in the same font, then you may want to get the table of the €
the font characters and perform this calculation locally in order to save repeated round-trip requests to the server.
information is stored in akFontStruct (described irBection 6.2.4.2, "The XFontStruct Structure'), which is filled
by calling theXQueryFont() routine. Both th&XLoadFont() andXQueryFont() operations may be dortegether
with XLoadQueryFont()

If the font ID passed to théQueryFont() routines is of typ&Context , the information about the font associated
with the specified GC is returned. This is how you get information about the default font, which is always loaded. |
value returned by

XGContextFromGC(DefaultGC(display, screen_num))
to XQueryFont()

Theload_font routine shown in Example 6-3 is called in Hasicwinprogram described i@hapter 3, "Basic
Window Program.” It loads a font and gets the font information structure for later use in the routines that actually ¢
the text.

Example 6-3. The load_font routine
load_font(font_info)
XFontStruct **font_info;
{
char *fonthame = "9x15";
I* Access font */
if ((*font_info = XLoadQueryFont(display,fonthame)) == NULL)
{
(void) fprintf(stderr, "Basic: Cannot open 9x15 font\n");
exit(-1);
}
}

In a more general client, the font name should be an argumleattdont , and provision should be made to read it
from the command line or resource database.

XListFontsWithInfo() returns a list of the loaded fonts matching a font name (with wildcards) and returns the
information structure associated with each loaded font. The information returned is identical to that returned by
XQueryFont() except that per—character metrics are not returned. Only the maximum metrics over the entire for
returned. IXFontStruct.min_bytel andXFontStruct.max_bytel are 0, the font is a single-byte font.

XFreeFontInfo() should be used to free the font information structure when the font is no longer needed but be
the font is unloaded usingUnloadFont() . XFreeFont() combinesXFreeFontinfo() andXUnloadFont()

6.2.3 Font Naming

Your application should allow font names to be specified by the user using resources. However, you do need to sg
default fonts. Font naming is defined by the X Logical Font Description convention, known as XLFD. The complete
XLFD is presented iWolume Zero, X Protocol Reference Manublowever, the basics are covered in Appendix A,
Specifying Fonts

6.2.4 Character Metrics

Before going on to the structures that specify characters and fonts, we should go over some terminology. The
measurements shown in Figure 6—-4 are some dbttianetricsthat are the measurements in pixels that describe both
font as a whole and each character in the font. The names shown for the metrics are members of the font informat
structures.

Notice that the origin is not at the upper-left corner of each character, as in most of the rest of X. The origin of eac
character is on theaseling which is a row of pixels somewhere near the lower middle of a line of text. This part of X
been written to conform closely to the existing standards for fonts provided by companies like Adobe.

Notice that two structures are mentioned in Figure &FontStruct andXCharStruct . XFontStruct holds
information about the entire font, whi¥CharStruct (itself the type of several membersXfontStruct) holds
information about a single character. These two structures have some common member names, but their meaning
different.

There is a difference between the fastent anddescent members iixXFontStruct and theascent and
descent members in each individulCharStruct . The former specifies the largest of each measurement in any
character in the font, and the latter specifies the measurements of single characters.

6.2.4.1 The XCharStruct Structure
OneXCharStruct structure contains the metrics of a single character in a KDharStruct
6-4. Refer to Figure 6—4 for the meaning of each of its members.

Example 6-4. The XCharStruct structure
[* Per character font metric information */

typedef struct {
short Ibearing; [* Origin to left edge of character */
short rbearing; /* Origin to right edge of character */
short width; /* Advance to next char’s origin */
short ascent; /* Baseline to top edge of character */
short descent; [* Baseline to bottom edge of

* character */
unsigned short attributes; /* Per char flags (not predefined) */
} XCharStruct;

Figure 6-4. The metrics of two characters

is shown in Example

MPonmtstract)
agcent
(Mcharstract)
agcent

¥ harstrnact])

Eazeline

— | | -
E L : : ‘5
414 —origin fry) | 2
o ' . pivel , w
olwo , F |
gl | , (bypkal oo
[+ 1 1 1 5
4] I I sl

1 1 1

e . L L L

| | |

— i

'1bearing !

i J

| &

irbearing

i

width

1

I {ECharBtruet}

Theattributes member is for font—specific information. It does not have any standard use or meaning.

6.2.4.2 The XFontStruct Structure
Example 6-5 shows th&-ontStruct structure. This structure contains information about the font as a whole.

Example 6-5. The XFontStruct structure

typedef struct {
XExtData *ext_data; /* Hook for extension to hang data */
Font fid; /* Font ID for this font */
unsigned direction; [* Direction the font is painted */

unsigned min_char_or_byte2; /* First character */

unsigned max_char_or_byte2; /* Last character */

unsigned min_byte1l; /* First row that exists (for two—byte
* fonts) */

unsigned max_hytel; [* Last row that exists (for two—byte
* fonts) */
Bool all_chars_exist; [* Flag if all characters have nonzero
* size */
unsigned default_char; [* Char to print for undefined character */
int n_properties; [* How many properties there are */
XFontProp *properties; [* Pointer to array of additional
* properties*/
XCharStruct min_bounds; /* Minimum bounds over all existing char*/
XCharStruct max_bounds; /* Maximum bounds over all existing char*/

XCharStruct *per_char; [* first_char to last_char information */
int ascent; /* Max extent above baseline for spacing */
int descent; /* Max descent below baseline for spacing */

} XFontStruct;

XFontStruct includes three members of tyg€harStruct : one describes the smallest measurement for each
character metric among all the characters in the font; one describes the largest; and one points to a list of structure
every character in the font. Note that the minimum character metricskiounds) do not describe the smallest
character in the font, but the smallest of every measurement found anywhere in the font. The same goes for
max_bounds .

The following list describes in detail each member ofXRentStruct structure. Only font developers need to learn ¢
these members. In general, an application programmer will use orlgdbiet anddescent members and
occasionally thenin_bounds , max_bounds , min_bytel , andmax_bytel members. These members are placed
first so you can just scan the rest if you are interested. Refer back to Figure 6—4 for a visual represesatah odnd
descent .

. Themin_bounds andmax_bounds are structures containing the minimum and maximum extents of the
characters in the font, ignoring nonexistent characters. The bounding box of the font (the smallest rectangle
could contain any character bitmap in the font), by superimposing all of the characters at the same origin (sp¢
by X, y), has its upper-left coordinate at:

[X + min_bounds.lbearing, y — max_bounds.ascent]
The bounding box’s width is:

max_bounds.rbearing — min_bounds.Ibearing

Its height is:

max_bounds.ascent + max_bounds.descent

. ascent is the logical extent of the font above the baseline and is used for determining line spacing. Specific
character bitmaps may extend beyond this ascent.

. descent s the logical extent of the font below the baseline and is used for determining line spacing. Specific
character bitmaps may extend beyond this descent. If the baseline is at absolute y cgoitliaatie logical

extent of the font is between the y coordinayesXfontStruct.ascent) and
(y+XFontStruct.descent-1), inclusive.
. direction can be eithefFontLeftToRight orFontRightToLeft . This member is a hint about whether

mostXCharStruct members have a positiiegntLeftToRight) or a negativeKontRightToLeft)
character—width metric, indicating the preferred direction of drawing the font.

. min_bytel andmax_bytel are both O for single-byte fonts, since the second byte is not used. These meml
can be tested to see if a font is single— or two-byte. If single-inytechar_or_byte2 specifies the index of
the first member of thper_char array andnax_char_or_byte2 specifies the index of the last member.
min_bytel andmax_bytel represent the first and last rows that exist in the font. There may be up to 256 r
in a font, but no normal font is likely to need all 256 rows (256 * 256 characters). For two-byte fonts, both
min_char_or_byte?2 andmax_char_or_byte2 will be less than 256, and the two—byte character index
values corresponding feer_char array membeN (counting from 0) are:

bytel = N/D min_bytel /* Row offset */
byte2 = N%D min_char_or_byte2 /* Column offset */
where:

D = number of characters per row

rhax_char_or_byte2 - min_char_or_byte2 + 1)
integer division
integer modulus

/
%

. If the per_char pointer isSNULL, then all glyphs (characters in the font) between the first and last character,
inclusive, have the same extent and other information, as given bynbotbounds andmax_bounds .

. If all_chars_exist is True , then all characters in tiper_char array have nonzero bounding boxes.

. default_char specifies the index that will be used when an undefined or nonexistent index is used.
default_char is a single—byte character. For a font using two—-byte matrix foda&tult_char has
bytel in the most significant byte afyte2 in the least significant byte. dfefault_char itself specifies an
undefined or nonexistent character, then no printing is performed for undefined or nonexistent index values.

TheXFontProp member ofXFontStruct is provided to allow additional properties (over and above the predefinel
properties) to be associated with a font. Seetion 6.2.9, "Font Properties"for a description of predefined and
additional font properties.

6.2.5 Positioning of Text
All the routines that draw text require the same basic techniques for positioning text on the screen.

Let's consider a string drawn wi¥DrawlmageString() . XDrawlmageString() draws the entire rectangle
described by thenax_bounds of the font, with the character drawn in foeeground pixel value and the rest drawn
in thebackground pixel value (both from the GC). Figure 6-5 demonstrates the drawing of three strings. The ori
the baseline of each text line is specified inXBeawlmageString() call. The offset of the first line of text in Figure
6-5is Q0 + ascent). Subsequent lines are placadgent + descent) below the origin of the first line. For
routines other thakDrawlmageString()* ,

The * (wildcard) notation is used occasionally in this manual to indicate a number of events or routines with similar names. In this case, there ar
functions,XDrawlmageString() andXDrawlmageString16() , which differ only slightly in name, features, and arguments, as
described irBection 6.2.1, "Character Format." Instead of always listing them both, we may use the wildcard notation.

these coordinates still position the background rectangle even though that rectangle is not filled.

. If you want the upper-left corner of the background rectangle to be at pixel coordigatehen passx(
y+ascent) as the baseline origin coordinates to the text drawing routines, afezat is the font ascent as
given inXFontStruct

. If you want the lower—left corner of the background rectangle to be at pixel coordingtetien passx(
y—descent+1l) as the baseline origin coordinates to the text routines, wlkspent is the font descent as given
in XFontStruct

Figure 6-5. The vertical positioning of strings

Window

font
! halght |
o 3

fant
halght

It is important to find out how wide a given string is going to be in the chosen font. This width must be smaller than
width of the drawable if you want to be able to read the end of the text!

Listed below are several routines that return either a string width or its extent (both width and height). Both types c
routines return the width of the specified string in pixels. The routines that return an extent also provide vertical siz
information in the form of ascent and descent measurements for the particular string in question and for the font as

XTextWidth() andXTextWidth16()
Return the width in pixels of a string in a particular font.

XTextExtents() andXTextExtents16()
Return string and font metrics, which include the width and height of the bounding box contain
the string in the specified font. Use these routines if making repeated calls with the same
XFontStruct

XQueryTextExtents() andXQueryTextExtents16()
Perform the same function A extExtents() andXTextExtents16() , but they query the
server instead ofequiring a filledXFontStruct and performing the computation locally. Use
these routines if you only need to calculate metrics once (or so) for a given font.

To position text vertically using the returned extents, normally you should use tlzséent anddescent (rather than

the stringascent anddescent) if you will be drawing other strings that you want lined up. If you are seriously pres
for space, it is possible to save a few pixel rows with certain strings by using thexsstiémg anddescent
measurements.

Whether you center, left justify, or right justify text is completely up to you. The only crucial test is to see that there
enough room for the height and width of the string at the chosen position.

6.2.6 Text—drawing Routines
The following routines draw text into a drawable:

XDrawsString() andXDrawString16()
Draw a string into a drawable. They require only the string, its length, and the position of the
baseline origin. The font in the GC is used both as a source for the graphics operation and as
mask, so that pixels in the destination drawable that are not in each font character are not dra

The internationalized versions of these functions@ndDrawString() and
XwcDrawString() (new in R5).

XDrawlmageString() andXDrawlmageString16()
Act just likeXDrawString() andXDrawString16() exceptthat the bounding box around thi
text string is filled with thébackground pixel value defined in the GC. This avoids annoying
flicker on many screens in clients that do a lot of redrawing, such as editors and terminal emul
These routines are very useful when you need to be able to highlight the text for selections or-
indicate that a menu choice has been made, because the foreground and background of the C
be swapped to redraw the text highlighted. Using the other text routines to do this requires chi
the background attribute of the window or copying the entire area to itself with a logical functio
GXinvert . Thefunction andfill_style in the GC are ignored for this request, but they ¢
effectivelyGXcopy andFillSolid

The internationalized versions of these functionsXandDrawlmageString() and
XwcDrawlmageString() (new in R5).

XDrawText() andXDrawText16()
Can draw one or more strings to the screen using(@egtitem structure for each stringzach
structure contains the string of text to be drawn, specifies what font to use, and provides a hori
offset (thedelta member) from the end of the last item of te&tfont member other thaNone
causes the font to be stored in the specified GC; otherwise, the font in that GC is used.

Accented or overstruck characters can be drawn in this manner. These functions can also be (
draw complex arrangements of text in one call instead of having t§RedwString() several
times, changing the position, text, and font in between each call.

The internationalized versions of these functionsXandDrawText() andXwcDrawText()
(new in R5).

Example 6-6 displays thé€Textltem structures used byDrawText() andXDrawText16()

Example 6-6. The XTextltem and XChar2b structures

typedef struct {

char *chars; /* Pointer to string */

int nchars; /* Number of characters */

int delta; [* Delta between strings */

Font font; /* Font to print it in, None don’t change */
} XTextltem;
typedef struct {

XChar2b *chars; [* Two—byte characters */

int nchars; /* Number of characters */

int delta; [* Delta between strings */

Font font; /* Font to print it in, None don’t change */
} XTextltem16;

typedef struct { /* Normal 16-bit characters are two bytes */

unsigned char bytel;
unsigned char byte2;
} XChar2b;

Thefont member ofXTextltem specifies the font to be used to draw the string irtllaes member and is stored in
the GC for use in subsequent text requests.

Thedelta member specifies a change in horizontal position before the string is drawn. The delta is always added
character origin and is not dependent on the draw direction of the font. For exampld0if ,y =20 , and

items[0].delta = 8 , then the string specified ligms[0].chars would be drawn starting at=48 ,y =
20. If items[0].chars pointed to two characters with a combined width of 16 pixels, the next delta,
items[1].delta , would begin ak = 64 . The next text item would begin at the end of this delta. d€hea

member can also be used to backspace for overstriking characters.

6.2.7 The draw_text Routine

Example 6-7 shows thdraw_text routine, called from thbasicwinprogram described i@hapter 3, "Basic Window
Program."draw_text draws three strings in different locations in the window. It demonstrates how to calculate th
vertical position of a string using the font ascent.

Example 6-7. The draw_text routine
draw_text(win, gc, font_info, win_width, win_height)
Window win;
GC gc;
XFontStruct *font_info;
unsigned int win_width, win_height;
{
char *stringl = "Hi! I'm a window, who are you?";
char *string2 = "To terminate program, press any key";
char *string3 = "or button while in this window.";
char *string4 = "Screen Dimensions:";
int lenl, len2, len3, len4;
int width1, width2, width3;
char cd_height[50], cd_width[50], cd_depth[50];
int font_height;
int initial_y_offset, x_offset;
/* Need length for both XTextWidth and XDrawString */
lenl = strlen(stringl);
len2 = strlen(string2);
len3 = strlen(string3);
[* Get string widths for centering */
widthl = XTextWidth(font_info, stringl, lenl);
width2 = XTextWidth(font_info, string2, len2);
width3 = XTextWidth(font_info, string3, len3);
/* Output text, centered on each line */
font_height = font_info—>ascent + font_info—>descent;
/* Output text, centered on each line */
XDrawsString(display, win, gc, (win_width — width1)/2,
font_height, stringl, lenl);
XDrawsString(display, win, gc, (win_width — width2)/2,
(int)(win_height — (2 * font_height)),
string2, len2);
XDrawsString(display, win, gc, (win_width — width3)/2,
(int)(win_height — font_height),
string3, len3);
[* Copy numbers into string variables */
(void) sprintf(cd_height, " Height — %d pixels",
DisplayHeight(display,screen_num));

(void) sprintf(cd_width, " Width — %d pixels",
DisplayWidth(display,screen_num));

(void) sprintf(cd_depth, " Depth — %d plane(s)",
DefaultDepth(display, screen_num));

[* Reuse these for same purpose */

lend = strlen(string4);

lenl = strlen(cd_height);

len2 = strlen(cd_width);

len3 = strlen(cd_depth);

[* To center strings vertically, we place the first string

* so that the top of it is two font_heights above the center

* of the window; since the baseline of the string is what

* we need to locate for XDrawString and the baseline is

* one font_info—>ascent below the top of the character,

* the final offset of the origin up from the center of

* the window is one font_height + one descent */

initial_y_offset = win_height/2 - font_height -
font_info—>descent;

x_offset = (int) win_width/4;

XDrawsString(display, win, gc, x_offset, (int) initial_y_offset,
string4,len4);

XDrawsString(display, win, gc, x_offset, (int) initial_y_offset +
font_height,cd_height,lenl);

XDrawsString(display, win, gc, x_offset, (int) initial_y_offset +
2 * font_height,cd_width,len2);

XDrawsString(display, win, gc, x_offset, (int) initial_y_offset +
3 * font_height,cd_depth,len3);

}

Note that this routine may be called repeatedly in resporiSeptmse events. That is why the font is loaded, a GC is
created, and its font member is set to the loaded font in separate routines before the event loop. The font informat
structure (containing the font ID) and GC resource ID are passkdwotext as arguments.

6.2.8 Vertical Text and Rotated Text

Xlib provides routines that draw horizontal strings, but not vertical ones. If you want to draw strings vertically that r
normally, you need to use a separate text drawing call for each character. You use a baseline with the same x coc
but a different y coordinate for each character.

Drawing strings vertically that read sideways is even more of a problem. The core X protocol and font server provi
way to rotate text, and the XLFD provides no way to name such font variations.

Some vendors supply a Display PostScript extension that supports scaled and rotated text.

One possibility is to use fonts that have their characters sideways. There is only one of these in the distribution fro
calledrot-s16.

Hewlett Packard has developed enhancements to the R5 font server that support rotated and anamorphically scale
They come in the form of patches to the source code for the font server in MIT’s X distribution. These patches hav
donated to the X Consortium so they are freely available for fgxpart.Ilcs.mit.edu SeeThe X Resourgéssue 3,
Summer 1992, for a complete description.

6.2.9 Font Properties

Font properties give detailed information about a font, usually for use only in desktop publishing applications. A foi
not guaranteed to have any properties. When possible, fonts should have at least the properties represented by th
listed in Table 6-1. These atoms are defineddhEXatom.h. XGetFontProperty() returns the value of a property
given the atom for that property. In the descriptions in Table 6-1, the data associated with a property is referred to

the same name as the property, but in mixed case. For example, the pedpert¥A SUPERSCRIPT_Xontains a

value that is referred to &iperscriptX

in the description.

Applications that make heavy use of proportionally spaced text may use these properties to space various characte

properly.

For a further description of font properties and associated conventions, see Appehdgiddl, Font Description
Conventionsof Volume ZeroX Protocol Reference Manuéds of the second printing).

Property Name
XA MIN_SPACE

XA_NORM_SPACE
XA_MAX_SPACE
XA_END_SPACE

XA_SUPERSCRIPT_X
XA_SUPERSCRIPT_Y
XA_SUBSCRIPT_X
XA_SUBSCRIPT_Y
XA_UNDERLINE_POSITION

XA_UNDERLINE_THICKNESS

XA_STRIKEOUT_ASCENT
XA_STRIKEOUT_ DESCENT
XA_ITALIC_ANGLE

XA _X_HEIGHT
XA_QUAD_WIDTH
XA_CAP_HEIGHT

XA_WEIGHT
XA_POINT_SIZE

XA_RESOLUTION
Table 6-1 Font Properties

Type

unsigned
int
unsigned
int
unsigned
int
unsigned
int
int
int
int
int
int
unsigned
int
int

int

int

int

int

int

unsigned
unsigned

unsigned

Description

The minimum interword spacing.

The normal interword spacing.

The maximum interword spacing.

The additional spacing at the end of sentences.

Offset (in pixels) from the character origin where
, then superscripts should begin at: [x + Superscr
Offset (in pixels) from the character origin where
, then superscripts should begin at: [x + Superscr
Offset (in pixels) from the character where subsci
subscripts should begin at: [x + SubscriptX, y + S
Offset (in pixels) from the character where subsci
subscripts should begin at: [x + SubscriptX, y + S
Y offset (in pixels) from the baseline to the top of
then the top of the underline is at: [y + Underlinef
Thickness in pixels of an underline.

Vertical extents (in pixels) for boxing or voiding cl
the top of the strikeout box is at: [y — StrikeoutAs
[StrikeoutAscent + StrikeoutDescent]

Vertical extents (in pixels) for boxing or voiding cl
the top of the strikeout box is at: [y — StrikeoutAs
[StrikeoutAscent + StrikeoutDescent]

The angle of the dominant staffs of characters in
three—o’clock position from the character origin, v
in XDrawArc).

"1 ex" as in TeX, but expressed in units of pixels.
"1 em" as in TeX, but expressed in units of pixels
size.

Y offset from the baseline to the top of the capital
is at y—coordinate y, then the top of the capitals it
The weight or boldness of the font, expressed as
The point size, expressed in tenths of a point, of |
points to the inch.

The number of pixels per point, expressed in hun

It is also possible for fonts to have properties not in this predefined list. If there are such properties, they will be stc

list of XFontProp structures in thEFontStruct

for the font. Example 6—8 shows tK&ontProp structure. The

documentation for each font must describe these additional properties if they are defined.

Example 6-8. The additional font property structure

/* Additional properties to allow arbitrary information with fonts */

typedef struct {

Atom name;

unsigned long card32;
} XFontProp;

6.2.10 Setting the Font Path

XFreeFontPath() , XGetFontPath() , andXSetFontPath() are available to get or set the current search path
for fonts. These functions are very rarely needed, but you should know that they exist. Their purpose is to allow fol
additional directories of fonts besides the default, whi¢hsglib/X11/fontson UNIX-based systems. The font path is
common to all clients of the server, so it should be modified with care. If the directory that contains the standard fo
removed from the path, neither any client nor the server can access fonts.

In Release 5, font servers need to be added to the font path so the X server can access them.

6.3 Regions

An X regionis an arbitrary set of pixels on the screen. But usually a region is either a rectangular area, several ove
or adjacent rectangular areas, or a general polygon. Regions are chiefly used tolipetiask member of the GC.
XSetRegion() sets thelip_mask to aregion so that output will occur only within the region. Using
XSetRegion() is a lot easier than defining a single—plane pixmap with the desired size and shape and then using
bitmap to set thelip_mask with XSetClipMask() , and it is more flexible than thelip_mask you can set with
XSetClipRectangles()

The most common use of setting tti@_mask to a region is to combine the rectangle from each of multiple contigu
Expose events on a single window into a single region and clip the redrawing to that region. This provides a perfo
improvement in some situations. Sgection 3.2.13.1, "Repainting the Window'for more information and an example.

A region has an x and y offset, which is used internally when making calculations with regions (offsets for all regior
a common origin). The offset has an effect if the region is usedlgs mask . When making a graphics request with
theclip_mask of the GC set wittKSetRegion() , the offset of the region is addedctip _x_origin and
clip_y_origin to determine the placement of the region relative to the destination drawable.

Regions can be created wiiCreateRegion() or XPolygonRegion() . XCreateRegion() creates an empty
region to which rectangles can be added WitmionRectWithRegion() and various othefunctions that perform
mathematical operations on regioK€reateRegion() = andXPolygonRegion() return a pointer to the opaque typs
Region , whose definition a program does not need to know. Just the pointer is used to refer to the region.
XPolygonRegion() creates a region of the same shapélrmwLines() would draw given the same arguments
(except thakPolygonRegion() does not require a drawable or a GC and therefore interprets the lines as thin line
specifies a list of points and has a flag that indicates whether areas overlapping an odd number of times should be
or not included in the region (just like tFig rule in the GC).

Each region is implemented as a group of nonoverlapping rectangles. Therefore, performance will be best if the re
you use have sides parallel to the coordinate axes. Nonetheless, nonrectangular regions can be created with
XPolygonRegion()

A region is destroyed witKDestroyRegion() . The best wayto clear a region is to destroy it and create a new one

XClipBox() returns the size and position of the smallesttangle that completely encloses the given region. This
function returns aXRectangle structure that contains the coordinatefsthe upper-left corner and the width and heig
of the rectangle enclosing a region.

6.3.1 Moving and Resizing Regions

XOffsetRegion() changes the offset of the specified reglmnthe number of pixels specified by its argumeaixs
anddy. XShrinkRegion() reduces the size of thgiven region by the number of pixels specifieddsyanddy, with
positive values indicating that the region is to be increased inXE&BrinkRegion() also modifies the offset of the
region to keep the center of the region near its original position.

6.3.2 Computations with Regions
Several functions are available to combine two regions in various ways. Each function takes three regions as argu
two operands and a region in which to place the result.

XlntersectRegion()
Computes the intersection (overlapping area) of two regions.

XUnionRegion()
Computes the union (total of both areas) of two regions.

XSubtractRegion()
Subtracts two regions. The result is the region listed first minus the intersection of the two reg

XXorRegion() Computes the difference between the union and the intersection of two regions.

XUnionRectWithRegion()
Computes the union of a rectangle and region and sets the region to the result.

6.3.3 Returning Region Information
This group of region functions makes logical determinations about regions. All of these routines return nonzero if t|
conditions are satisfied.
XEmptyRegion()
Determines whether there is any area in the specified region.
XEqualRegion()
Determines whether two regions have the same offset, size, and shape.

XPointinRegion()
Determines whether a specified point resides in a region.

XRectInRegion()
Determines whether a rectangle specifieckby, width , andheight occurs completely inside,
completely outside, or overlapping a given region. It retRestangleln if the rectangle is
completely inside the regioRectanglePart if the rectangle overlaps the edge of a region, an
RectangleOut if the rectangle and the region are nonintersecting.

6.4 Images

Xlib provides an image structure that is capable of storing all the data corresponding to a screen area or pixmap. 1
difference between an image and a pixmap is that an image is a structure on the client side, so its contents can be
manipulated directly by the client, instead of solely through X protocol requests. Xlib provides the routines
XGetlmage() andXPutimage() that use the X protocol to transfer the contents of a window or pixmap into an i
structure and to write the contents of an image structure back into a window or pixmap.

Xlib provides a few minimal routines for manipulating image structures, including routines to create and initialize ar
empty image structure, destroy an image structure, get a pixel, set a pixel, extract a subimage of an image, and ad
constant value to all pixels in an image. These routines can be relatively slow, because they change the byte— anc
bit—order of the image before performing the operation and then change it back before placing it back in the image.
However, in some implementations of Xlib, optimized versions of these routines will automatically be used when th
and bit-order used by the server happens to be the same as that used by the machine running the client. This shc
quite fast but is not always available.

The image—processing routines provided by Xlib are minimal--they do not provide a complete image manipulation
package. However, the image structure does contain all the information necessary to implement a complete packe
application can implement its own routines to manipulate the image data directly. However, this code is difficult to
in a portable and efficient fashion because of the large number of data formats that are possible.

Anyone thinking of trying to write their own routines to manipulate images should get access to the Xlib code that manipulates images. This co
make you think again.

XGetlmage() returns data that uses the byte— and bit—order of the server. The application will need to swap this
native byte— and bit—order before doing image proces¥iRgtimage() takes care of swapping it back before sending
it to the server, so that the application need not convert the data back to the server—native byte— and bit—order. Hc
XPutlmage() does not convert images of different depths.

TheXImage data structure is shown in Example 6-9.

Example 6-9. The XImage structure
struct _Xlmage {

int width, height; /* Size of image */
int xoffset; /* Number of pixels offset in
* x direction */
int format; [* XYBitmap, XYPixmap, ZPixmap */
char *data; [* Pointer to image data */
int byte_order; /* Data byte order, LSBFirst,
* MSBFirst */
int bitmap_unit; /* Quantity of scan line 8, 16, 32 */
int bitmap_bit_order; /* LSBFirst, MSBFirst */
int bitmap_pad; /* 8, 16, 32 either XY or Z format */
int depth; /* Depth of image */
int bytes_per_line; /* Accelerator to next line */
int bits_per_pixel, [* Bits per pixel (ZPixmap format) */

unsigned long red_mask; /* Bits in z arrangement */
unsigned long green_mask;
unsigned long blue_mask;

char *obdata; /* Hook for the object routines to
* hang on */
struct funcs { /* Image manipulation routines */

struct _Xlmage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _Xlmage *(*sub_image)();
int (*add_pixel)();
H
} XImage;

The function pointers in the image object allow Xlib implementors to replace MIT’s generic functions with functions
optimized for the byte— and bit—order used in the machine that is running Xlib.

. Theheight , width , andxoffset are set when an image is created. The offset is used to align an image to
even—addressable boundaries.

. Theformat member may bXYBitmap , XYPixmap, or ZPixmap .
In XYBitmap , the bitmap is represented in scan line order, with each scan line made up of multiples of the
bitmap_unit and padded with meaningless bits. Within daitthap_unit , the bit order depends on
bitmap_bit_order
In XYPixmap, each plane is represented as a bitmap, and the planes appear in most significant to least signi
order, with no padding between planes.
In ZPixmap , the pixels (instead of bits) are listed in scan line order. Each pixblthaper_pixel bits, and
the bits in the pixel that are allocated to red, green, and bliratColor andTrueColor are specified by
red_mask , blue_mask , andgreen_mask . SeeChapter 7, "Color," for more information on these masks. At
the end of each scan line, a pad is used as¥fBitmap .

. Thebyte_order is the data byte order, eithe8BFirst orMSBFirst . Thebitmap_bit_order is the bit
order within each byte, again eitie8BFirst orMSBFirst . Thebitmap_unit specifies how many bits make
up a unit of image data (usually the same as the word size), and it 8ahtheor 32. Together, these members
determine the exact arrangement of bits in memory. Figure 6—6 shows the effect of thebyéeiowsler and
bit_order = combinations assumingbétmap_unit of 16. VAXes and 80*86 systems ubgte_order of

LSBFirst , while 68000—family systems uséSBFirst . Note that with these three variables alone there are 12
different data formats. THenageByteOrder() andBitmapBitOrder() macros return which byte order ant
bit order is used by the server.

. Thebitmap_pad member can b8, 16, or32, and it specifies the quantum of the scan line. In other words, th
start of one scan line and the start of the next are separated by an integer multiple of this number.

. Thedepth of an image is assigned as the image is created. The depth of a window from which image data is
must match this depth.

. Thebytes_per_line member specifies how many bytes make up a scan line.

. Thebits_per_pixel member is foZPixmap images only. This member of témage structure must match
the member of the same name in 8weenFormat structure (itself a member Bisplay).

. Thered_mask , green_mask , andblue_mask members are faZPixmap only and specify the number of bits
in the pixel that are allocated to red, green, and blue. This implies that the viBirati€olor or TrueColor
SeeChapter 7, "Color " for more information.

Figure 6-6. Bit and byte order possibilities for images when bitmap_unit = 16

Pixeld 0 1 2 3 d & & T £ 10 11 12 13 14 15
byte_nrder = L8AFirs#t, bitmap bit order = LSEFirst

byte] 1

bit] 1 2 3 d & & T £ 10 11 12 13 14 15
byte_nrder = L8AFirst, bitmap bit order = M3EFirst

byte] 1

bit T & & d 3 2 1 o 1% 14 13 12 11 10 & £
byte_nrder = ¥SAFirszt, bitmap bit order = LEFirst

byte] 1

bit £ 10 11 12 13 14 15] 1 2 3 d & & T
byte order = M3BFirst, bitmap bit order = M3BFirst

byte] 1

bit 15 14 13 12 11 10] g 7 & & d 3 2 1]

6.4.1 Manipulating Images
These are the available functions that operate on images:

XCreatelmage()
Allocates memory for aklmage structure and sets various members. Note that it uses the sen
data format, which is often not appropriate. The byte— and bit-order fields should usually be
changed directly to the client-native format. However, then the call
_XlnitimageFuncPtrs(image) should be issued to reset the mapping to the appropriate
versions of the functions for manipulating the image. This call is supposed to be private to Xlit
therefore, should be watched for changes in later releases, but this is currently the accepted nr

XGetlmage() Fills anXIlmage structure with data corresponding to a visible area of the screen or a pixmap.
XPutlmage() Dumps arKimage structure with data into an area of a window or a pixmap.
XDestroylmage()

Frees the data field in an image structure if the image structure was allocated in the applicatiol

the image was created usiK@reatelmage() , XGetlmage() , or XGetSublmage() |,
XDestroylmage() frees both the data and the image structure. Note that if the image data is
stored in static memory in the application, it cannot be freed——to free an image created with
XCreatelmage() that has statically allocated data, you musiiéi L into thedata field before
calling XDestroylmage()

XGetPixel() Gets a single pixel value specified by an x,y location from an image.

XPutPixel() Puts a single pixel value into an image in a specified location.

XAddPixel() Increments each pixel in a pixmap by a constant value.

XSublmage() Creates a new image that is a subset of an existing image. It ex¢Cotatelmage() and then

performs multiple executionsf XGetPixel() = andXPutPixel() , so it may be slow.

XGetSublmage()
Creates an image from a subsection of a drawable.

Functions to read and write images to and from disk files have not yet been defined by the X Consortium.

Example 6—10demonstrates the use of images. \&@eme Two, Xlib Reference Manufar more information on the
image—handling functions.

6.4.2 Examples Using Images

Images are one of the areas of X that has not yet been extensively used. Therefore, there are few examples avail:
use images to their potential.

The unique feature of images is that all the data is stored and is directly accessible in Xlib, rather than in the servel
Pixmap andWindow resources. Since images completely represent a screen area, you can do anything you want
of the pixel values in the image. Applications like image processing and machine vision would probably use image

Example 6-10shows a routine using images. This routine reads an image from the screen, manipulates it, and pul
reflected version of the contents in a new window of the same size. X@s#lsnage() , XPutimage() , and
XPutPixel()

Example 6-10. Example using images —— reflect_window
/* Window and newwindow must have the same size and depth,
* and window must be visible */
reflect_window (window, newwindow, gc, width, height)
Window window, newwindow;
GC gc;
unsigned int width, height;
{
Xlmage *xi;
unsigned long pixelvaluel, pixelvalue2;
inty;
int left_x, right_x;
xi = XGetlmage(display, window, 0,0, width, height, AllPlanes,
XYPixmap);

printf("calculating reflection —— this may take awhile...\n");
for (left_x=0 ; left_x<width/2 ; left_x++)

{

for (y=0 ; y<height ; y++)

{

pixelvaluel = XGetPixel(xi, left_x, y);
right_x = width — left_x;
if (left_x != right_x)
{
pixelvalue2 = XGetPixel(xi, right_x, y);
XPutPixel(xi, left_x, y, pixelvalue2);
}

XPutPixel(xi, right_x, y, pixelvaluel);
}
}
printf("putting image\n");
XPutlmage(display, newwindow, gc, xi, 0, 0, 0, 0, width, height);
}

With sufficient understanding of the format of image data, this routine could be rewritten WiGetRixel() and
XPutPixel() , which would speed it up substantially. However, there would have to be separate code for the mai
different image formats to make the code as portable as the version shown.

6.5 Cursors

The cursor is different from other types of output to the screen since it is transient, passing over the screen without
permanently changing it. The cursor is drawn where the pointer is pointing and removed as soon as the pointer m

Each window can have a different cursor defined in its window attributes BiefineCursor()). Whenever the
pointer is in a visible window, the cursor is set to the cursor defined for that window. If no cursor was defined for th
window, the cursor will be the one that was defined for the parent window unless otherwise specified in the attribut:

From X's perspective, a cursor consists of a cursor shape, mask, foreground and background colors, and hotspot (
a moment):

. The cursor bitmap determines the shape of the cursor.
. The mask bitmap determines the pixels on the screen that will be modified by the cursor.

. The pixel values determine the foreground color (the 1 bits in the cursor bitmap) and the background color (tt
in the cursor bitmap).

. Thehotspotdefines the point on the cursor that will be reported when a pointer event occurs. The hotspot is t
actual tracking position——for example, the center for a crosshair cursor or the point of an arrow.

There usually are limitations imposed by the hardware on cursors as to size, shape, and whether a mask is implerr
XQueryBestCursor() is used to find out what sizes are possible.

You need to create@ursor resource to caKDefineCursor() . Read on for a description of the various ways to
create cursors.

6.5.1 The Standard Cursor Font

Many popular cursor shapes are provided in the standard cursorXddfcarsorfont.k. Each of these cursor shapes ca
be turned into &ursor resource usinCreateFontCursor() . Example 6—-11demonstrates this process.

The cursor font is shown in AppendixTihe Cursor Fontof Volume Two, Xlib Reference Manuahd on the reference
page forXCreateFontCursor() in Volume Two. Each of these cursors uses two characters in the cursor font, ol
one of which is shown. One determines the shape of the cursor, and the other is a mask which selects which pixel
screen are disturbed by the cursor. The mask for each standard cursor is very similar to the shape for that cursor |
pixel wider in all directions. This means that when the cursor is black and over a black background, this one pixel «
of the cursor will appear in white around the cursor, making the cursor visible over any background.

Example 6-11. Creating a Cursor from the standard cursor font
#include <X11/cursorfont.h>

int cursor_shape = XC_arrow;

Window window;

Cursor cursor;

cursor = XCreateFontCursor(display, cursor_shape);
XDefineCursor(display, window, cursor);

/* Now cursor will appear when pointer is in window */

If your client is operating on a color screen and it allows the user to specify window background colors, it may also
the user to specify cursor colors, since this could improve contrast between the window background and cursor. T
pixel values may be specified in the calls<@reateGlyphCursor() andXCreatePixmapCursor() , or
XRecolorCursor() may be called for an existing cursor.

XCreateGlyphCursor() allows you to do the same thing as is done with the standard cursors but using font
characters you specify from any font. The hotspot of these cursors and those cré&eshiy-ontCursor() is the
origin of each font character (just as if it were text). Usually the hotspot is placed in a logical location, but it is not pt
to determine where the hotspot is from within the program or to change its location.

XCreatePixmapCursor() allows you to create a cursdrom shape and mask pixmaps and foreground and
background pixel values, with an explicit hotspgQueryBestCursor() should be called to determine the allowed
cursor sizes before preparing the pixmaps.

You can free the cursor witkFreeCursor() right after the XDefineCursor() call if no further explicit references
to it are made.

6.5.2 Creating a Pixmap Cursor

If no cursor in the standard cursor font meets your needs, you can design one of your own. It should be 16 by 16
since some servers may not be able to handle other sizes efficiently. You can design the shape of the cursor with ¢
bitmap editing tool such as thémapprogram. You will also have to design a mask. To see the purpose of the masl
move the cursor on your X screen over various backgrounds (highlight some text if necessary to get a different
background). The mask provides an outline around the cursor so that the cursor is visible over any background. T!
the design of the mask is typically similar to the cursor shape but simpler and more dense. The outline of the masl
extends one pixel more in every direction than the cursor shpee 6—7 shows a shape and its corresponding mask,
an example of their relationship.

Figure 6-7. A cursor shape pixmap and corresponding mask

curaor shape Gursar mask

Example 6—-12demonstrates the code for creating your own cursor.

Example 6-12. Creating a Pixmap Cursor

#include "bill* /* shape bits */

#include "mask” /* mask bits */

Pixmap shape, mask;

XColor magenta_def, bviolet_def;

[* shape and mask are single plane pixmaps */

shape = XCreatePixmapFromBitmapData(display, root_window,
bill_bits, bill_width, bill_height, 1, 0, 1);

mask = XCreatePixmapFromBitmapData(display, root_window,
mask_bits, mask_width, mask_height, 1, 0, 1);

XParseColor(display, colormap, "magenta”, &magenta_def);

XParseColor(display, colormap, "BlueViolet", &bviolet_def);

[* colors are applied when making the cursor, not when making

* the shape and mask pixmaps */

cursor = XCreatePixmapCursor(display, shape, mask, &magenta_def,
&bviolet_def, bill_x_hot, bill_y hot);

XDefineCursor(display, window, cursor);

6.5.3 Loading and Changing Cursors
The following routines are used to manipulate cursors:

XCreateFontCursor()
Creates a cursor from the font of standard cursors. This is the easiest way to create a cursor.

XCreateGlyphCursor()
Creates a cursor from a font character (glyph) and a mask.

XCreatePixmapCursor()
Creates a cursor from pixmap data.

XDefineCursor()
Associates a cursor with a window, so that the specified cursor is displayed in the window whe
the pointer is in the window.

XUndefineCursor()
ReversexDefineCursor() , S0 that the window uses the cursor assigned to its parent.

XFreeCursor() Frees memory associated with a cursor.

XQueryBestCursor()
Returns the supported cursor sizes on the given display.

XRecolorCursor()
Changes the foreground and background color of a cursor.

SeeVolume Two, Xlib Reference Manufalr more information on these routines.

Chapter 7

Color

This chapter describes how to use color in your programs. Color handling in X can be more complex than in other
graphics systems because of the need for portability to many different types of displays. Certain advanced topics ir
handling are still poorly defined in the X standard. This chapter starts with the basics, which everyone working witt
should read, and gradually moves to more advanced topics, including R5 device-independent color. Pick and cho
the later sections as appropriate.

A typical X application allows the user to specify colors for the background and border of each of its windows, colol
the cursor, and foreground and background colors to be set in GCs for drawing text and graphics. More complex
applications (such as Computer Aided Design (CAD) applications) might use color to distinguish physical or logical
Still more complex applications, such as in imaging, might use fine gradations of color to represent real-world data
discussing the background and border window attributes and how to set the foreground and background members
GC, we have spoken only of pixel values.

How are these pixel values translated to colors? And how must an X client manage color if it is to run successfully
wide variety of screen hardware available in the X environment?

Because X must support a wide variety of systems with differing screen hardware, the Xlib color-handling mechan
fairly complex. Even programmers who have previously written color graphics applications will find there are some
concepts to learn.

This chapter starts out by describing the different types of screens that an X application may run on and the meche

Xlib provides for determining the screen type. It then describes the simplest color—allocation mechanisms, which ¢
used by applications whose principal use of color is for decoration. It proceeds to discuss more complex color app
and concludes with a section on writing applications that will be portable across different types of color and monocl
screens.

7.1 Basic Color Terms and Concepts

Most color screens on the market today are based on the RGB color model. Each pixel on the screen is actually i
three phosphors: one red, one green, and one blue. Each of these three phosphors is sensitive to a separate elec
When all three phosphors are fully illuminated, the pixel appears white to the human eye. When all three are dark,
pixel appears black. When the illumination of each primary color varies, the three phosphors generate an additive
that might seem surprising. For example, equal portions of red and green, with no admixture of blue, make yellow.
people are more familiar with subtractive color mixing, used in paints, where red, yellow, and blue are the three pril
colors from which all other colors (except white and shades of gray) can be made.

You, no doubt, know that a color screen uses multiple bits per pixel (also referred to as multiple planes) to specify «
A colormapis used to translate each pixel’s value into the visible colors you see on the screen.

A colormap is no more than a lookup table stored in the server. Any given pixel value is used as an index into this
table——for example, a pixel value of 16 will select the sixteenth elemett|acell

On the most common type of color system, each colorcell contains separate 16-bit intensity values for each of the
primary colors.

As shown in Figure 7-1, a pixel value uniquely identifies a particular colorcell. Each pixel value in the visible portic
a window is continuously read out of screen memory and looked up in the colormap. The RGB values in the speci
colorcell control the intensity of the three primary colors and thus determine the color that is displayed at that point
screen.

Figure 7-1. Pixel value to RGB mapping with the colormap on a color screen

Colormap
0 = Qraan
Frame Buler 16T B = Blus

15
14
13
A Fizel Yalue 12
11
10

gl o | |285

L= - R - B R L -

The range of colors possible on the screen is a function of the number of bits available in the colormap for RGB
specification. If eight bits is available for each primary, then the range of possible colors (@B66t 16 million colors).

However, the number of different colors that can be displayed on the screen at any one time is a function of the nu
planes. A 4-plane system could indek@lorcells (16 distinct colors); an 8—plane system could indesoforcells (256
distinct colors); and a 24—plane system could indédlorcells (over 16 million distinct colors).

A client attempting to use color does specifya pixel value and the color to be put in that cell in order to draw in a gi\
color. Instead, it requests access to a colorcell in a colormap (managed by the serveetamdda pixel value. This is
calledallocating a color. When a client allocates a color, it asks the server, "Which colorcell can | use?" and the sel
responds by saying, "You can use the colorcell specified by this pixel value." There are three basic functions that a
colors, which are described in detail and demonstrated in later sections in this chapter.

7.2 Color Naming and Specification

The following sections describe the various ways to specify what color you want. In programs that use color only fi
decoration, the programmer simply chooses default colors, and allows the user to override them with resources.

7.2.1 The Server—side Color Name Database

In order to simplify color specification and to promote sharing of colors, the X server provides a color database that
translates string color names into RGB values. Mainly this is a user convenience, since it is easy to specify "yellow
to figure out the RGB values for yellow. But it also encourages colorcell sharing. As described above, sharing of
colorcells can happen only if two clients allocate a read—only cell with the exact same RGB values. If both clients ¢
a color specified by one of the 300-o0dd string names, there is a much better chance of them selecting the exact se
values and thereby sharing a cell than if they use one offhpdasible combinations of RGB values.

Because of differences in screen hardware, the same RGB values may generate quite different colors on different
Therefore, server implementors were intended to change the RGB values corresponding to each color name to ma
that the appropriate color appears on their screen. This is galletha correction By using namesrom this database,
you are more sure of getting a color close to the one you request. If the server implementor has not provided a
gamma-—corrected color database, there is no way a program can tell exactly what color is being displayed even wl
knows the RGB values. This problem is solved with the X Color Management System, or Xcms, which was introdu
Release 5. Xcms provides a client-side color database, and supports device—independent color specification. In F
name strings are looked up first with the client-side color database, and if not found then on the server database.

It is also important to note that the color names are not specified by the X11 protocol or Xlib. Therefore, server
implementors may change them, but more often, they will simply add to the list. (Note that some servers allow usel
customize this file. For more information, 3és@lume Three, X Window System User’s Gliide

Table 7-1 shows some of the color names and corresponding RGB values in the default color database. The com
database is extensive and is shown in AppendikH®, Server—side Color Databgsef Volume Two, Xlib Reference
Manual The text version of this database in the standard distribution on a UNIX-based system is in the file
lusr/lib/X11/rgb.txt The server reads a compiled version of it.

The color names in the color database are strings in which each character uses the ISO Latin—-1 encoding. The IS
(International Standards Organization) Latin—1 encoding is used by virtually all workstations manufacturers. What
means is that the first 127 character codes correspond to 7-bit ASCII and are the normal English characters that a
U.S. keyboards. But ISO characters are 8-bit, and the characters from 128 to 255 are used for characters with aci
other variations, necessary for other Western languages.

Server vendors should be able to supply a color database file for each foreign language. The RGB values would b
same, but the names would be different. In the English file, the entry for green is encoded with the ISO character ¢
103 (g), 114 (r), 101 (e), 101 (e), 110 (n). In German, the same entry wouldgbérfaencoded with the ISO codes 103
(9), 114 (r), 252 (u), 110 (n). In a workstation configured for German, there will be an easy wayiito type

Note that keysyms also use the ISO Latin—1 standard, as sh@tmapter 8, "Events."

English Words Red Green Blue

aguamarine 112 219 147
black 0 0 0
blue 0 0 255
blue violet 159 95 159
brown 165 42 42
cadet blue 95 159 159
coral 255 127 0
cornflower blue 66 66 111
cyan 0 255 255
light gray 168 168 168
light grey 168 168 168
light steel blue 143 143 188
lime green 50 204 50
magenta 255 0 255
maroon 142 35 107
medium aquamarine 50 204 153

Table 7-1 Sample from the Server-side Color Database*

Also defined are the color names "gray0" through "gray100", spelled with an "e" or an "a". "gray0" is black and "gr:
is white. See Appendix Ohe Server—side Color Databasef Volume Two, Xlib Reference Manufar a listing of the
complete sample database.

7.2.2 Xcms Color Specification

In X11R5, a new string syntax is supported. It allows you to specify colors using device—independent color spaces
using RGB values. We'll show you the form of these specifications here, then return to an explanation of the color ¢
in Section 7.9, "Device-independent Color and Xcms."

A device—-dependent RGB value is represented as follows:
RGB:<red >/< green >/< blue >

where sed>, <greerr, and blue> are each between 1 and 4 hexadecimal digits. Different primaries may be specifie
with different numbers of digits. If fewer than 4 digits are specified, they do not simply represent the most significa
of the value; instead they represent a fraction of the maximum value. So the single digit 0XA does not mean 0xAQ00
10/15ths of OXFFFF, or OXAAAA.

X11R5 supports an additional device—dependent color space, called RGBI, in which each red, green,iated®&iue
valueis replaced with a floating—poiimtensitybetween 0.0 and 1.0. In this model, the range of possible color values
simply mapped onto the real numbers between zero and one. So, for example, 0.5 always represents half intensit
color. Note that these values represent the physical intensity of a color, which is not linearly proportional to the pet
intensity of that color. A color specification for RGBi has the following form:

RGBi:< red >/< green >/< blue >

where sed>, <greerr, and blue> are floating—point numbers between 0.0 and 1.0, inclusive.

Device-independent color specifications follow the same syntax——a color space name followed by a colon and
slash—-separated color space values. The following forms are recognized:

CIEXYZ:< X>/< Y>/< Z>
CIEuvY:< u>/< v>/< Y>
CIExyY:< x>/< y>/< Y>
CIELab:< L>/< a>/< b>
CIELuv:i< L>/< u>/<v>
TekHVC:<H>/< V>/< &

CIEXYZ and the each of the other five strings listed here are the names of color spaces, most of them internationa
standards. Each of the values in these device-independent color spaces is a floating—point number. Note that diffi
color spaces have different ranges of legal values for each parameter. For examglardhgeter of the CIEuvY color

space must have a value between 0.0 and approximately 0.6, whig@énameter of the TekHVC color space represent

an angle and thus varies between 0.0 and 360.0. Also, the valid values for one parameter often depend on the val
others. In general, you will need to be familiar with the colorimetric theory behind a particular color space before
attempting to specify colors in that space.

Example 7-1shows this new style of color specification used in a resource file. Notice that color space names are
case-insensitive.

Example 7-1. Specifying device—independent colors from a resource file
*Background: TekHVC:72.0/50.0/44.0

*Command.background: CIELab:75.0/.38/.71

*quit_button.background: rghi:1.0/0.0/0.0

7.2.3 The Client-side Color Name Database

Support for device—independent colors in X11R5 is, by design, kept entirely on the client side. The X protocol and
server still use device-dependent RGB colors exclusively, so it is not possible to use the new device-independent
specifications in the color name database read by the server. Because it is sometimes useful to give symbolic han
device-independent colors, X11R5 supports a client-side color database that maps names to device—independent
device—-dependent color specifications.

Note that while X11R5 supports such a color database, the MIT release does not provide one, other than as an exi
system administrators or users who want to define one of their own. The client-side color database should be thot
a place for site—specific customizations, and useful, if non—standard, shortcuts for naming colors in user resource f
particular, since the contents of the database are not standardized, application defaults files should not rely on any
particular colors to be in the database.

X clients (on most UNIX systems) look for the client-side database in tHediléb/X11/Xcms.txby default, but the

MIT sample implementation allows a different file to be specified with the XCMSDB environment variable. The forr
the database is implementation—dependexample 7-2shows an example database in the format supported by the v
distribution.

Example 7-2. Example entries from a client color database
XCMS_COLORDB_START 0.1

devicered RGBi:1.0/0/0

device blue RGB:00/00/ff

navy blue CIEXYZ:0.0671/0.0337/0.3130
grayO CIELab:0.0/0.0/0.0

gray50 CIELuv:50.0/0.0/0.0

grey100 TekHVC:0.0/100.0/0.0

rouge red

roja rouge

XCMS_COLORDB_END

Note that any device—dependent or device—independent color format may be used, and ti&tsasare allowed to
provide alternate names for colors defined elsewhere in the client database or even in the server database. Color
may contain spaces, and the tab character is used to separate color names from color specifications. The first and
shown in the example are required before the first and after the last entry of the database. Any text before the first
shown in the example is treated as a comment. Comments may not appear elsewhere in the file.

When the functionXAllocNamedColor() , XLookupColor() , XParseColor() , XStoreNamedColor() , or
their device-independent Xcms analogs are passed a color string, they first attempt to parse it as a new-style spe:
for one of the supported color spaces. If this fails, they attempt to look up the color in the client-side color name d;
If both approaches fail, they fall back on the pre-X11R5 behavior and attempt to parse the string in the old-style ni
format or pass the string to the X server to be looked up in the server database. Because the new X11R5 formats
supported by the pre-X11R5 Xlib functions, all X Toolkit widgets and type converters will work correctly with
device-independent color specifications without change.

7.2.4 Hexadecimal Color Specification
It is also possible to specify colors using a hexadecimal string, although this is discouraged as of Release 5.

The hexadecimal form of color specification is necessary in R4 for the user to be able to specify an exact color, not
rough approximation allowed by an string name. The hexadecimal specification must be in one of the following for

#RGB (4 bits each of red, green, and blue)
#RRGGBB (8 bits each of red, green, and blue)
#RRRGGGBBB (12 hits each of red, green, and blue)
#RRRRGGGGBBBB (16 bits each of red, green, and blue)

Each of the letters represents a hexadecimal digit. In the shorter formats, the specified values are interpreted as tt
significant bits of a 16—bit value. For exampt8a7 and#3000a0007000 are equivalent.

Use of hexadecimal color specifications does not preclude colorcell sharing, since the user could specify the same
hexadecimal value for the color for two or more clients. However, it probably tends to make sharing less likely, sin
window manager might allocate all the colors in the color database as read-only cells, and then any client that use
hexadecimal specifications will probably be allocating a separate cell instead of sharing.

7.3 Differences in Display Hardware

The description of color mapping given in the previous section was actually somewhat over-simplified. There are
significant differences in how the colormap is used on mid-range color screens, monochrome and gray—scale scre
high performance color screens. Color handling in X was designed to work with any of these hardware types.

7.3.1 Mid-range Color Displays

The most common type of color screen has between four and eight planes and uses the colormap indexing technic
described above. This type of screen is so widespread because it provides a flexible color system while being moc
priced. The mapping of pixel values to colorcells, with arbitrary RGB values stored in each colorcell, allows a very
range of possible colors, even though a more limited number can be shown on the screen at any one time.

Mid-range color screens usually have only one hardware colormap. In other words, the pixel values in all the wind:
the screen are mapped to colors using the same colormap. On most of these systems, however, the color in any ¢
the hardware colormap can be individually changed, and therefore, the entire colormap can be replaced with a nev
values. X provides the concept of thigual colormap so that more than one set of colorcells can be maintained, ever
though only one of them can be in use at a time. Virtual colormaps are swapped in and out of the hardware colorm
window manager. This makes it possible for an application that has special color needs to create its own virtual cc
which the window manager will load into the hardware colormap when that application is in use. However, since ol
hardware colormap is available and all applications share it, when any one application creates a new virtual colorm
the window manager installs it, all other applications will screen in false colors, since the pixel values they use now
to cells in the other client’s colormap. This is acceptable, since the window manager always installs the correct colc
for the application in use, but it is obviously not ideal. On high performance systems, described below, this probler
solved by having multiple hardware colormaps.

7.3.2 Monochrome and Gray Scale

Monochrome (black and white) screens have only a single plane of screen memory. Each pixel is made up of a sit
phosphor, which can be either on or off.

Gray-scale screens are sometimes used for publishing applications, since pixels made up of a single phosphor are
than those made up of three phosphors and the resolution is, therefore, better. As shown in Figure 7-2, a gray—sc:
works by looking up the intensity of the pixel in the colormap, which, for this screen type, contains only a single vall
This controls the intensity of a single electron beam. Gray scale can be simulated on a color screen by making the
green, and blue values equal in a given colorcell to determine the brightness of gray pixels on the screen.

Figure 7-2. Pixel value to RGB mapping —— gray scale and monochrome screens

Colormap

Frame Buffer T
15

14

14

A FPixel ¥alue 12

11
10

[+

200

Color Cell

O = M @ =Wt R o~ @

A gray-scale screen might have a read-only colormap, so that the gray levels in each cell could not be changed. .
monochrome screen is an example of this type; it is a single—plane screen with a two—element read—only colormay

7.3.3 High Performance Color Displays

As memory has become cheaper and applications more advanced, workstations with 24 planes and more have be
more common. With 24 bits per pixel, it is possible to screen every discernible color at the same time. This makes
possible to do smooth shading and other applications that use a large number of closely spaced colors.

The problem with having so many planes is that a colormap of the style used in mid-range color screens would be
impossibly large: it would contain over 16 million entries. Instead, the available bits per pixel are broken down intc
separate colormap indices, one for each primary color, as shown in Figure 7-3. This approach still allows the full r
colors to be generated but makes the job of loading the colormap much more manageable. This scheme requires
primary colormaps of only 256 entries each to specify all 16 million colors on a 24—plane system.

Figure 7-3. Pixel value to RGB mapping —— high performance color screens

Frame
Colama
Buffer P

R 4a B

Fiel 1E ™ T
Yalues 15
—44| 0
11
12
1
—-1 11 0

226

O = B L & [N OO0 ~4 DO

In high performance screens, having a read—only colormap makes just as much sense as having it read/write, beci
nearly every color imaginable can be simultaneously available. With a read—only colormap, there is a fixed relatior
between the pixel values used to select a color and the actual RGB values generated. This makes possible applic
want to calculate pixel values directly instead of having to calculate colors and then determine which pixel value re|
that color, as is necessary when the colormap is read/write.

In reality, most screens in this class let you use the color resources in either fashion, using virtual colormaps. Thet
one read-only virtual colormap and one read/write virtual colormap. However, unlike on mid-range color screen
hardware, most high performance color systems have multiple hardware colormaps, so that both virtual colormaps
installed and used at the same time. In fact, on many of these systems, each window can have its own virtual colo
installed in the hardware at the same time.

7.3.4 How X Describes Color Support with Visuals

A visual describes the characteristics of a virtual colormap that has been or can be created for use on a particular <
As used by Xlib, a visual is actually a pointer to a structure (of Wgeal) containing information about one way of
using a particular screen. A visual must be specified when creating a colormap or a window, and the same visual |
used in creating a window as is used to create the colormap to be used in that window.

Most windows inherit their parent’s visual, and windows will often share the root window’s visual, which is known a:
default visual. The default visual describes, naturally, the default colormap. If you create all your windows with
XCreateSimpleWindow() , you will be using the default visual and colormap.

TheVisual structure is intended to be opaque; programs are not supposed to access its contents. This is so that
implementors can change the structure without breaking existing clients. The procedure used to avoid accessing i
members is not all that cumbersome but is just beginning to come into use by application writers. Up to this point,
programmers have broken this rule. We will show you only the correct method here, since it adds only a few lines
application.

Even more existing applications have avoided visuals altogether and used @yahkDepth() or

DisplayPlanes() macros to attempt to determine whether the screen is monochrome or color. However, this dc
work in general, because it does not distinguish between gray-scale screens and color screens (both have more tt
plane). The only way to make this distinction is to get information about visuals.

Remember that a visual is only one way to use color on a particular screen. There may be a list of supported visuz
screen, with each visual describing a different depth and writeability ofdteemap. On a color system, there may be
both monochrome and color visuals available.

The correct method to get information about the visuals supported on a particular screen is to use
XMatchVisuallnfo() or XGetVisuallnfo() . These functions retukVisuallnfo structures that contain
information about the available visuals and are public so their fields can be safely accessed.

Theclass member ofXVisuallnfo contains a constant specifying one of six different visual classes,

Do not confusevisualclass withwindowclass. While both are represented in certain structures @88 member and both are set when a window
is created and cannot be changed, they are quite different. The window bRgHIOuUtput orlnputOnIy . The visual class is only part of
the overall visual, which is the way color is represented for a window.

corresponding to the basic ways of using a scr&rectColor , GrayScale , PseudoColor , StaticColor
StaticGray , or TrueColor

As summarized in Table 7-2, the visual classes distinguish between color or monochrome, whether the colormap i
read/write or read—-only, and whether a pixel value provides a single index to the colormap or is decomposed into s
indices for red, green, and blue values.

Colormap Type Read/Write Read—-only
Monochrome/Gray GrayScale StaticGray
Single Index for RG&B PseudoColor StaticColor
Decomposed Index for RG&B DirectColor TrueColor

Table 7-2 Comparison of Visual Classes

There may be more than one way of using color on a particular screen, and therefore, there may be more than one
supported visual. This is usually true of high—end workstations. There are ways to search through the available vi
select the one that most closely meets the needs of your application, as will be described later. Several visuals of t
class may be provided but at different depths. On high performance screens, it is possible to ccelimtbap as
read/write or as read—only. Both methods have certain advantages and would be used for different applications. 1
would be a separate visual for each of these ways of using the screen hardware. One of these visuals would be
TrueColor class and the oth&irectColor class. Some 24-plane screens allow the screen to be treated as twc
separate 12—plarfeseudoColor visuals. (This allows for "double-buffering," a technique useful for animation, or fo
storing distance data to simplify hidden line and plane calculations in 3—D applications.) In fact, on some advance(
workstations, you can use a different visual in each window.

Figure 7-4 schematically represents the visual classes that can theoretically be supported by each type of screen |
A screen that supports therectColor class can theoretically support any of the six visual classes. A screen that
supports théseudoColor visual class can suppdirayScale , PseudoColor , StaticColor , or StaticGray

visual classes. A screen that supportS3heyScale visual class can also suppStaticGray visual classes. The
three types of screen with read—only colormaps can only support visuals of their own class. But remember that jus
because a certain visual class can theoretically be supported by a certain screen hardware does not mean that the
implementors will decide to support that class.

Figure 7-4. Hierarchy of visual classes

* PgaudoColor canako mimk DirectColor, but only with 2 amal number of colorcells.

7.3.5 Shareability vs. Changeability

Notice thatDirectColor , GrayScale , andPseudoColor visuals have changeable colormaps,SiaticColor

StaticGray , andTrueColor have immutable colormaps. Within the changeable colormaps, it is possible to hav
types of colorcells: read-only and read/write. The color in a read-only cell is set once by one client and from then
be shared by any client but not changed. A read/write cell can have its color changed at any time by the client that
allocated it but cannot be shared by other clients. In immutable colormaps, you are limited to only read-only cells.

One advantage of immutable colormaps is that all the cells are read-only and can be shared between clients, so a
are available to every client. Immutable colormaps also make it possible to calculate pixel values from the colors d
without querying the server, since the mapping between pixel values and colors is predictable. This technique is n
for smooth shading and 3—-D rendering algorithms. As you will see, this is usually not possible with changeable
colormaps. The disadvantages of immutable colormaps are that there may not be the exact color you desire (if thel
small number of planes) and you cannot allocate read/write cells, so you cannot change a colorcell to change the ¢
existing pixels on the screen. To change a color, you have to redraw the graphics with a new pixel value.

In general, the advantage of changeable colormaps is that you can have both private read/write cells and shareabl
read—-only cells. That is whyseudoColor andDirectColor are the most useful visuals, when a screen supports
them.PseudoColor andDirectColor allow you to decide whether your client really needs read/write cells or
whether it can use read-only cells. Read-only usage is preferred, since these cells can be shared by all clients, w
means that the colormap is less likely to run out of free cells.

Try not to confuse the writeability of colormaps with the writeability of colorcells. A colorcell in a read/write colorme
can be allocated read/write or read—only. A colorcell in a read—only colormap can only be allocated read—only. A
changeable colormap could be made entirely read—only if the window manager or any other client allocates all ava
colorcells read—only.

The advantages of read/write colorcells, available only in changeable colormaps, are that your program can select
the color you want (as long as it is physically possible on the screen) and you can change the color at will, which in
changes the visible color of everything drawn with that pixel value if the colormap is currently installed. Although a
other client can also change the values in a read/write cell, it is a convention that only the client that allocated the ¢
should change its contents. Yownthat pixel value. Since most clients cannot be satisfied with having no control ov
their displayed colors, this pixel value is not shareable. That means that if several clients that use read/write colorc
running, all the colorcells might be used. Then some client will be forced to create its own colormap, with the nega
consequences describeddaction 7.10, "Creating and Installing Colormaps."

7.4 Allocating Shared Colors

Since free colorcells can quickly become a scarce resource when clients store private color values, simple clients t
mainly use color for decoration are encouraged always to allocate read—only colors, so that these colorcells can be
by other clients that allocate the same colors read-only.

The returned pixel value can be used to seb#nground_pixel or border_pixel attribute of a window or to set
theforeground orbackground member of a GC, which are used by drawing requests. Qlsgger 4, "Window
Attributes,” andChapter 5, "The Graphics Context," for more information.)

Read-only colorcells can be allocated with the following routines:

XAllocColor() Returns the index of the colorcell (a pixel value) that contains the RGB values that are request
that contains the closest RGB values physically possible on the siétemsAllocColor() is
the same except that colors are specified using Xcms syntax.

XAllocNamedColor()
Returns the index of the colorcell that contains the RGB values associated with a specified col
name from the string color name database or the closest RGB values physically possible on tt
screen. In R5XAllocNamedColor() accepts strings in Xcms syntax.
XcmsAllocNamedColor() is almost the same except with a different style of arguments.
XcmsAllocNamedColor() also is capable of returning a symbol describing the format found
the specified string.

By convention, clients allow the user to specify colors on the command line or in the resource database using a col
When the RGB values are chosen from the color database by specifying color name strings, sharing of read-only «
is much more likely than if colors are specified as raw RGB values or using hexadecimal specifications.

XParseColor() parses a color name string or a hexadecimal color specification string and returns RGB values.
be used withXAllocColor() or the routines that allocate read/write cells, which will be described later. For color
names, it gets the RGB values from the server’s color database juéAlikeNamedColor() . You may have noticed
that XAllocNamedColor() is very similar to the combination ¥ParseColor() andXAllocColor() . The
difference is slight:XAllocNamedColor() can interpret color names but not hexadecimal specifications——but
hexadecimal specifications are rarely made by users anyway. The two-routine combination is more often used be
allows you to separately report errors in parsing the color specified and allocating the colorcell.

UsingXQueryColor() andXQueryColors() you can findout what RGB values are in each colorcell. But there i
no way to determine whether a given cell is read—only or read/write. The only way to tell how many cells are currer
unallocated is to allocate N colors usk@llocColorCells() , using the maximum possible N initially, then reduce
until it succeeds(not recommended). A binary search is a faster way to find N.

A request to allocate a color may fail because there are no free colormap cells and, for read-only colorcells, becau
existing colorcell contains the closest color possible on the hardware to the exact color requested. Applications mt
allocate colors by trial and error. The routines that allocate colorcells alShatvss return values. If the call to allocate

colorcells returng-alse , the client may modify the arguments and try again. If repeated attempts fail, the client can
with BlackPixel andWhitePixel() or, if these colors arénadequate, create a new virtual colormap. An
application with picky color needs that cannot be satisfied can simply report to the user that its color needs cannot
and exit.

Note thatXAllocColor() works somewhat differently on dynamic visuals (sucRseudoColor) than it does on
static visuals (likestaticColor). On dynamic visuals, it fails if it is unable to allocate the exact RGB values reque
(i.e., if there are no free cells and no cells already allocated with the exact RGB values requested). On static visua
returns the cell with the closest RGB values. The algorithm used to determine "closest" is server—-dependent. The
this is that a program must be prepared<daliocColor() to fail.

7.4.1 The XColor Structure

Both XAllocColor() andXAllocNamedCaolor() (as well asother functions that manipulate colorcells) take as a
argument aiXColor structure. This structure is used to specify the desired RGB values, as well as to return the pi;
value.

TheXColor structure is shown in Example 7—-3. The information it contains closely matches the information in eac
of the colormap.

Example 7-3. The XColor structure

typedef struct {
unsigned long pixel; /* Pixel value */
unsigned short red, green, blue; /* RGB values */
char flags; /* DoRed, DoGreen, and/or
* DoBlue */
char pad; /* Unused; pads structure
* to even word boundary */
} XColor;

In XAllocColor() andXAllocNamedColor() , thepixel member returns the pixel value that will be used to se
the foreground or background pixel value in the GC or window attributesStbreColor() andXQueryColor() ,
which you will see later, thgixel member indicates which cell in the colormap is having its color set (read/write cel
only) or is having its RGB values queried.

Thered , green , andblue members are 16-bit values. Full brightness in a color is a value of 65535, half brightne
32767, and off is 0. (The server automatically scales these values if the hardware colormap includes fewer bits for
values.)

Theflags member of th&XColor structure is a bitwise OR of the symb8&lsRed, DoGreen, andDoBlue . These
flags are used to specify which of the red, green, and blue values should be read while changing the RGB values ii
read/write colorcell. How these are used is demonstrated in Example 7-4.

7.4.2 Code to Allocate Read-only Colors

As we have said, applications that have basic color needs should allocate read-only, shareable color cells. Examj
shows code to allocate a color specified using a name from the color name database. In this case, we have simply
hardcoded the color name strings. In a real application, you would hardcode the default color but allow user specifi
of the string, as is done masecal¢ described ilfChapter 14, "A Complete Application."

This routine useXMatchVisuallnfo() to determine whether color is supported on the screen. If any of the four
visual classes are supported, it proceeds to attempt to allocate read—only colors. Whenever anything fails or if colc
supported, the routine uses black and white. For some applications, this could be modified to allocate levels of gra
GrayScale visual class screens.

The code for all the examples in this chapter is in the example source in the ditesayin/color/ This example is
calledbasic.ra

Example 7-4. Allocating read—only colorcells
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xos.h>
#include <stdio.h>
extern Display *display;
extern int screen_num;
extern Screen *screen_ptr;
extern unsigned long foreground_pixel, background_pixel,
border_pixel;
extern char *progname;
#define MAX_COLORS 3
[* This is just so we can print the visual class intelligibly */
static char *visual_class][] = {
"StaticGray",
"GrayScale",
"StaticColor",
"PseudoColor",
"TrueColor",
"DirectColor"
h
get_colors()
{
int default_depth;
Visual *default_visual;
static char *name[] = {"Red", "Yellow", "Green"};
XColor exact_def;
Colormap default_cmap;
int ncolors = 0;
int colorsf]MAX_COLORS];
inti=5;
XVisuallnfo visual_info;

[* Try to allocate colors for PseudoColor, TrueColor,

* DirectColor, and StaticColor; use black and white

* for StaticGray and GrayScale */

default_depth = DefaultDepth(display, screen_num);

default_visual = DefaultVisual(display, screen_num);

default_ cmap = DefaultColormap(display, screen_num);

if (default_depth == 1) {
/* Must be StaticGray, use black and white */
border_pixel = BlackPixel(display, screen_num);
background_pixel = WhitePixel(display, screen_num);
foreground_pixel = BlackPixel(display, screen_num);
return(0);

}

while (IXMatchVisuallnfo(display, screen_num, default_depth,

[* visual class */i-—, &visual_info))

printf("%s: found a %s class visual at default depth.\n",
progname, visual_class[++i]);

if (i < StaticColor) { /* Color visual classes are 2t0 5 */
/* No color visual available at default depth;
* some applications might call XMatchVisuallnfo
* here to try for a GrayScale visual if they
* can use gray to advantage, before giving up
* and using black and white */

border_pixel = BlackPixel(display, screen_num);
background_pixel = WhitePixel(display, screen_num);
foreground_pixel = BlackPixel(display, screen_num);
return(0);
}
[* Otherwise, got a color visual at default depth */
[* The visual we found is not necessarily the default
* visual, and therefore it is not necessarily the one
* we used to create our window; however, we now know
* for sure that color is supported, so the following
* code will work (or fail in a controlled way) */
[* Let’s check just out of curiosity: */
if (visual_info.visual != default_visual)
{
printf("%s: %s class visual at default depth\n”,
progname, visual_classJi]);
printf("is not default visual! Continuing anyway...\n");
}
for (i=0;i < MAX_COLORS; i++) {
printf("allocating %s\n", namel[i]);
if ({XParseColor (display, default_cmap, name]i],
&exact_def)) {
fprintf(stderr, "%s: color name %s not in database”,
progname, nameli]);
exit(0);

printf("The RGB values from the database are %d, %d, %d\n",
exact_def.red, exact_def.green, exact_def.blue);
if (IXAllocColor(display, default_cmap, &exact_def)) {
fprintf(stderr, "%s: can't allocate color:\n",
progname);
fprintf(stderr, "All colorcells allocated and\n");
fprintf(stderr, "no matching cell found.\n");
exit(0);
}
printf("The RGB values actually allocated are %d, %d, %d\n",
exact_def.red, exact_def.green,
exact_def.blue);
colors[i] = exact_def.pixel,
ncolors++;

printf("%s: allocated %d read—only color cells\n",
progname, ncolors);

border_pixel = colors|[0];

background_pixel = colors[1];

foreground_pixel = colors[2];

return(1);

}

This code begins by setting variables to the default depth, viandlcolormap for later use. If the default depth is one,
then the application is displaying on a monochrome screen, and blacktatedare returned. Then the code calls
XMatchVisuallnfo() in a loop to look for a color visual at the default depth—-it is called up to four times, until a
color visual is found. If none is found, it again returns black and white, since this screen must suppdtayBcale
visual (at this depth, anyway). Some applications may wish to allocate grays in this branch. The rest of the code Ic
through the list of color names to be allocated, looks them up in the color database, and then allocates them. If eitl
lookup stage or the allocation stage fails for any color, the routine prints an error and exits. It could instead simply
back on black and white again; your choice.

As noted in the code, the visual found might not necessarily be the default visual. This does not always matter, be
any color visual is available, it is a good bet that the default visual is also color, and so colors can be allocated with
doing any further research. WiMatchVisuallnfo() , it is difficult to develop an algorithm that is guaranteed to
find the default visual. This is much easier WiBetVisuallnfo() , Which returns a list of available visual structures
that match a set of criteria you specify. If you pass no criteria, it simply returns the entire list of available visuals. \
then search through the list matchingrsial member of theXVisuallnfo structures to the default visual. This
will be demonstrated iBection 7.6, "Getting Complete Visual Information.”

TheXParseColor() call specifies a color name, and the RGB values corresponding to that name are returned frc
color database in the pass€dolor structure. This structure is then passedAdocColor() , and the pixel value
allocated is returned in thaxel field of the structure.

The same calls would be used to parse a hexadecimal color string. Pink could be specified in tiPaaé@olor()
as ‘#bc8f8f "instead of pink ". But, as we have said before, color names are preferred, because there is a better
that they will specify a color already allocated or later to be allocated by another client.

It is also possible to specify the desired RGB values explicitly. This is good for default colors because it saves a ca
XParseColor() , but on the other hand, you might not get a consistent color on all systems because you are byp:
the gamma correction implemented through the color database. Simply ded{@el@n structure and set ited ,

green , andblue members to the desired RGB values. Of course, these values can be specified as integers, hexa
values, or any other way that the C language allows. Then pass this struxtdhietcolor() . But remember, as we
have said, it is better to use color names when allocating read—only colorcells than to use any of these explicit RGl

7.4.3 Highlighting in Two Colors

It is easy to highlight graphics on a monochrome system. The simplest way is to set the G&Xiwthiogical function
and draw your graphics once to draw them and again to undraw them. You must grab the server between the dra
undrawing so that no other client changes the same pixels in between (by, for example, covering part of the area w
another window). On a monochrome system, this always changes white to black and black to white if you set the
foreground in the GC tt (setting it toBlackPixel() or WhitePixel() is not guaranteed to work on all systems,
because either may 9.

When drawing irBlackPixel() andwWhitePixel() on a color system, the color drawn by tBX¥xor operation is
random ifBlackPixel() or WhitePixel() are used for the foreground pixel value in the GC. This is because tr
is no restriction on which pixel valuglackPixel() andWhitePixel() can be on a server——they are not necessal
1 andO and not necessarily different by just one bit. For example, the pixel value drawn if the foreground pixel valt
the GC iBlackPixel() and the pixel value on the screembitePixel() isBlackPixel() XOR

WhitePixel() , which, unles8lackPixel() andWhitePixel() are different by only one bit, is a third pixel
value not allocated by this client. The colorcell identified by this pixel value might contain black, in which case the
operation would not change the screen.

The solution to this problem, which works on monochrome and color systems, is to set the foreground pixel value i
GC used in drawing witXxor to the exclusive OR @lackPixel() andwWhitePixel() or by setting the logical
function toGXinvert and using a plane mask which is the exclusive OR/lntePixel() andBlackPixel() . All
applications that highlight graphics drawrBlackPixel() andWhitePixel() on a color system should use one o
these two methods. The following example illustrates how this works using two arbitrarily chosen pixel values (whi
could beBlackPixel() andWhitePixel() or could be any two colors).

Let's assume that we draw in two pixel values, which we will@alfrl andcolor2 . The pixel values for these coulc
be:

color1 =11111111111111110000000000000000
color2 = 00000000111111111111111100000000

The pixel value we will use to draw is generated by taking the exclusive G#oof andcolor2
colorl XOR color2 =11111111000000001111111100000000

Now we set théoreground in the GC to this pixel value and thenction in the GC tdGXxor and draw. This
changes existing pixels that contairedorl tocolor2 and existing pixels that weoelor2 to colorl

foreground = 11111111000000001111111100000000
existing pixel (colorl) = 11111111111111110000000000000000
resulting pixel (color2) = 00000000111111111111111100000000

The other way to do this is to set thlane_mask in the GC tocolorl ~color2) and then use a logical function of
GXinvert . This is equally effective.

7.4.4 Choosing Default Colors

A client that uses color should allow the user to specify the colors either on the command line or in the resource da
or both. The resource manager (describe@hapter 13, "Managing User Preferences) can be used to merge these
preferences with the defaults of the program. However, the client needs to have reasonable default colors in case
does not specify any preferences.

Follow these guidelines for your application’s default colors:

Courtesy Oliver Jones, Apollo Computer.

. Use string color names for read-only colorcells if possible, since this maximizes the chance of sharing cells.
. Use colors with large contributions from two or all three primary colors——they light the screen more brightly.

. Avoid shades of pure blue-—the human eye is relatively insensitive to and unable to focus on images made c
blue light. Mix blue shades with white (white contains equal parts of all three primary colors).

. Remember that some users are color blind. Do not use the same intensity of green and red for "safe" and
"danger"—-use colors with differing intensity.

7.5 Allocating Private Colors

In colormaps of th&@seudoColor orTrueColor visual classes, a client can allocate read/write cells. Read/write
colorcells should be allocated when:

. The application draws something whose color must be changed dynamically without redrawing it. For examg
color mixing program, the palette must be drawn in colors that change frequently. If this were done with read
colors, cells would have to be allocated and freed frequently and the palette area redrawn with each new colc
However, with read/write colorcells, the steps of allocation and color setting are separate, so that the color of
already allocated cell can be changed at will. Anything drawn using the pixel value of this colorcell will chang
color immediately when the RGB values in the colorcell are changed.

. The application needs to overlay graphics on top of other graphics in such a way that the overlayed graphics
erased without disturbing the underlying graphics. For example, in a Computer Aided Design (CAD) package
chip design, it is often useful to overlay the various layers of a chip in different colors on the screen. When ol
the layers is removed, you want to avoid having to redraw all the underlying layers. How to do this by allocat
read/write cells will be described.

. The system has a huge colormap, and the application needs to set a large number of colorcells. The calls fo

manipulating read/write colorcells allow you to manipulate multiple cells per call, whereas with read—only cell:
are limited to one cell per call.

Note that read/write colorcell allocation never worksTomeColor or StaticColor visuals. Therefore, on systems
that only support these visuals, an application that uses read/write colorcells cannot work. Read/write colorcells sh
only be used when really needed.

XAllocColorCells() allocates read/write colorcells. At its simplest, it allows you to allocate read/write cells so
can change the RGB values dynamically.

But to simply allocate just a few cells, you setitieelors argument to the number of colorcells desiredrgridnes
to 0, and all the pixel values you need will be returned irpilkels array. The real reason for thglanes and
plane_masks arguments will become clear 8ection 7.5.2, "Allocating Read/Write Colorcells for Overlays.'The
RGB values of the allocated cells are set WigtoreColor() , XStoreColors() , or XStoreNamedColor()

XAllocColorPlanes() , on the other hand, is only used when you want to be able to vary a primary color compc
of graphics already drawn without redrawing them. It allocates read/write cells, so that a preset number of bits are
for each primary color. Primarily fairectColor , it also allows you to simulate a smaltectColor colormap on
aPseudoColor visual but uses up colorcells quickly. It treats the colormap as three separate lookup tables, alloc.
ncolors *2"€dS entries in the red lookup tablegolors * 2"97€€NS antries in the green lookup table, and

ncolors *2"MUeS entries in the blue lookup table.

The following routines are used to actually store colors into read/write colorcells once they are allocated:

XStoreColor() Changes the read/write colormap cell corresponding to the specified pixel value to the hardwa
color that most closely matches the RGB values specified.

Even when storing explicit RGB values, you may not get the precise color you specify. For example, if the hardware
colormap supports only four bits of intensity in each primary and you specify eight-bit values, the server will scale the
you provide to the closest possible equivalent on the hardware.

The flagsDoRed, DoGreen, andDoBlue in theXColor structure indicate which primary colors
in the cell are to be changettmsStoreColor() is similar but allows you to specify the color
string in Xcms syntax.

XStoreColors()
Like XStoreColor() , except it does multiple cells per call. Changes the read/write colormap
corresponding to the specified pixel value to the hardware color that most closely matches the
values specified. The flad®oRed, DoGreen, andDoBlue in eachXColor structure indicate
which primary colors in each cell are to be chaniethsStoreColors() is similar but allows
you to specify color strings in Xcms syntax.

XStoreNamedColor()
Performs the same function &toreColor() , except that it stores the RGB values associated
with a string color name in the RGB database. This call would be useful for loading a private
colormap with each of the default named colors. No Xcms equivalent, since this function acce
Xcms syntax (in R5 and later).

7.5.1 Allocating Read/Write Colorcells for Dynamic Colors

As described above, the simplest use of read/write colors is to allocate colorcells whose colors can by changed at
Example 7-6 is analogous to the code just shown to allocate read-only colors, except that it allocates read/write ct
instead. Note that it callAllocColorCells() with thencolors argument set to the number of colorcells desiret
andnplanes set to zero.

Example 7-5. Allocating read/write colorcells for dynamic colors
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xos.h>
#include <stdio.h>
extern Display *display;
extern int screen_num;
extern unsigned long foreground_pixel, background_pixel,
border_pixel;
#define MAX_COLORS 3
get_colors()
{
int default_depth;
Visual *default_visual,
static char *name[] = {"Red", "Yellow", "Green"};
XColor exact_defs[MAX_COLORS];
Colormap default_cmap;
int ncolors = MAX_COLORS;
int plane_masks[1];
int colorsfMAX_COLORS];

inti;
XVisuallnfo visual_info;
int class;
class = PseudoColor;
default_depth = DefaultDepth(display, screen_num);
default_visual = DefaultVisual(display, screen_num);
default_ cmap = DefaultColormap(display, screen_num);
if (default_depth == 1) {
/* Must be StaticGray, use black and white */
border_pixel = BlackPixel(display, screen_num);
background_pixel = WhitePixel(display, screen_num);
foreground_pixel = BlackPixel(display, screen_num);
return(0);
}
if ('XMatchVisuallnfo(display, screen_num, default_depth,
PseudoColor, &visual_info)) {
if ({XMatchVisuallnfo(display, screen_num, default_depth,
DirectColor, &visual_info)) {
/* No PseudoColor visual available at default_depth;

* some applications might try for a GrayScale

* visual here if they can use gray to advantage,

* before giving up and using black and white */
border_pixel = BlackPixel(display, screen_num);
background_pixel = WhitePixel(display, screen_num);
foreground_pixel = BlackPixel(display, screen_num);
return(0);

}
}

[* Got PseudoCaolor or DirectColor visual at default_depth */
[* The visual we found is not necessarily the default

* visual, and therefore it is not necessarily the one

* we used to create our window; however, we now know

* for sure that color is supported, so the following

* code will work (or fail in a controlled way) */

[* Allocate as many cells as we can */

ncolors = MAX_COLORS;

while (1) {
if (XAllocColorCells (display, default_cmap, False,
plane_masks, /* nplanes */0, colors, ncolors))
break;
ncolors—;

if (ncolors == 0)
fprintf(stderr, "basic: couldn't allocate read/write \
colors\n");
exit(0);
}
printf("basic: allocated %d read/write color cells\n", ncolors);
for (i=0; i < ncolors; i++) {
if (\XParseColor (display, default_cmap, name]i],
&exact_defs[i])) {
fprintf(stderr, "basic: color name %s not in database",
nameli]);
exit(0);
}
/* Set pixel value in struct to the allocated one */
exact_defs]i].pixel = colors]i];
exact_defs[i].flags = DoRed | DoGreen | DoBlue;

* This sets the color of read/write cell */

XStoreColors (display, default_cmap, exact_defs, ncolors);
border_pixel = colors|[0];

background_pixel = colors[1];

foreground_pixel = colors[2];

}

Themain that calls thigget_colors function, shown in Example 7-7 containsX@QueryColor() call that gets the
current RGB values in the colorcell (necessary beamase andget colors are in separate source files and the RGI
values used iget_colors are not global variables) and A&toreColor() call that changes the color of what is
drawn in the foreground pixel value every time you press a button in the window. In the example source, this appli
in the directonybasicwin/color/and is calledbasic.rw

Example 7-6. Main of basic.rw —— changing colors of dynamic colorcells

void main(argc, argv)
int argc;
char **argv;

{

XColor color;
unsigned short red, green, blue;

/* Open display, etc. */
color.pixel = foreground_pixel;
XQueryColor(display, DefaultColormap(display, screen_num),
&color);
printf("red is %d, green is %d, blue is %d\n", color.red,
color.green, color.blue);
while (1) {
XNextEvent(display, &report);
switch (report.type) {

case ButtonPress:

color.red += 5000;

color.green —= 5000;

color.blue += 3000;

printf("red is %d, green is %d, blue is %d\n",
color.red,

color.green, color.blue);

XStoreColor(display, DefaultColormap(display,
screen_num), &color);

break;

7.5.2 Allocating Read/Write Colorcells for Overlays

XAllocColorCells() has another use: it allows you to nondestructively overlay one set of graphics over anoth
underlying graphics will not be visible where the overlay is drawn, but they can be refreshed by simply setting or cli
one or more complete planes in the drawable. This techniquengapve the performance of a client by reducing the
amount of complicated graphics that have to be redrawn. It can be useful for highlighting graphics for selection. H
as noted earlier, read/write colorcells can only be allocatedeéndoColor andDirectColor visuals, so any
application that attempts to use this technique should also provide a fallback technique for use on other visuals or i
failure.

The trick that allows drawing without destroying what is already drawn relies on the fact that we can draw in one pl:
the drawable, changing the pixel values and therefore the color, without changing any other plane. This is possible
theplane_mask component of the GC. It is these other planes that contain the information about the drawing tha:
already there. The disadvantage of this approach is that we have to allocate more colorcells than we would norma
Some of the colorcells will need to be loaded with duplicate RGB values. Because of this waste of colorcells, this
technique should be used only when the graphics being preserved are slow for the client or the server to redraw.

To illustrate this trick, we are going to draw in one color (the foreground in the GC), batkggound_pixel
attribute of the window to a second color, and then draw something temporary over the top with a third color.

Note that the background of a window is redrawn by the server RK@ROSE events occur, but this does not effect the process of drawing and
removing overlays, because BXpose event will be triggered in this process. In other words, even though the background color is set as a win
attribute and drawn by the server, the response to other graphics drawn on top is the same as if the background were drawn by the application.
background counts as a color that must be preserved.

To do this, we need to allocate four colorcells withllocColorCells() . The pixel values allocated will look
something like this:

Color Important Bits Remaining Bits

foreground: 0--0 all other bits don’t matter

background: 0—-1 all other bits don’t matter

highlight1.: 1--0 all other bits don’t matter

highlight2: 1--1 all other bits don’t matter

The bits indicated could have been any bits, but it is significant that only two bits distinguish the four pixel values. -
first pixel value is used for the foreground, and the second for the background. We draw overlays in the third or fot
pixel value. Since we do not want to erase what was drawn in the foreground and background pixel values, we use
mask to restrict the drawing of the highlighting pixel value to a single plane, the one where bits in the highlighting p
values are set to 1. When this entire plane (indicated by the 1 in pixel kijhkght1 andhighlight2) is

cleared, anything drawn tighlight1 orhighlight2 disappears, and anything that was drawn in the foreground
background will reappear.

To clear an entire plane, set fplane_mask of a GC to the desired plane, and then fill the entire drawable ¥rjRectangle()

The color in the colorcell indicated byghlight2 must be the same as the color of colorieigihlightl so that the
same highlighting color appears regardless of the bit already in the drawable that distinguishes the foreground and
background pixel values.

XAllocColorCells() does not return these four pixel valudisectly. Instead it returns the arrayaors and
plane_masks that are more convenient for actually using the overlays than a single array of pixel values. (Each ¢
arrays has the number of members that was specified hcthers andnplanes arguments.) Both arrays consist of
unsigned long values like pixel values. One array contains the plane masks of the overlay planes, and the other cc
the pixel values that can be used for drawing independent of the overlay planes. Here are the values returned in e
after we callXAllocColorCells() with ncolors =2 andnplanes =1 . These values are then used to gener:
the pixel values shown above.

Array Members Important Bits Remaining Bits

colors[0] = 0--0 other bits don’t matter
colors[l] = 0—-1

plane_masks[0] = 1 all other bits 0

The two members of thelors array are used for the foreground and background. Pixel Vailydgyhtl and

highlight2 are composed by combining with a bitwise OR each item indloes array with each item in the
plane_masks array. In this casdaighlightl is (colors [0] | plane_masks [0]). Theplane_mask in the
GC used when highlighting should be set to the OR of the membgenef masks used to make the highlighting pixel
value. In this simplest case, highlighting should be done withlée mask in the GC set tplane_masks [0] .

Note thatighlight2 , generated withcplors [1] | plane_masks [0]), can be useful. As mentioned earlier,
highlight2 can be used interchangeably wiighlightl , as long as thplane_mask in the GC is set to
plane_masks [0] . Buthighlight2 has another use. With a GC that does not haptaite _mask setto
plane_masks [0] (the GC used for drawing with the foreground or background), this fourth pixel value can be use
drawing in the highlighting color while wiping out the underlying graphics, so that when the highlight is removed, thi
background color appears regardless of the contents of the drawable before the highlighting.

We have been hinting at the fact that this overlay technique can be used with more than two colors and more than
plane.ncolors specifies the number of colors than can be drawn and preserved while drawing in the overlays.
nplanes specifies how many separate one—color overlays you may have or how many bits of color are available i
single overlay. The pixel values in tbelors array are the ones that will be preserved through overlays. By ORing
together eacholors with any combination gblane_masks , you get the pixel values that are used for drawing the
overlays. Note, however, that the plane mask of the GC used for the overlaying must be the OR of the same comt
of members of thplane_masks array as were used to generate the pixel value.

The total number of pixel values (colorcells) allocatecKBjlocColorCells() isncolors *27Planes - Note that
the more planes you try to allocate, the less likely this request is to succeed, particltadydoColor visuals.
Therefore, if you are trying for multiple overlays or one multicolor overlay, this will probably work reliably only on
DirectColor visuals, so make sure you have a backup plan for more common systems. In most cases, the unde
graphics can be redrawn if the overlays that would preserve them cannot be allocated. It is also possible to use be
store (which can save selective planes) or to manage your own off-screen pixmaps for use in fast redrawing of cor
graphics.

XAllocColorCells() takes aontig argument that specifies whether the planes returnpldiie_masks must

be contiguous. Theontig argument is normally set Ealse , specifying that the allocated planes need not be
contiguous, because then the chances of successX#AtoeColorCells() call are greater. There are more likely 1
be a number of noncontiguous planes available than the same number of contiguous placestigr h@argument may
have to be set fbrue for imaging applications that want to be able to perform mathematical operations on the pixel
values. It is easier to perform operations by shifting bits with contiguous planes than to achieve the same effect wi
random planes.

Each plane mask has one bit @rayScale andPseudoColor or three bits foDirectColor ~ or TrueColor , and
none of the masks have bits in common.

Example 7-4 demonstrates allocating the read/write cells for a single overlay plane. It implements the overlay sch
described above. If this overlay plan fails, it allocates three colors so that a highlight can still be implemented even
the underlying graphics will have to be redrawn. If the color allocation fails completely, it uses black and white, whi
be highlighted using th&Xxor logical function to invert the color, as describe&éttion 7.4.3, "Highlighting in Two
Colors."

Example 7-7. Using XAllocColorCells() to allocate read/write colorcells for overlay plane

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <X11/Xos.h>

#include <stdio.h>

extern Display *display;

extern int screen_num;

extern unsigned long foreground, background_pixel, overlay pixel 1,
overlay pixel_2;

extern unsigned long overlay plane_mask;

#define MAX_COLORS 2

#define MAX_PLANES 1

#define MAX_CELLS 4 /* MAX_COLORS * 2 » MAX_PLANES */

#define CANNOT_OVERLAY 0

#define CAN_OVERLAY 1
int
get_colors()
{
int default_depth;
static char *name[] = {"Red", "Yellow", "Green", "Green"};
XColor exact_defs[MAX_CELLS];
Colormap default_cmap;
int ncolors = 4;
int plane_masks[MAX_PLANES];
int colorsfMAX_COLORS];
inti;
XVisuallnfo visual_info;
int class;
default_depth = DefaultDepth(display, screen_num);
default_cmap = DefaultColormap(display, screen_num);
if (default_depth == 1) {
/* Must be StaticGray, use black and white */
background_pixel = WhitePixel(display, screen_num);
foreground = BlackPixel(display, screen_num);
printf("using black and white\n");
return(CANNOT_OVERLAY);
}
if ('XMatchVisuallnfo(display, screen_num, default_depth,
PseudoColor, &visual_info)) {
if ({XMatchVisuallnfo(display, screen_num, default_depth,
DirectColor, &visual_info)) {
/* No PseudoColor or TrueColor visual available at
* default_depth; some applications might try for a
* GrayScale visual here if they can use gray to
* advantage, before giving up and using black and white */
background_pixel = WhitePixel(display, screen_num);
foreground = BlackPixel(display, screen_num);
printf("using black and white\n");
return(CANNOT_OVERLAY);

}
}

[* Got PseudoColor or TrueColor visual at default depth */
[* The visual we found is not necessarily the default visual, and
* therefore it is not necessarily the one we used to create our
* window; however, we now know for sure that color is supported,
* s0 the following code will work (or fail in a controlled way) */
if (XAllocColorCells (display, default_cmap, False, plane_masks,
1, colors, 2) == 0) {
/* Can't get enough read/write cells to overlay;
* try at least to get three colors */
if (XAllocColorCells (display, default_cmap, False,
plane_masks, 0, colors, 3) ==0) {
[* Can'’t even get that; give up and use black and white */
background_pixel = WhitePixel(display,
screen_num);
foreground = BlackPixel(display, screen_num);
printf("using black and white\n");
return(CANNOT_OVERLAY);
}
else
ncolors = 3;

* Allocated three or four colorcells successfully, now set their
* colors —- three and four are set to the same RGB values */
for (i = 0; i < ncolors; i++)
{
if ({XParseColor (display, default_cmap, name]i],
&exact_defsi])) {
fprintf(stderr, "basic: color name %s not in database",
nameli]);
exit(0);
}
/* This needed before calling XStoreColors */
exact_defs[i].flags = DoRed | DoGreen | DoBlue;
}
printf("got RGB values\n");
[* Set pixel value in struct to the allocated ones */
exact_defs[0].pixel = colors|[0];
exact_defs[1].pixel = colors[1];
exact_defs[2].pixel = colors[0] | plane_masks][0];
exact_defs[3].pixel = colors[1] | plane_masks[0];
* This sets the color of the read/write cells */
XStoreColors (display, default_cmap, exact_defs, ncolors);
printf("stored colors\n®);
background_pixel = exact_defs[0].pixel;
foreground = exact_defs[1].pixel;
if (ncolors == 4) {
overlay pixel_1 = exact_defs[2].pixel;
overlay pixel_2 = exact_defs[3].pixel;
overlay plane_mask = plane_masks[0];
printf("set can\n");
return(CAN_OVERLAY);
}
else {
/* This must be used as a normal color, not overlay */
overlay pixel_1 = exact_defs[2].pixel;
printf("set can't\n");
return(CANNOT_OVERLAY);
}
}

The technique used for overlay planes can be used to implement a form of double buffering. Double buffering is a
techniqgue common used in animation, where drawing is done in an invisible buffer which is then made visible by a
operation. While the first buffer is visible, a second invisible buffer is drawn into. When the second buffer is drawn
made visible and the first buffer invisible. This technique allows animation to appear smoothly without the person ¢
the individual drawing operations that were necessary to draw the pictures.

Implementing this is just like overlays: one buffer is the overlay, and the other is what we have previously considert
graphics. The only change in double buffering is that you draw into the invisible buffer by using pixel values that d¢
change the visible colors in the visible buffer. Then youXISéRectangle() to set or clear all pixels in the plane o
planes that distinguish between the visible and invisible buffers. The price of doing this is that you have much fewe
in each picture. For example, on an 8—plane system, you can only use 16 colors since you have two buffers of 4 bi
(Also note that there is a double-buffering extension in progress in the X Consortium.)

7.5.3 Using XAllocColorPlanes()

XAllocColorPlanes() also allocates read/write colorcells but in a different way X#sfocColorCells()
XAllocColorPlanes() is used when you want to be able to change the amount of a primary color in graphics w
having to redraw them. In other words, perhaps you are looking at an image and would like to increase the rednes

The best way to do this is to increase the amount of red in every pixel ¥allecColorPlanes() would be the
way to allocate colors to allow this. Itis rarely used except in imaging applications and 3-D graphics and will rarel
except on 24—plane workstations witlDaectColor visual.

Note that for applications like a paint mixing program, in which you have three bars for the three primary colors anc
palette that shows the mixed color, you would notX&kocColorPlanes() . The correct way to implement this is tc
allocate a single read/write color for the palette and to change it dynamically. (If the primary colors are displayed, 1
should be allocated using read-only colors.)

The piece of code shown in Example 7-8 is similar to Example 7-4 but iKAdesColorPlanes() Ltis
somewhat sketchy, because real applications thatAlkecColorPlanes() are complicated.

After allocating colors wittKAllocColorPlanes() , you can then us¢StoreColors() to set the colors. When
nred , ngreen , andnblue are eacl, only one call t&XAllocColorPlanes() and one call t&XStoreColors()
are necessary to allocate and set all 16 million colors of an entire 24—plane colormap.

Example 7-8. Using XAllocColorPlanes() to allocate colorcells for DirectColor
#define PIXELS 256
Display *display;
int screen_num;
int contig = False; /* Noncontiguous planes */
unsigned long pixels[PIXELS]; /* Return of pixel values */
/* Number of independent pixel values allocate */
unsigned int ncolors = PIXELS;
/* Need PIXELS * 2 » maxplanes defs, where maxplanes
* is the largest of nred, ngreen, and nblue */
XColor defs[2048];
/* Number of planes to allocate for each primary */
unsigned int nreds = 3, ngreens = 3, nblues = 2;
/* Returned masks, which bits of pixel value for each primary */
unsigned long red_mask, green_mask, blue_mask;
Colormap colormap;
Status status;
/* Open display, etc. */
[* Get or create large DirectColor colormap */
while (status = XAllocColorPlanes(display, colormap,
contig, pixels, ncolors, nreds, ngreens, nblues,
&red_mask, &green_mask, &blue_mask) == 0) {
/* Make contig False if it was True; reduce value of
* ncolors; reduce value of nreds, ngreens, and/or
* nblues; or try allocating new map; break when
* you give up */
break;
}
if (status == 0) {
fprintf(stderr, "%s: couldn't allocate requested colorcells",
argv[0]);
exit(-1);
}
* Define desired colors in defs */
while (status = XStoreColors(display, colormap, defs,
ncolors) == 0) {
fprintf(stderr, "%s: can’t store colors", argv[0]);
/* Try to fix problem here, exit or break */
exit(-1);
}

[* Draw your shaded stuff! */

7.6 Getting Complete Visual Information

As mentioned earlier, some systems define more than one visual. The default visual might not be the most appropi
your application. Moreover, the visual found using the technique descrilsetttiion 7.4.2, "Code to Allocate
Read-only Colors" usingXMatchVisuallnfo() is fine for applications with routine color needs but is not
necessarily the best. As you may recéllatchVisuallnfo() returns a single visual arbitrarily selected from the lis
that matches the passed visual class and depth. The most thorough method is to get a complete list of visual infor
for every available visual, usingGetVisuallnfo() , and then choose from these.

XGetVisuallnfo() returns a list of visual structures that match the attributes specified by template and mask
arguments. The template isd¥isuallnfo structure with members set to the required values, and the mask indice
which members are matched with the list of available visuals. By passing an empty template structure, you can ge
complete list oiXVisuallnfo structures.

7.6.1 The XVisuallnfo Structure

The XVisuallnfo structure returns information about the available visuals. It is used both to select a visual type
those available and as a source of information while using a particular visual.

The XVisuallnfo structure is shown in Example 7-9.

Example 7-9. The XVisuallnfo structure
typedef struct {
Visual *visual;
VisuallD visualid;
int screen_num;
unsigned int depth;
int class;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size; /* Same as map_entries member of Visual */
int bits_per_rgb;
} XVisualinfo;

Thevisual member is a pointer to the interndsual structure. This pointer is used asvisial argument of
XCreateWindow() andXCreateColormap()

Thevisualid member is not normally needed by applications.

As discussed earlier, ttibass member specifies whether the screen is to be considered color or monochrome and
changeable or immutable. Thiass member can be one of the constd@itectColor , GrayScale ,
PseudoColor |, StaticColor , StaticGray , or TrueColor

Thered_mask , green_mask , andblue_mask members are used only for tha&ectColor andTrueColor

visual classes, where there is a separate map for each primary color. They define which bits of the pixel value inde
the colormap for each primary color. Each mask has one contiguous set of bits, with no bits in common with the ot
masks. These values are zero for monochrome and most four— to eight—plane color systems.

Thecolormap_size member of the structure tells you how many different pixel values are valid with this visual. |
monochrome screen, this value is two. For the default visual of an eight—plane color system, this value is typically
256 (two colors are often reserved for the cursor). Dir@rctColor andTrueColor , colormap_size will be the
number of cells for the biggest individual pixel subfield. Tolrmap_size member is the same as the
map_entries member of the visual structure.

Thebits_per_rgb member specifies how many bits in each of the red, green, and blue values in a colorcell are
drive the RGB gun in the screen. For a monochrome screen, this value is one. For the default visual of an eight-p

color system, this value is typically eight. The pixel subfields (the red, green, and blue values in each colorcell) are
unsigned short values, but only the highest per_rgb bits are used to drive the RGB gun in the screen. This
number corresponds the number of bits of resolution in the Digital to Analog Converter (DAC) in the screen hardwe

7.6.2 Example of Choosing a Visual

Example 7-10 shows a routine that uX&etVisuallnfo() to get all the visuals of depth 8 on the current screen, a
defined by the X server, and then creates a colormap and window.

Example 7-10. Code to match visuals
#include <X11/Xlib.h>

#include <X11/Xutil.h>

visual()

{

Display *display;

Colormap colormap;

Window window;
XSetWindowAttributes attributes;
unsigned long valuemask;

int screen_num;

XVisuallnfo vTemplate; /* Template of the visual we want */
XVisuallnfo *visualList; /* List of XVisuallnfo structs that

* match */
int visualsMatched; /* Number of visuals that match */

[* Set up the XVisuallnfo template so that it returns a list

* of all the visuals of depth 8 defined on the current screen

* by the X server */

vTemplate.screen = screen_num;

vTemplate.depth = 8;

visualList = XGetVisuallnfo (display, VisualScreenMask |

VisualDepthMask, &vTemplate, &visualsMatched);

if (visualsMatched ==0)
fatalError ("No matching visuals\n");

[* Create a colormap for a window using the first of the

* visuals in the list of XVisuallnfo structs returned by

* XGetVisuallnfo */

colormap = XCreateColormap (display, RootWindow(display, screen_num),
visualList[0].visual, AllocNone);

[* Must specify colormap attribute if using nondefault visual */

attributes.colormap = colormap;

valuemask |= CWColormap;

window = XCreateWindow (display, RootWindow(display, screen_num),
X, y, width, height, border_width, vTemplate.depth,
InputOutput, visualList[0].visual, valuemask, &attributes);
XSetWindowColormap(display, window, colormap);
* All done with visual information; free it */
XFree(visualList);

} /* End routine */

Notice that the list oKVisuallnfo structures is freed witkFree() after use.

7.7 The GrayScale Visual

On a gray—scale workstation ofzaayScale visual on a color workstation, a color application should still work
correctly. The only problem might be that when colors are allocated, the closest physically possible colors (returnes
XAllocColor()) will result in shades of gray that provide insufficient contrast. The best way to avoid this is to
explicitly check for theStaticGray visual. For true bulletproof operation, it is a good idea to check any user-spec
colors to make sure they contrast.

The color names "gray0" through "gray100", spelled with an "e" or an "a", can be usédPaitieColor() to get
RGB values for various grays.

You should set the red, green, and blue values to be equal. Some servers only use one of the values, and others «
three according to the NTSC standard that makes color television signals work on black—and-white televisions:

intensity = (.30 * red) + (.59 * green) + (.11 * blue)

MIT’s implementations use a least-squares algorithm that determines the closest RGB values in the (gray) colormi
RGB values specified. Exactly what algorithm is used is up to the server implementor.

7.8 Standard Colormaps

A standard colormajis one in which the mapping between pixel values and colors is predictable. The purpose of st
colormaps is to encourage sharing of entire colormaps (not just individual cells) between applications that have toc
demanding color needs to be able to allocate read-only colors out of the default colormaps.

X defines a set of properties that contain information describing commonly used colormaps. An application reads t
properties by calling{GetRGBColormaps() . This call returns aXStandardColormap structure that contains
enough information so that the application can calculate the colors in every colormap cell (or a certain range within
colormap). This structure may also include the ID of a colormap matching this description that was created by the
manager or another client. The X distribution from MIT includes a standard ettt mapthat creates the standard
colormaps. The user can arrangexsidcmapo be invoked when the X server starts up, or in the ussgssioror

Xinitrc file. If this program has not been run, the application can create a new colormap and use the information in
standard colormap properties to allocate and set the colors according to the information in the property. There are
functions in the Xmu (miscellaneous utilities) library for allocating standard colormaps.

But how does the sharing work? After creating this colormap, the applicatiestdgomap sets the ID of the created
colormap into theolormap field of theXStandardColormap structure and then calSetRGBColormaps()
This resets the property, so that the next time another clienX&@dtRGBColormaps() , thecolormap field of the
returned structure will actually contain the ID of the appropriate colormap.

Therefore, although an application must have the code to create, allocate, and set colors in a standard colormap tc
robust, in some cases this code will not be executed because some other client will have already done the work. £
calling XGetRGBColormaps() , if thecolormap field is zero, the application must create the colormap. Otherwise
thecolormap field holds the ID of an appropriate colormap.

When an application uses standard colormaps, two (or more) instances of the application can run at the same time
increasing the load on the system caused by creating multiple copies of the same colormap. Applications that do r
standard colormaps will end up creating separate but identical colormaps. The window manager will switch these i
out of the hardware colormap whenever a different instance is in use. Although nothing on the screen will change
because both the colormaps are identical, the server will be performing unnecessary installing and uninstalling, an
extra colormaps will waste server memory.

In some cases, the window manager or even the server will create one or more standard colormaps. This does no
how applications work at all. Applications do not care whether it was the window manager, the server, or some otf
that created a standard colormap.

If your application does not create or use a custom colormap, you can skip this section if pressed for time.

Applications can also use the knowledge about a standard colormap to optimize the process of figuring out which €
pixel values correspond to required colors and which colors must be allocated and set from scratch.

7.8.1 The Standard Colormap Properties

The standard colormap properties contain information about a few commonly used colormaps. However, note that
an application creates a custom colormap unlike any of these, it should still use the standard property mechanism |
creating its own standard colormap structure.

Properties were introduced 8ection 2.1.4, "Properties and Atoms."For a more complete description of properties, s
Section 12.1, "Properties and Atoms."

In the call toXGetRGBColormaps() you specify one of these atoms lik&_RGB_BEST_MARr, if necessary, one
unique to your application).

The following list names the atoms and describes the colormap associated with each one:

XA_RGB_DEFAULT_MAP

This property defines part of the system default colormap. This colormap may be initially
completely unallocated, or it may contain a selection of read—only colorcells with the RGB valu
from the color database and a few unallocated cells for use by applications that need read/writ
A typical allocation of thexA_RGB_DEFAULT_MA®h eight—plane screens is all the colors
produced from any combination of six reds, six greens, and six blues. This gives 216 uniformly
distributed colors and leaves 40 for other programs or for special purpose colors for text, bord¢
and so on. A typical allocation for théA_RGB_DEFAULT_MA®h 24-plane screens is 64 reds, 6
greens, and 64 blues. This gives about one million uniformly distributed colors (64 intensities
4096 different hues) and leaves lots of colorcells available for other purposes.

XA_RGB_BEST_MAP
This property defines the "best" RGB colormap available on the screen. Of course, this is a
subjective evaluation. Many image—processing and 3—-D programs need to use all available
colormap cells and to distribute as many perceptually distinct colors as possible over those cel
this case, there may be more green values available than red and more green or red than blue

On an eight—planBirectColor visual, XA_RGB_BEST_MAR usually a 3/3/2 allocation. On a
24-planeDirectColor visual,XA_RGB_BEST_MAR usually an 8/8/8 allocation. On other
screensXA_RGB_BEST_MAR purely up to the implementor of the server.

XA_RGB_RED_MAKA_RGB_GREEN_MARA_RGB_BLUE_MAP
These properties define all-red, all-green, and all-blue colormaps, respectively. These maps
used by programs that make color-separated images. For example, a user might generate a-
image on an eight—plane screen by rendering an image once with high color resolution in red,
with green, and once with blue and exposing a single frame in a camera with three images.

XA _RGB_GRAY_MAP
This property describes the "best" gray—scale colormap available on the screen.

7.8.2 The XStandardColormap Structure

As described above, an application that wants to use a standard colormap must get the structure that contains the
specification for the colormap usigsetRGBColormaps() . Some servers andindow managers, particularly on higt
performance workstations, create some or all of the standard colormaps when they initialize. If the desired colorma
already been created, it is returned ingdblwrmap member of theXStandardColormap structure shown in Example
7-11. If the colormap does not yet exist, tdormap member will be zero. In that case, the application can create
colormap and allocate entries to match the specification in the memb&gsavfdardColormap , then call

XSetRGBColormaps() to allow other clients to share this colormap.

Example 7-11. The XStandardColormap structure
typedef struct _XStandardColormap {

Colormap colormap;

unsigned long red_max, green_max, blue_max;
unsigned long red_mult, green_mult, blue_mult;
unsigned long base_pixel;

VisuallD visualid; /* Added in R4: ICCCM version 1 */
XID killid; /* Added in R4: ICCCM version 1 */
} XStandardColormap;

The members of th&StandardColormap structure are as follows:

L]

Thecolormap member is the ID of a colormap created byXReeateColormap() function or the default
colormap. This IDcan be used to install a virtual colormap into the hardware colormap.

Thered_max , green_max , andblue_max fields give the maximum red, green, and blue values, respectively
typical allocation that provides3& 216 read-only, shareable colors iRseudoColor colormap on a standard
eight—plane workstation i®d_max = 5,green_max =5, andblue_max =5. This leaves 40 cells available for
special colors and private, nonshareable purpo®esa 24—plane workstation, there would be eight bits available
for each color in &rueColor visual, which would allow 256 shades of each primary color. In this case,

red_max = 255,green_max = 255, andlue_max = 255. This map would include 256 16.38 million total
colors.

Thered_mult , green_mult , andblue_mult fields scale each pixel subfield into the proper range in the
16-bit RGB value in the colorcell with the range 0 to 65535. The red pixel subfield is neovedult bits

toward the most significant bit of the pixel value.

For a 3/3/DirectColor allocation (eight reds, eight greens, four blues)d, mult might be 32green_mult
might be 4, andlue_mult might be 1 (as shown in Figure 7-5). These effectively move the red value into th
most significant bits of the RGB value in the colorcell, the green into the middle, and the blue into the least
significant bits. This arrangement is arbitrary but useful. For a six—colors—each allocation, which must be
PseudoColor since the planes cannot be evenly allocated to separate primetigault might be 36,
green_mult might be 6, anlue_mult might be 1.

Thebase_pixel field gives the base value that is added to the pixel value calculated from the RGB values ¢
scale factors. Usually tHese pixel is obtained from a call to théAllocColorPlanes() function.

Thevisualid field is the ID of a server resource associated with each visual, o¥igpallD . You will need
this ID only if you intend to use standard colormaps. This field was added in R4 because only with this inforn
can standard colormaps be used with other than the default visual. Prior to R4, standard colormaps were no
use, partly because they could only be used with the default visual.

Thekillid field returns a number that is used if the application needs to free the colormap for some reason
killid is greater than one, then the resources should be freed by s#liiigiient() with thekillid

field as the argument. Killid is one, then the resources should be freed by callingeColormap() with
thecolormap field as the argument. killid is zero, then no attempt should be made to free the resources.

GrayScale colormaps should be used just like color visuals in every way. For example, all three color fields in the
XStandardColormap should be used. The standard cliestdcmagurrently create§&rayScale standard colormaps
using the NTSC color-to—-mono mapping algorithm described earlier.

7.8.3 The 3/3/2 Standard Colormap

Now let's look at a typical standard colormap. The following example describes th®RBEAZ olor standard
colormap used on eight-plane screens. Three planes are used for red, three planes for green, and two planes for
3/3/2 allocation allows values in the range of:

red 0-7 thus red_max =7
green 0-7 green_max = 7
blue 0-3 blue_ max = 3

To obtain the pixel value, these RGB values must be shifted to their corresponding planes. If the red value is cont:
the three most significant planes or bits, the green values in the three next most significant planes or bits, and the |
in the two least significant planes or bits, then the pixel can be constructed as shown in Figure 7-5.

Figure 7-5. Shifting pixel subfields into pixel value

rad mult

klue
blus mult = 28 =1

In aDirectColor system like this, the multiples are equal2y wheren is their lowest plane or bit position. If the rec
green, and blue were stored in a different order, the multiples would not be 32, 4, 1 but would still be calculated fro
above description and formula. The 3/3/2 standard colormap allocation is fairly standard.

7.8.4 Creating and Using a Standard Colormap

Two members were added to th8tandardColormap structurein Release 4 to comply with the ICCCM (interclient
communication conventions, describeinapter 12, "Interclient Communication"). Because of this, there are two
different sets of routines that manage standard colormaps, one for use with R3 (and earlier) and the other for use v
(and later). The now-outdated R3 routinesXeetStandardColormap() andXSetStandardColormap() ; the
R4 routines arXGetRGBColormaps() andXSetRGBColormaps() . The reason for the plural form of the R4
routineXGetRGBColormaps() is that it returns a list of colormaps; it also hasant argument not present in the R3
routine. According to the ICCCM, only queries of ¥ RGB_DEFAULT_MA&andard colormap can return more thau
one structure.

Example 7-12 gets information about %&_RGB_BEST_MABtandard colormap, creates it if no other client already
has, calculates pixel values from it, and sets the colormap window attribute of the window. This example gives up ¢
back on read-only colorcell allocation if the standard colormap property is not defined by the server or if creating a
colormap returns the default colormap (which happens on systems with an immutable hardware colormap).

Example 7-12. Code to create and use XA _RGB_BEST_MAP

#define USE_DEFAULT_COLORMAP 1
#define USE_STANDARD_COLORMAP 0
void main(argc, argv)
int argc;
char **argv;
{
XStandardColormap *best_map_info;
XColor *exact_defs;
XSetWindowAttributes attrib;
unsigned long attribmask;
inti, j, k, [;
int ncells;
XVisuallnfo *vlist, vinfo_template, *v;
int num_vis;
int count;
Visual *visual;
int strategy = USE_STANDARD_COLORMAP;

/* Open display */

visual = DefaultVisual(display, screen_num);

if (XGetRGBColormaps(display, RootWindow(display, screen_num),

&best_map_info, &count, XA RGB_BEST_MAP) == 0) {

printf("%s: RGB_BEST_MAP colormap property not set.\n", argv[0]);
/* Give up standard colormaps; use one of the
* basic color strategies */
get_colors();
strategy = USE_DEFAULT_COLORMAP;

else if (best_map_info—>colormap) {
/* Someone else created the map we need; make sure
* it's valid, then we’'ll use it below */
if (best_map_info—>red_max == 0) {
printf("%s: RGB_BEST_MAP colormap property is set\n",
argv[0]);
printf("but is missing data.\n");
strategy = USE_DEFAULT_COLORMAP;
}
else {
printf("stnd colormap ID: %d, best_map_info—>colormap);
attrib.colormap = best_map_info—>colormap;
}
}
else if (best_map_info—>visualid == 0) {
printf("%s: Standard colormap property is set\n", argv[0]);
printf("but is missing data.");
/* Some systems define the properties but don’t
* place any data in them; this is a server bug,
* put we'll check for it anyway */
/* Fall back on a basic color strategy */
strategy = USE_DEFAULT_COLORMAP;
}
else {
/* Got information, but the described colormap
* has not been created yet; create it and

* allocate all cells read/write */
/* XCreateColormap requires a visual argument
* (pointer to a Visual structure); however, the
* XStandardColormap structure returns a VisuallD,
* which might not be the default visual,
* Converting between these two is painful */
vlist = XGetVisuallnfo(display, VisualNoMask,
&vinfo_template, &num_vis);
for (v = vlist; v < vlist + num_vis; v++) {
if (v—>visualid == best_map_info—>visualid) {
visual = v—>visual;
break;
}
}

best_map_info—>colormap = XCreateColormap(display,
RootWindow(display, screen_num), visual, AllocAll);
if (best_map_info—>colormap ==
DefaultColormap(display, screen_num)) {
printf("%s: hardware colormap is immutable:\n",
argv[0]);
printf("cannot create new colormap.\n");
}
attrib.colormap = best_map_info—>colormap;
ncells = best_map_info—>base_pixel +
((best_map_info->red_max + 1) *
(best_map_info—>green_max + 1) *
(best_map_info—>blue_max + 1));
exact_defs = (XColor *) calloc(sizeof(XColor), ncells);
/* Permute the levels of red, green, and blue */
| = best_map_info—>base_pixel;
for (i=0; i < best_map_info—>blue_max; i++) {
for (j = 0; j < best_map_info—>blue_max; j++) {
for (k = 0; k < best_map_info—>blue_max; k++) {
exact_defs[l].red = OXFFFF * k /
best_ map_info—>red_max;
exact_defs[l].green = OXFFFF * j/
best_ map_info—>green_max;
exact_defs[l].blue = OXFFFF *i/
best_ map_info—>blue_max;
[++;
}
}
}

XStoreColors (display, best_map_info—>colormap, exact_defs, ncells);

/* If to be used in a window not created with the
* default visual, must create the window first and
* use instead of RootWindow in this call; here we
* assume the default visual */
XSetRGBColormaps(display, RootWindow(display, screen_num),
&best_map_info, count, XA RGB_BEST_MAP);
}
if (strategy == USE_STANDARD_COLORMAP) {
/* We must not have called get_colors above,
* must be using standard colormaps strategy */
/* Note that we act like we have already allocated pixel
* pixel values, even though actually another client did */
background_pixel = best_map_info—>base_pixel +

(best_map_info—>red_max * best_map_info—>red_mult) +
(best_map_info—>green_max * best_map_info->green_mult) +
(best_map_info—>blue_max * best_map_info—>blue_mult);
attribmask = CWBackPixel | CWColormap;
foreground_pixel = (best_map_info—>green_max *
best map_info->green_mult/ 2) +
best map_info—>base_pixel;

border_pixel = (best_map_info—>blue_max *

best_map_info—>blue_mult / 2) +
best_map_info—>base_pixel;

}

/* Create opaque window */

win = XCreateWindow(display, RootWindow(display,screen_num), X,
y, width, height, borderwidth, DefaultDepth(display, screen_num),
InputOutput, visual, attribmask, &attrib);

}

This code begins by reading tkd RGB_BEST_MAProperty using th&XGetRGBColormaps() call. The name
XGetRGBColormaps() suggests that the function returns a description of multiple colormaps—-but this is true onl
XA RGB_DEFAULT_MAF this call succeeds, the property is defined and its contents have been placed in the
best map_info structure. Since any other, perhaps buggy, client might have set this property (like your own
application while you are debugging it), it is a good idea not to trust its contents any more than necessary. (Proper
on the root window remain defined even after the client that set them has exited.) The code checks to make sure t
fields contain reasonable values before using them.

If the colormap field of best_map_info is nonzero, it should be the ID of a standard colormap that another client
created. Your application can immediately proceed to use the pixel values in this colormap as though your applicat
already allocated them read-only, even though in reality some other client allocated them read/write.

On the other hand, if threolormap field is zero, your application needs to create, allocate, and set the values of the
standard colormap itself. You allocate the cells read/write, because this allows you to explicitly set the RGB values
pixel value. Even though you allocate the cells read/write, you should use them as if they were read—only, so that
applications can share them after you reseXtheRGB_BEST_MAProperty to include the new colormap ID. As this
suggests, a read/write cell, even though described earlier as being private and changeable by that one client, can |
if all the applications agree not to change its RGB values.

The algorithm used to store RGB values into the cells in the colormap is somewhat arbitrary. Conventions for it wil
probably be adopted by the X Consortium when there is more interest in standard colormaps. Any algorithm is goc
enough to allow two instances of the same application to share a colormap. But for two different applications to sh
colormap, each must know exactly what RGB values the other would place in the colormap if the other were run be
colormap was created.

The XGetVisuallnfo() call is described isection 7.6, "Getting Complete Visual Information."

If you pasdAllocAll to XCreateColormap() , you do not need to make AillocColorCells() call to

allocate all the cells read/write. However, you canAlkeAll only if you intend the entire colormap to be read—only
to all clients. Some clients want a few cells preserved to be rewriteable for dynamically changing colors. If yours i
way, you must us@llocNone and then calKAllocColorCells() once to create the standard portion of the
colormap and again to allocate the cells your application will treat as private.

Once the colormap window attribute of a window is set, the window manager will take care of installing the colorme
When there is only one hardware colormap, the window manager usually installs an application’s colormap when tl
application contains the pointer (for real-estate type window managers) or is given the keyboard focus (for click-tc
style window managers).

When a window manager creates a standard colormap, it can use a slightly different technique to make sure that ti
standard colormap remains defined even after the window manager exits. Assuming that it has already checked tc
whether some other client has created a standard colormap and none has, it performs the following sequence of st

. Create a new connection to the same server.

. Determine the color capabilities of the screen. Choose a visual.

. Create a colormap (not required XA RGB_DEFAULT_MAP

. Call XAllocColorPlanes() or XAllocColorCells() to allocate cells in the colormap (if did not use

AllocAll flag when creating the colormap).
. Call XStoreColors() to store appropriate color values in the colormap.
. Fill in the descriptive fields in th¥StandardColormap structure, including the ID of the created colormap.

. Call XSetRGBColormaps() to set the property on the root window. Hiléd field should be set to the
colormap ID.

. UseXSetCloseDownMode() to make the resource permanent.

. Close the new connection to the server.

7.8.5 RGB-to—-Pixel Conversion

The standard colormaps suchXés RGB_BEST_ MARre useful when you want to calculate pixel values from RGB
values.

Consider a 3-D display program that draws a smoothly shaded sphere. At each pixel in the image of the sphere, tt
program computes the intensity and color of light reflected to the viewer. The result of each computation is a triple
green, and blue coefficients in the range 0.0 to 1.0. To draw the sphere, the program needs a colormap that provic
range of uniformly distributed colors. The colormap must be arranged so that the program can convert its RGB trif
pixel values very quickly, because drawing the entire sphere will require many such conversions. An example of or
calculation is shown in Example 7-13. Example 7-12 demonstrated how to do this for integral RGB values.

Example 7-13. Calculating pixel values from floating point RGB values
XStandardColormap best_map_info;
float red, green, blue;
unsigned long pixelvalue;
pixelvalue = best_map_info.base_pixel +
((unsigned long)(0.5 + (red * best_map_info.red_max)) *
best_map_info.red_mult) +
((unsigned long)(0.5 + (green * best_map_info.green_max)) *
best_map_info.green_mult) +
((unsigned long)(0.5 + (blue * best_map_info.blue_max)) *
best_map_info.blue_mult);

For gray scale colormaps, only tbelormap ,red_max ,red_mult , andbase_pixel fields of the
XStandardColormap structure are defined. The other fields are ignored. Pixel valueStatieGray or
GrayScale visual must be in the range:

base pixel <= pixel_value < (red_max * red_mult) + base_pixel
To compute a gray pixel value, use the following expression:

pixel_value = gray * red_mult + base_pixel;

where:
gray = the gray value you desire (0 to red_max)
red_mult value from XStandardColormap structure

base pixel = value from XStandardColormap structure

7.9 Device—-independent Color and Xcms

As already described, the X server supports a color name database in order to translate textual color names into in
values for the red, green, and blue primaries. This is a convenience for users and a simple attempt at device-inde
color——if server vendors tune the database to the particular displays they support, then applications that use the st
named colors can be confident that those colors will appear the same across all displays.

In practice, however, the color database has not been tuned for most displays. Furthermore, there are a growing r
visualization and other applications that use color and shading to display data and convey information rather than ¢
decoration. These applications need the ability to precisely specify device—independent colors and often to divide
of colors into perceptually equal intervals. A small number of hand-tuned named colors in a database is simply na
adequate. X11R5 addresses these needs with Xcms, the X Color Management System, which was developed prir
Tektronix for the X Consortium.

Xcms includes:

. A new standard textual representation for device—independent color strings.
. Modifications to several existing Xlib functions to support this new standard representation.

. The provision for a database that maps color names to device—independent color specifications. This databe
read by Xlib rather than by the X server.

. The Xcms API-—a new set of Xlib functions that allow the allocation of device—independent colors and provid
extremely precise control over conversions between device—independent color representations. Several of tt
functions are device—-independent analogs to the device—dependent X11R4 color allocation and lookup funct

. The X Device Color Characterization Conventions (XDCCC), a standard format for new root window propertie
contains the information about the physical characteristics of the screen necessary to support the conversion
device—independent color specifications into device—dependidnes. X11R5 provides a new cliexetmsdbto
set the values of these properties. The XDCCC is part of the ICCCM (Inter—Client Communication Conventio
Manual), which is described in Chapter 12.

Xcms involves no changes to the X protocol or the X server. So, for example, an R5 Xcms application can success
connect to an R4 X server.

7.9.1 The Fundamentals of Color Representation

Colorimetry is an involved science, and this book can only scratch its surface. This section documents the most us
commonly used Xcms functions, but because a complete understanding of Xcms requires a deeper introduction to
colorimetry than is presented here, some of the more obscure functions will be glossed over and left undocumente
Volume Two, Xlib Reference Manuantains man pages for all the Xcms functions, but not all of them are described
If you are curious about colorimetry or need or want to know all the details of Xcms, O'Reilly & Associates will be
publishing a book on Xcms, XCMSBOOK, by Al Tabayoyon, Joann Taylor, and Chuck Adams of Tektronix. It gives
more thorough treatment of colorimetry, provides complete documentation of Xcms, and describes how to make ef
use of color in your applications. It should be available in late 1992.

Until Release 5, X provided only an RGB system for describing colors. Irsthisme, the color of a pixel is described k
three numbers which represent the intensity of the electrical signal sent to the electron guns that excite the red, gre
blue phosphors in a monitor. This model is simple from the standpoint of a systems programmer because it is so ¢
tied to the physical hardware. Unfortunately, our eyes do not perceive color proportionally to the voltage applied to
electron guns, so equal voltage changes over a range of red, green, or blue intensities do not produce an equal pe
change. At low intensities, a change of many voltage steps may be required before any perceptual difference is pr
In addition, selecting a desired color by additive mixing of each of the primaries is not as simple as it sounds. Fine
a color by this method is essentially a process of trial and error. The RGB color model is a device—dependent color
because it is tied directly to the physical characteristics of a given screen—-the electrical response of the electron ¢
precise composition of the phosphors used, and so on. If the same RGB color specification is displayed on two dif
monitors, the resulting colors will be noticeably different.

By definition, a device-independent color specification will result in identical displayed colors regardless of the dev
is used. The device—independent color representations supported by X11R5 are all based on an international star
representation model known informally as CIEXYI CIEXYZ and related color spaces, a color is described by the

value of three coordinates (as is the case with RGB), and the color space itself is commonly referred to by the nam
coordinates. X11R5 supports the CIEXYZ color space, related spaces known as CIExyY, CIExyY, CIEuvY, CIELu\
CIELab, and a color space designed by Tektronix known as TekHVC. The interpretation of the coordinates of all b
last of these spaces is not particularly intuitive and requires some knowledge of colorimetry. These spaces will not
described here; instead all discussion and examples in this chapter will use the TekHVC coloftgpasea perceptually
uniform color space designed to be intuitive. It is mathematically related to the CIE spaces, but is easier to descrik
understand. In this model, a color is characterized by Hue, Value, and Chroma. The Hwdoofi@what distinguishes
it from colors of other color families——the blues are of different hues from the greens, for example. Value describe:
lightness or darkness of a color, and Chroma describesstitaration or "vibrancy" of a color. The range of possible
values for these three coordinates define the HVC "color solid." It is an irregular solid defined in cylindrical coordin
with Hue as the angle, Chroma the radius, and Value the z—coordinate of a point. The model is designed to make
intuitive to find a desired color. Because the space is perceptually uniform, uniform increments in the value of any «
coordinates of a color result in uniform perceptual differences in displayed ¢atpree 7-6shows a diagram of the
TekHVC "color solid," and a "hue leaf," the cross section of the solid for a single Hue.

Figure 7-6. Three views of the TekHVC color solid and a single hue leaf from the solid

In the TekHVC space, Hues near 0.0 are reds, Hues near 60.0 are oranges and yellows, Hues near 120.0 are gree
near 180.0 are blue—greens, Hues near 240.0 are blues, and Hues near 300.0 are violets. Because the Hue coordi
angle, the reds near 0.0 "wrap around" to Hues near 360.0. At any given Hue, the legal values of Value and Chror
an approximately triangular area, sometimes callededleaf For example, for the red Hues around 10.0, colors with
Chromas near 0.0 are almost grey, and as the Chroma increases, the range of legal Values decreases, and the co
passing through various reddish—brown shades, until around the maximum Chroma (near 90.0) there are only a fer
Values (near 50.0), and the colors are all bright "sports car" red. At the same Hue of 10.0, a Chroma of 55.0 and tl
minimum legal Value (near 30.0), the color is a deep maroon, and it lightens as the Value increases until at the ma
Value (near 65.0) it is a salmon pink.

A good way to become familiar with the TekHVC color space is to use the TekColor Editor from Tektronix. It allows a user to interactively and
graphically select TekHVC colors. It is not part of the MIT X11R5 distribution, but is available for anonymous ftp from éxpdedts.mit.edin the
file contrib/xtici.tar.Z See the Preface for information on how to get files from the Internet.

Any color that is visible to the human eye can be described by three coordinates in a device—independent color spi
no given device can display all possible colors. Stated in another way, all colors visible to the human eye lie within
TekHVC color solid, but the colors that can be generated by any particular device lie within some subset of that sol
monitor type has device gamuivhich is the set of colors it cagdisplay. When a color is requested that is outside of th
gamut for a device, some formgdmut compressiomust be used to map the requested calto a displayable color in a
sensible way. When an Xcms function attempts to convert a device—independent color that is outside of the device
to a device—dependent color, Xlib automatically performs gamut compression on that color, and the function return
special value that indicates that compression occurred.

7.9.2 Screen Characterization and the XDCCC
In order for Xcms to convert from device-independent color used by X clients to the device-dependent colors usec

X server, it must know the characteristics of the screen or screens connected to the server. What is ne8dedtisxa 3
to convert between the CIEXYZ and RGBI color spaces, and a lookup table to convert from RGBi intensities to RG
integer values. The X server stores this data in properties of the root window of each screen so that the Xcms func
have access to it without the necessity of extending the X Protocol. The names and formats of these root window

properties are specified in the X Device Color Characterization Conventions (or XDCCC) which has been added to
Inter—Client Communication Conventions Manyaf ICCCM). The ICCCM is printed as Appendix L of Volume Zefo,

Protocol Reference Manual

X11R5 provides a new clienmtcmsdbwhich reads screen characterization data from a file and sets the data on the
appropriate properties. System administrators may configlmto automatically invokeccmsdtfor every screen of a
display, or users who make use of device—independent color may invoke it themselves. The sourcgauddlinrthe
MIT distribution includes two sample screen characterization data files, but the distribution does not attempt to proy
data for all possible screen types. If screen characterization data is not specified on root window properties, Xlib w
back on default data. This means that you can experiment with the new Xcms features, but because the default d¢
almost certainly not match your display, the colors you see will not actually be the device—-independent colors you 1
Vendors may make screen characterization data available in the contributed section of the X11R5 release, but eve
will not get you truly device—-independent color: the physical characteristics of a monitor change as it ages, so for a
color reproduction, you will have to have your monitor calibrated.

7.9.3 The Xcms Programming Interface

The Xcms programming interface is part of Xlib and contains many new functions and a number of new datatypes,
which begin with the prefix "Xcms" (X Color Management System). Safthese new functions are close analogs to 1
pre-X11R5 color functions that allocate cells in colormaps and that store and query colors in colormap cells. Whe!
existing Xlib functions operate on aColor structure,the analogous Xcms colormap functions operate on an
XcmsColor structure that allows colors to be specified in a device—independent fashion. These are the functions-
be most frequently used by programmers.

There is a group of Xcms functions used to manipulate an Xcms datatype known as a "color conversion context" ol
In X11R5, every colormap has an associated CCC which contains attributes that control the details of the conversii
colors from one color space to another. Default CCCs are automatically handled by Xcms, and many programmer
never have to use them explicitly. The theory behind color conversions is complicated, and so only the simplest ar
useful of the CCC functions are documented here.

Xcms also provides a number of functions to query the boundaries of the device gamut. This means that programi
ensure that allocated colors will be displayable (without gamut compression) on a given screen. Or it means that
programmers can query the most vibrant shade of a color displayable on a particular device. The gamut—querying
functions that operate with the TekHVC color model are fully documented in this book. Because other color space:
not been described in any detail in this chapter, those gamut—querying functions that operate in color spaces other
TekHVC are not documented here.

Finally, Xcms provides functions that allow the extension of Xcms by adding new color spaces and support for new
of display devices. These functions are not documented here. See XCMSBOOK for full documentation of these fu
as well as all the color conversion context functions and the gamut—querying functions.

Note that Xcms functions require significantly more computation that their device—dependent analogs. In particular
require trigonometric and other floating—point operations. In the MIT distribution, the standard math library is not u
Instead, the floating—point operations are implemented in Xlib directly. Because these functions cannot take advar
floating—point hardware and do not have the efficiency of a highly optimized math library, they are relatively slow. .
result, adding Xcms functions to a program can add noticeable delays, particularly when gamut compressiofooccut
can force the Xcms functions to use the standard math library by editing the macros defingith/d/Xcmsint.hand
rebuilding Xlib.

7.9.3.1 Color and Colormap Functions

Xcms provides the following functions for setting or querying colormap cells. They are close analogs to pre-X11R!
allocation functions, but use tdemsColor structure to specify device—independertiors rather than thé€Color
structure, whichcan only specify RGB colors. These functions are fully documentédlime Two, Xlib Reference

Manual

XcmsAllocColor()

Allocates a read—only color cell with the specified color. Returns the color specification of the
actually allocated (i.e., the closest color the hardware could support). Analogous to
XAllocColor() , but with an additional argument that specifies the desired color space for th
return value. If the requested color is outside of the gamut of the screen, gamut compression i:
performed.

XcmsAllocNamedColor()

XcmsLookupColor()

XcmsQueryColor()

XcmsQueryColors()

XcmsStoreColor()

XcmsStoreColors()

Allocates a read—only color cell with the color specified in the passed color string. Returns the
color specification for the color string, as well as the color specification and pixel value for the
actually allocated. If the requested color is outside of the gamut of the screen, gamut compres
performed. Analogous tXAllocNamedColor() , but with an additional argument that specifie!
the desired color space of the return values. Any color string that can be allocated by
XcmsAllocNamedColor() can also be allocated §AllocNamedColor() . The difference
is only that the Xcms function returns a device-independent specification of the color.

Converts a color string into afcmsColor specification, but does not store that color in a color
map. Returns the exact color specification of the color string as well as the closest color that ¢
actually be produced on the screen. If the requested color is outside the gamut of the screen,
compression is performedinalogous tXLookupColor() , but with an additional argument that
specifies the desired color space for the return values. Any color string that can be looked up
XcmsLookupColor() can also be looked up bt ookupColor() . The difference is only that
the Xcms function returns a device—independent specification of the color.

Given a pixel value, returns the color of that pixel in the given colormap. Analogous to
XQueryColor() , but with an additional argument that specifies which color space the queriec
color should be represented in.

Returns the colors associated with a set of pixels in a given colormap. Analogous to
XQueryColors() , but with an additional argument that specifies the desired color space for t
returned colors.

Sets the color of a read/write color cell in the specified colormap. Analogei&tdoeColor()
but has a return value that indicates whether the conversion from device—independent color
specification to RGB values was successful. If the requested color is outside the gamut of the
gamut compression is performed.

Sets the colors of multiple read/write color cells in the specified colorfaplogous to
XStoreColors() , but has return values that indicate whether the conversions from
device—-independent specifications to RGB values were successful. If any of the requested col
outside the gamut of the screen, gamut compression is performed.

TheXcmsColor structure is the device—independent analog tX@elor structure, and is used by all of the Xcms
functions described above. It contains a pixel value, a format value which specifies the device-dependent or
device-independent color space used to describe the color, and a union of structures that specify the parameters {
the supported formats. The structure is showExemple 7-14

Example 7-14. The XcmsColor structure

typedef struct {
union {

XcmsRGB RGB;
XcmsRGBi RGB;;
XemsCIEXYZ CIEXYZ;
XcmsCIEuvY CIEuvY;
XcmsCIExyY CIExyY;
XcmsClELab CIELab;

XcmsCIELuv CIELuyv;

XemsTekHVC TekHVC;
XcmsPad Pad;
} spec; /* the color specification */
unsigned long pixel; [* pixel value (as needed) */
XcmsColorFormat format; /* the specification format */
} XemsColor;

The legal values for the format field akEmsUndefinedFormat , XemsCIEXYZFormat , XemsCIEuvYFormat
XemsCIExyYFormat , XemsCIELabFormat , XemsCIELuvFormat , XemsTekHVCFormat, XemsRGBFormat,
andXcmsRGBiFormat . The RGB substructure within the unispec consists of three unsigned 16-bit integers. All
the other color space structures consist of three doubles, axidntis®ad structure reserves four doubles for possible
extensionsExample 7-15shows these structures.

Example 7-15. Selected XcmsColor sub—structures

typedef unsigned int XcmsColorFormat; /* Color Space Format ID */

typedef double XcmsFloat;

typedef struct { /* Device RGB */
unsigned short red; [* scaled from 0x0000 to Oxffff */
unsigned short green; /* scaled from 0x0000 to Oxffff */
unsigned short blue; [* scaled from 0x0000 to Oxffff */

} XemsRGB;
typedef struct { /* RGB intensity */

XcmsFloat red; /¥0.0-1.0%

XcmsFloat green; /*0.0-1.0%

XcmsFloat blue; /¥0.0-1.0%
} XemsRGB;;

/* structures for other color spaces omitted */

typedef struct { [* TekHVC */

XcmsFloat H; /*0.0 - 360.0 */

XcmsFloat V; /¥0.0 - 100.0 */

XcmsFloat C; /*0.0 - 100.0 */
} XemsTekHVC,;
typedef struct { [* 4 doubles of pad */

XcmsFloat padO; /* for use by Xcms extensions */

XcmsFloat padil;

XcmsFloat pad2;

XcmsFloat pad3;
} XemsPad;

Example 7-16shows a procedure that uses the TekHVC color spack¥anslAllocColor() to allocate a number of
colors with a given Hue and Chroma, and with perceptually uniform steps between a given maximum and a given
minimum Value.

Example 7-16. Allocating device—-independent colors

/*

* This procedure allocates n colors with the given Hue and Chroma, and
* with Values equally spaced between minv and maxv. The pixels values
* are returned in the passed array of pixels, which is assumed to be

* large enough to hold them. Returns XcmskFailure if one of the calls

* to XcmsAllocColor returned XcmsFailure, otherwise XcmsSuccess.

*/

Status AllocShades(dpy, cmap, hue, chroma, minv, maxv, pixels, n)
Display *dpy;

Colormap cmap;

double hue, chroma, minv, maxv;

long *pixels; /* RETURN */
int n;
{
XcmsColor color;
double value, deltav;
int i;
if (n > 1) deltav = (maxv — minv)/(n-1);
else deltav = (maxv-minv);
color.format = XcmsTekHVCFormat;
color.spec.TekHVC.H = hue;
color.spec.TekHVC.C = chroma,;
fori=0;i<n;i++){
color.spec.TekHVC.V = minv + i*deltav;
if (XcmsAllocColor(dpy, cmap, &color, XcmsTekHVCFormat) == XcmsFailure)
return XcmsFailure;
pixels][i] = color.pixel;
}

return XcmsSuccess;

}

Example 7-16has one serious weakness: no checking is performed to ensure that the minimum and maximum Va
passed to the procedure are valid. This is particularly important because the range of valid Values depends on bot
and Chroma. If either of the specified Values is outside the boundaries of the TekHVC color space, or outside the
the device being used, gamut compression will occur on the allocated colors. Later in this section, we develop a
refinement to this example that allocates shades, all of which are within the gamut of the device.

7.9.3.2 Color Conversion

In X11R5, each colormap hasalor conversion conterutomatically associated with it. A color conversion context, ol
CCC, is an opaque structure of ty)emsCCC It contains the attributes that control the details of color conversion fro
one color space to another. These attributes include the procedure that is called to perform gamut compression w|
device-independent color specification is outside the range of displayable colors for a particular device.

Xlib contains functions to create and destroy CCCs, set and get CCC attribute values, and associate a CCC with a
colormap. Because the colorimetric theory behind these CCC attributes is beyond the scope of this chapter, these
will not be described here. Many programmers will never have to use CCCs at all. Others may use CCCs, but will r
use anything but the default CCC. This section describes the CCC functions that are useful to this second categor
programmer.

Because every colormap has a CCC associated with it, all of the Xcms functions described so far have had an imp
argument. The functions that will be described in the next section, however, do not require a colormap argument k
passed a CCC directly. Fahese functions, you may obtain the CCC of a colormap with the function
XcmsCCCOfColormap() , or you may obtain the default CCC of a screen WithhsDefaultCCC()

The color conversion context controls the details of color conversions performed by other Xcms functions. It can al:
used to control the explicit conversiarf colors with the functioiXcmsConvertColors() . This function takes a CCC
as an argument, along with an arrajKomsColor structures and converts those colors to a single specified target foi

The functionsXcmsCCCOfColormap() , XcmsDefaultCCC() , andXcmsConvertColors() are documented in
the reference section of this book. The remaining CCC functions are listadln 7—3 For information on these
functions and an explanation of the CCC attributesVYsaane Two, Xlib Reference ManwalXCMSBOOK.

XcmsClientWhitePointOfCCC XemsScreenWhitePointOfCCC
XcmsCreateCCC XcmsSetCCCOfColormap
XcmsDisplayOfCCC XcmsSetCompressionProc
XcmsFreeCCC XcmsSetWhiteAdjustProc
XcmsScreenNumberOfCCC XcmsSetWhitePoint

Table 7-3 Other Color Conversion Context Functions

7.9.3.3 Gamut—querying Functions

To make full use of a screen’s color capability, some applications will want to explicitly query the gamut of a screer
programs that are not concerned with the precise boundaries of a screen’s gamut may need to query the boundaris
irregular color space to ensure that requested color specifications are legal for that spac&ekiie space, for
example, the maximum value of Chroma varies with Hue, and the maximum and minimum legal Value varies with |
Hue and Chroma. The functions described here can be used to verify that requested colors are legal for the color
within the device gamut, and can therefore be displayed as requested, without gamut compression.

The functionsXcmsQueryBlack() , XcmsQueryWhite() , XemsQueryRed() , XcmsQueryGreen() , and
XcmsQueryBlue() return the device—-independent color specification, in the desired format, of pure black, white,
green, and blue. That is, they convert from the device—dependent colors RGBI:0.0/0.0/0.0, RGBi:1.0/1.0/1.0,
RGBI:1.0/0.0/0.0, RGBI:0.0/1.0/0.0, and RGBI:0.0/0.0/1.0 to the specified color space. These functions are fully
documented in the reference section at the end of this book.

The following functions are used to query the screen gamut in terms of the TekHVC color space:

XecmsTekHVCQueryMaxC()
Determines the maximum displayable Chroma for a given Hue and Value.

XemsTekHVCQueryMaxV()
Determines the maximum displayable Value for a given Hue and Chroma.

XecmsTekHVCQueryMinV()
Determines the minimum displayable Value for a given Hue and Chroma.

XecmsTekHVCQueryMaxVC()
For a given Hue, determines the maximum displayable Chroma and the Value at which that Cl
is reached.

XecmsTekHVCQueryMaxVSamples()
For a given Hue, partitions the displayable values of Chroma into a specified number of sampl
intervals and determines the maximum value for each interval. This can be used to plot the
boundaries of a screen’s gamut at a given Hue.

These functions are fully documentedMalume Two, Xlib Reference Manugimilar query functions exist for the
CIELab and CIELuv color spaces, and are liste@liahle 7-4 Because CIELab and CIELuv are analogous but less
intuitive than the TekHVC space, those functions are not documented here. See VolumBbIeeference Manuair
The X Color Management Systancomplete information.

CIELab Queries CIELuv Queries
XcmsCIELabQueryMaxC XcmsCIELuvQueryMaxC
XcmsCIELabQueryMaxL XemsCIELuvQueryMaxL
XcmsCIELabQueryMaxLC XemsCIELuvQueryMaxLC
XcmsCIELabQueryMinL XcmsCIELuvQueryMinL

Table 7-4 Gamut—querying Functions for the CIELab and CIELuv Color Spaces

Example 7-17is a refinement t&Example 7-16 It queries the screen’s gamut to determine the minimum and maximtu
displayable Values for the given Hue and Chroma and allocates a specified number of colors spaced at perceptual
intervals between that minimum and maximum. If the specified Hue and Chroma are within the screen’s gamut, th
function will only allocate colors that do not require gamut compression.

Example 7-17. Querying the screen gamut and allocating colors

/*

* This routine allocates n shades of the color with specified Hue and

* Chroma. The shades will be at perceptually equal intervals between
* the minimum and maximum Values of the device gamut for the given Hue
*and Chroma.

*/

Status AllocShades(dpy, cmap, hue, chroma, pixels, n)

Display *dpy;

Colormap cmap;

double hue, chroma;

long *pixels; /* RETURN */
int n;
{
XcmsColor color;
XcmsCCC ccgc;
int i;
double minv, maxv;
double deltav;
ccc = XemsCCCOfColormap(dpy, cmap);
if (XecmsTekHVCQueryMinV(ccc, hue, chroma, &color) == XcmsFailure)
return XcmsFailure;
else
minv = color.spec.TekHVC.V;
if (XecmsTekHVCQueryMaxV(ccc, hue, chroma, &color) == XcmsFailure)
return XcmsFailure;
else
maxv = color.spec.TekHVC.V,;
if (n > 1) deltav = (maxv — minv)/(n-1);
else deltav = maxv — minv;
for(i=0; i < n; i++) {
color.format = XcmsTekHVCFormat;
color.spec.TekHVC.H = hue;
color.spec.TekHVC.C = chroma,;
color.spec.TekHVC.V = minv + i*deltav;
if (XcmsAllocColor(dpy, cmap, &color, XcmsRGBFormat) == XcmsFailure)
return XcmsFailure;
pixels][i] = color.pixel;
}

return XcmsSuccess;

7.10 Creating and Installing Colormaps

In discussing colormaps earlier in this chapter, we mentioned that there are hardware colormaps and virtual colorn
we did not discuss the ramifications of this fact.

A hardware colormap is a physical register from which the screen hardware reads the RGB intensity values that ge
the colors on the screen. Most workstations have only one hardware colormap, in which case all windows on the s
are interpreted using the same colormap. Some high performance workstations have multiple hardware colormaps
which case separate windows may have their own independent hardware colormaps.

If the hardware colormap cannot be changed, it is termeuitable Monochrome systems normally have an immutable
colormap, since it does little good to swap the two entries or make them both black or white. Some low-cost color !
and some X terminals have immutable hardware colormapsSthiieColor |, StaticGray , andTrueColor

visuals are the only visuals that can possibly work on systems that have immutable hardware colormaps. In immui
colormaps, no client can allocate private colorcells and all RGB values are preset. On these systems,
XCreateColormap() succeeds, but it just gives you another copy of the default colormap (or one of the default
colormaps if there are multiple immutable colormaps). The application should check for this when creating colorms

On most color workstations, you can write new values into the hardware colormap or colormaps to change that ma
These hardware colormaps are terroeaingeable TheDirectColor |, GrayScale , andPseudoColor visuals are
available only on systems that have changeable colormaps.

X manages multiple colormaps by keepingual colormapsn memory and installing them as instructed by the window
managerlnstalling a colormap is the process of moving a virtual colormap into the hardware colormap. Only installs
colormaps are used to determine the colors appearing on the screen. When there is only one hardware colormap
virtual colormap is installed, the virtual colormap that was previously installed becoinssalled

Up to this point in this chapter, we have been allocating colors out of the default colormap, which is created and ins
when the server starts up. On the most common color workstations, with four to eight planes, it is quite easy for cli
that require precise colors to allocate all the available colorcells. Virtual colormaps are a response to this problem.
a client cannot get the colorcells it needs from the installed colormap, it can create a new virtual one. The window
manager will then install this virtual colormap when this application is in use.

When a virtual colormap is installed and there is only one hardware colormap, all the clients that used the old color
will be displayed in false colors, since the pixel values in their windows will be interpreted according to the new colc

When an application creates a virtual colormap, it must set the colormap window attribute of its top—level window s
the window manager can find out what colormap to install. By default, this attribute indicates the default colormap.
subwindows use different colormaps from the main window, there is a property that can be set to tell this to the win
manager, as described@mapter 12, "Interclient Communication."

It is a hard rule that an application should never install its own colormaps. This is required by the current conventic
described irChapter 12, "Interclient Communication."

By now you should be getting the idea that it is much better to arrange to share the default colormap with the other
applications than to try to create one of your own. The only time when you should really need to create a special ¢
is when you are doing smooth shading or similar applications that need many strangely distributed colors. On the
hand, creating a virtual colormap might be the only way to make your application that has demanding color needs 1
a system that provides onlyPaeudoColor visual. On systems with multiple hardware colormaps, you can create y
own colormap and have it installed without affecting other applications. You cafListmstalledColormaps()

to get information about hownany colormaps are installed into the hardware.

7.10.1 Functions for Manipulating Colormaps
The following functions should be used by applications only if they need a special purpose colormap:

XCreateColormap()
Creates a virtual colormap resource, either with no allocated entries or with all allocated read/
that matches the passed visual. If no entries are allocated, they can be allocated either as rea
or as read-only cells. If all entries are allocated read/write, the colormap is completely private
just needs its colors set wikBtoreColors()

XFreeColormap()
Uninstalls the specified virtual colormap and frees the resources associated with the colormap
Applications are allowed to use this. Sen@otormapNotify event to any windows that were
using the colormap.

XListlnstalledColormaps()
Lists the installed colormaps.

XCopyColormapAndFree()
Moves all the client’s existing colormap entries to a new colormap and frees those entries of tt
colormap. This is used when colorcell allocation fails and some cells have already been alloc:
saves needing to create a colormap and start from the beginning allocating colors. For applice
with special color needs that can’t make do, they carK€dpyColormapAndFree() , set their
colormap window attribute, and continue allocating colors in the new colormap where they left

XSetWindowColormap()
Sets the colormap window attribute of a window.

The following functions are use by the window manager to install and uninstall colormaps:

XlnstallColormap()
A function only to be used by window managers to install a colormap. Any window using that
colormap ID as its colormap attribute receiv€dodormapNotify event.

XUninstallColormap()
A function only to be used by window managers to uninstall a colormap. Removes a virtual
colormap from the set of installed hardware colormaps. On systems with only one hardware

colormap, the default colormap is reinstalled. SeébalsrmapNotify event to windows that are
using the specified map.

7.10.2 The ColormapNotify Event

ColormapNotify events notify an application when the colormap specified in the colormap attribute for a particul
window has been installed, uninstalled, or freed or when the attribute itself has been changed. The former is used
applications, and the latter (attribute changes) by window managers.

If your application wants to know when your colormap is installed or uninstalled, it should watch for these events ai
accordingly. To receiv€olormapNotify events, pas€olormapChangeMask (ORed with the other masks you
need) taXSelectinput() . Example 7-18 shows th&ColormapEvent structure.

Example 7-18. The ColormapEvent structure

typedef struct {
int type;
unsigned long serial; /* # of last request processed by server */
Bool send_event; [* True if this came from SendEvent

* request */
Display *display; /* Display the event was read from */
Window window;
Colormap colormap; /* Colormap or None */
Bool new;
int state; /* Colormaplnstalled, ColormapUninstalled */
} XColormapEvent;

Here is a brief explanation of each member ofX@®lormapEvent structure:

window The window for which this event was selected, whose colormap attribute was changed or who:
colormap specified in that attribute was installed, uninstalled, or freed.

colormap The colormap associated with the window, either a colormap ID or the coNstaat It will be
None only if this event was in response toXdAreeColormap() call.

new True when the colormap attribute has been changegalgse when the colormap is installed or
uninstalled.

state Either Colormaplnstalled or ColormapUninstalled ; it indicates whether the colormap i
installed or uninstalled.

XFreeColormap() , XlInstallColormap() , andXUninstallColormap() generate this event for windows tha

have their colormap attribute set to the colormap that was affecSetWindowColormap() and

XChangeWindowAttributes() can also generate this event. From the information in the structure, you can tell

which of these calls generated the event and what the current status of the colormaphap&eel 2, "Interclient
Communication," in this manual and Appendix Lnterclient Communcation Conventigi$ VVolume Zero, X Protocol
Reference Manudhs of the second printing) for an additional description of the conventions regarding colormaps.

7.10.3 The Required Colormap List

The X protocol specifies that each server can specify a required list of colormaps, which affects what happens whe
colormaps are installed or uninstalled. Here is what the protocol specification says about the required list (translate
Xlib terms):

At any time, there is a subset of the installed maps, viewed as an ordered list, called the required list. The length ¢
required list is at moshin_maps , wheremin_maps is a member of thBisplay structure. The required list is
maintained as follows. When a colormap is an explicit argumetingiallColormap() , it is added to the head of
the list, and the list is truncated at the tail if necessary to keep the length of the list toratrmo®tps . When a
colormap is an explicit argumentXdJninstallColormap() and it is in the required list, it is removed from the list.
A colormap is not added to the required list when it is installed implicitly by the server, and the server cannot implic
uninstall a colormap that is in the required list.

In less precise words, tihein_maps most recently installed maps are guaranteed to be installed. This number will of
be one; clients needing multiple colormaps should beware.

7.11 Miscellaneous Color—-handling Functions

The following miscellaneous functions provide additional ways to use the color database, to find out the RGB value
colormap cell, and to free cells that are no longer needed:

XLookupColor()
Looks up a string color name in the color database and returns separate color structures conte
the exact RGB values specified in the database for that name and the closest RGB values ave
on the hardware. This function does not look at any cells in the colormap, even though it has i
colormap argument! This argument specifies which screen the color should be looked up on
which is relevant only if each screen has a different color characterization or color database. T
difference betweeXLookupColor() andXParseColor() is thatXParseColor() accepts
the hexadecimal color specification (whihookupColor() does not), while
XLookupColor() returns the closest colors available on the hardware (WiRelnseColor()
does not).XLookupColor() might be useful for making sure that user—specified colors are
contrasting. There is also an Xcms versiemsLookupColor() , that is analogous to
XLookupColor() except with different arguments and the Xcms version returns a
device-independent color specification.

XQueryColor() Fills anXColor structure with the RGB values corresponding to the colormap cell indicated by
pixel value. Also sets tiftags member of the structure t®¢Red | DoGreen | DoBlue).
The Xcms version{cmsQueryColor() , translates the current RGB values in the colormap cel
into a device—independent specification.

XQueryColors()
Fills multiple XColor structures with the RGB values and flags corresponding to the colormap
indicated by a pixel values. Also sets ellas member to[DoRed | DoGreen |
DoBlue). The Xcms version{cmsQueryColors() , translates the current RGB values in the
colormap cells into device—independent specifications.

XFreeColors() Frees the colormap cells associated with the given pixel values and/or frees the given planes.
all the colorcells an application allocates are freed when the application exits, this routine is ne
only when an application is finished with cells before it exits. Freeing a read/write colorcell ma
that cell available to other applications. Freeing a read-only cell may make the cell unallocate
only if no other application is sharing that cell.

Chapter 8

Events

This chapter is another must-read. Events are central to X. The fundamental framework for handling events was
Chapter 3, but this chapter gives much more detail, both on selecting events for a window and on handling them w
arrive. It discusses each of the masks used to select events; for a description of the event structures themselves, ¢
Appendix E.

An event, to quote the Oxford English Dictionary, is an "incident of importance" or a "consequence, result, or outco
This definition holds for X. An event reports some device activity or is generated as a side effect of an Xlib routine.

From a programmer’s point of view, an event reports:

. Something that your program needs to know about, such as user input or information available from other cli¢

. Something your program is doing that other clients need to know about, such as making text available for pas
another client.

. Something the window manager needs to know, such as a request by your program for a change to the layot
screen by mapping a window.

Programming with events is quite different from traditional methods of programming for input. You cannot simply v
for a user to type something and expect nothing else to happen in the meantime. Other programs are running con
and sharing the same system resources including the screen. They can affect your program. What happens if anc
window is placed over yours in the middle of the instruction your user is typing? The program must be able to liste
several types of events at once and jump back and forth when acting on them. Events imply a philosophy that the |
should respond to the user’s actions, not the other way around. Events make this type of programming straightfon

Events occur asynchronously and get queued for each client that requested them. It is possible for more than one
get copies of the same event. Usually a program handles each one in turn and performs the appropriate action be
reading the next one. But there is usually no way for a program to predict in what order it will find the events on the
queue.

This chapter covers events in detail, going further than the introduction to evehagter 2, "X Concepts." Here we
discuss the event union and structure types, the selection and propagation of events, how each event type is usual
how events are received and handled in a program, and how they are sent by one client to another.

After you have read and understood this chapterCbagter 9, "The Keyboard and Pointer," which demonstrates how
to use events to handle the user’s input, and Appendixvéht Referencevhich describes all the event types in a
reference format.

8.1 Overview of Event Handling

There are three important steps in a program’s handling of events. First, the program selects the events it wants fo
window. Then it maps the windows. Finally, it provides an event loop which reads events from the event queue as
occur.

This process is quite simple, the only complication being the variety of events that may occur, each perhaps having
different meaning when it occurs in a different window. You have to know every circumstance in which a particular
is generated and make sure that your program does the right thing with it. But you will not need to understand the
of every event in order to begin using the most important ones.

The easiest way to select events is toX8klectinput() for each window that you want to receive events. You ca
also set thevent_mask attribute directly withXChangeWindowAttributes() or XCreateWindow() . You
specify a mask which specifies which event types you want, combining any number of the event mask symbols witl
bitwise OR operator).

You must make sure that every window that is to receive events appears on the screen after the events are selecte
window but before the event loop begins. Otherwise, the client will miss thEXjpsise event that triggers the drawing
of the window’s contents. For top—level windows, the client might also migSahfgureNotify event that reports
the size of the window granted by the window manager. For a window to appear on the screen, it must be mappec
its ancestors must be mapped. It is permissible to map all the windows except the top—level ones at any time, but
mapping of children of the root window must be done betweeXSadectinput() call and the routine that gets
events for the event loop.

A simple event loop was shown@hapter 3, "Basic Window Program." The only difference between this loop and the
loops in real clients is in the number of different event types handled and the complexity of each branch.

Even though selection of events must be done first, we are going to start by describing how to handle events once
them, because there are fewer details involved. We will return to the exact procedure for selecting events and the
of each event mask symbol $ection 8.3, "Selecting Events."

8.2 Event Processing

This section describes what an event type is and what an event structure contains, reviews how the event queue s
events and how a program reads events from it, and summarizes all the routines that can be used to get events.

8.2.1 The Event Structures

An event is implemented as a packet of information stored in a structure. The simplest event structure is shown in
Example 8-1.

Example 8-1. The XAnyEvent structure

typedef struct {
int type; /* The type of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* True if sent from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* Window that receives event */

} XAnyEvent;

There are 30 different event structures. Virtually all of them have the members showKAmerent structure. Most
of the event structures also contain various additional members that provide useful information for clients. The firsi
member of every event structutgpe , indicates the type of event. We will come back to the tySeation 8.2.2,

"Event Types and XEvent Union." Theserial member identifies the last protocol request processed by the serve
use in debugging. Theend_event flag indicates whether this event was sent from the sgRadse) or from another
client (True). Other clients can send events withendEvent() , as described iBection 8.4, "Sending Events."

Many of the event structures also hawdisplay member or @ot member or both. Thaisplay = member identifies
the connection to the server that this event came from. (Some applications connect with more than one seve¢r.) Tt
member indicates the screen on which the event occurred (a server may control more than one screen). Most proy
only use a single screen and therefore do not need to worry aboobtthenember. Thelisplay member can be
useful for passing the display variable into routines by simply passing a pointer to the event structure.

Most event structures also havevimdow member,which indicates the window that selected and received the event.
This is the window where the event arrives if it is a keyboard or pointer event and has propagated through the hier:

described irBection 8.3.2, "Propagation of Device Events.'One event type may have two different meanings to a
client, depending on which window the event appears in.

8.2.2 Event Types and XEvent Union

All the event structures are padded when necessary to lsathe size. ThEEvent union contains all the event
structures, as shown in Example 8-2.

See a C language tutorial or reference manual if you are unfamiliar with unions.

The first member of thEEvent union is the type of event. Each event structure withitKieent union also begins
with the type of event. A client determines the type of event by looking Bftee member oiXEvent . Then the client
branches to specific code for that event type. After the initial determination of the event type, only the event structt
containing the specific information for each event type should be used in each branch. For example, assuming yot
declared aiXEvent variable calledeport , thereport.xexpose structure should be used within the branch for
Expose events. This lets you use the fields unique tdek@ose event structure.

The value otype is any one of the constants listed in the center column of Table 8-3, presented later in this chapt
After determining the event type, you know which event structure frotdEent union contains specific information
about the event. You can then use the appropriate event structure name xkegh &3 access the specific information
unique to that event structure. The event structure name is also shown on each event reference page in Ayserdix
Reference

Example 8-2. The XEvent union
typedef union _XEvent {
int type; [* Must not be changed; first member */

XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XKeymapEvent xkeymap;
XExposeEvent xexpose;
XNoExposeEvent xnoexpose;
XGraphicsExposeEvent xgraphicsexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMappingEvent xmapping;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;

} XEvent;

8.2.3 Xlib’'s Event Queue

The event structures are placed on an event queue in the order they occur, so that the program can read them anc
accordingly. As shown in Figure 8-1, the server maintains one event queue, on which all events are placed, and ¢
events to the Xlib in each client. The events in the server’'s queue are periodically transferred over the network to t
queues. Two clients can receive copies of the same events if they each select them.

Figure 8-1. The server’s event queue and client’s event queue

Client 1 Client 2

A pplic ation A pplic ation
S erver Y XEb i i
Queue Queue

Network

The client sets up an event-receiving loop to handle the events that arrive on its event queue. There are several r
client can use to get events. They differ in how many windows they monitor, how many types of events they look f
whether they wait for events to appear before returning. For a description of the event—getting routieesiose®.2.6,
"Routines that Get Events."

8.2.4 Writing the Event Loop

In basicwin(the example program i@hapter 3, "Basic Window Program"), you have already seen the structure of the
code you should write to handle events. In a more complex application, the code for each event type will simply be
divided according to the values in the members in each event structure. Usually, the next branch after the event ty
test the window in which the event occurred.

The branch foExpose events in Example 8-3 demonstrates how an event might be handled when there are sever:
windows involved. The example also notes when each of the selected events——and the events that may be delive
without your selecting them—--should be handled within your event loop. Depending on your application, other eve
might need to be handled as well.

Notice how the specific event structure names suctegsose are used to access information in the event structures.

Example 8-3. An event-handling loop
XEvent report;
Window window1, window2, window3;

[* Open display, create windows, etc. */

/* Window 1 is a top—level window, window 2 is a child

* of window 1 */

XSelectinput(display, windowl, StructureNotifyMask | ExposureMask

| ButtonPressMask);
XSelectinput(display, window2, ExposureMask);
XSelectinput(display, window3, ExposureMask);
XMapWindow(display, window1);
XMapWindow(display, window?2);
XMapWindow(display, window3);
[* Get events, use first to display text and graphics */
while (1)
{
[* Get any type of event on any window; this gets
* events on every window for which we have selected
* events (three in this case) */
XNextEvent(display, &report);
switch (report.type) {
case Expose:
printf("got an Expose event\n®);
/* Redraw contents of windows; note that we can'’t
* use switch because window IDs are not constant */
if (report.xexpose.window == window1)
/* Redraw window 1 */;
else if (report.xexpose.window == window?2)
/* Redraw window 2 */;
else (report.xexpose.window == window3)
/* Redraw window 3 */;
break;
case ButtonPress:
printf("got a ButtonPress event\n");
/* Respond to buttonpress, probably depending on
* which window is reported in report.xbutton.window */
break;
case ConfigureNotify:
printf("got a ConfigureNotify event\n™);
/* Window was resized, moved, or restacked or border
* width was changed; reset application variables
* so Expose branch will scale graphics properly */
break;
case MappingNotify:
printf("got a MappingNotify event\n");
/* Keyboard or Pointer mapping was changed by another
* client; if keyboard, should call XRefreshKeyboardMapping,
* unless keyboard events are not used */
break;
case ClientMessage:
printf("got a ClientMessage event\n");
/* Primarily used for transferring selection data,
* also might be used in a private interclient
* protocol; otherwise, not needed in event loop */
break;
case SelectionClear:
printf("got a SelectionClear event\n");
/* If this application previously called
* XSetSelectionOwner, it may get this event;
* otherwise, you don’t need it in your
* event loop */
break;
case SelectionNotify:
printf("got a SelectionNotify event\n");
/* If this application calls XConvertSelection,

* it will get this event; otherwise, you don’t
* need it in your event loop */
break;
case SelectionRequest:
printf("got a SelectionRequest event\n");
/* If this application previously called
* XSetSelectionOwner, it may get this event;
* otherwise, you don’t need it in your
* event loop */
break;
case GraphicsExpose:
/* Fall through into NoExpose */
case NoExpose:
printf("got a GraphicsExpose or NoExpose event\n®);
/* If this application calls XCopyArea or XCopyPlane
* and the graphics_exposures member of the GC is
* True and the source is a window, these events may
* be generated; handle GraphicsExpose like Expose */
default:
printf("Event being thrown away\n");
/* All *Notify events except ConfigureNotify will
* be thrown away; they are not needed by most
* applications but are sent because ConfigureNotify
* can't be selected independently */
break;
} /* End switch on event type */
} ¥ End while (1) */

TheXNextEvent() routine gets the next event on the quéoleour client or waits until one appears before returning.
There are many other routines that get events of particular types, in particular windows, with or without waiting for 1
event to appear. These routines are describ8ddtion 8.2.6, "Routines that Get Events."

The first member of thEEvent report contains the type of event. This information is used in a "switch" statement tc
branch according to the event type. Once the type is known, the specific event structure is known, and its contents
accessed. For example, the width of the exposed area in the window is containetEixpibeeEvent structure as
report.xexpose.width , Wherereport is theXEvent variable xexpose is the member of th€Event union,
andwidth is a member of thEExposeEvent structure type.

8.2.5 Printing the Event Type

We recommend that you print the event type and perhaps other event information in each branch of the event loop
you are in the application debugging stage. Be very careful that the loop handles all the events that can occur and
Xlib routine you choose to get events is capable of getting all the events you need. If your program hangs and can
interrupted with CTRL-C, it is probably waiting for an event that you did not select. For example, you may have cz
XMaskEvent() with a mask oButtonReleaseMask but you did not sele®uttonReleaseMask in the
XSelectEvent() call. The event—getting routines do not check to make sure you have selected the events you ¢
requesting.

Instead of printing the event type as a number which you then have to interpret usiK@1h¢.ke include file, you can
have your program print the real name of the event. Example 8-4 creates an include file containing an array of stril
spelling out the event type names. Example 8-5 then prints the correct event name.

Example 8-4. An include file for printing the event type —— eventnames.h
static char *event_names[] = {

"KeyPress",
"KeyRelease",

"ButtonPress",
"ButtonRelease",
"MotionNotify",
"EnterNotify",
"LeaveNotify",
"FocusIn”,
"FocusOut",
"KeymapNotify",
"Expose",
"GraphicsExpose",
"NoExpose",
"VisibilityNotify",
"CreateNotify",
"DestroyNotify",
"UnmapNotify",
"MapNotify",
"MapRequest",
"ReparentNotify",
"ConfigureNotify",
"ConfigureRequest",
"GravityNotify",
"ResizeRequest",
"CirculateNotify",
"CirculateRequest",
"PropertyNotify",
"SelectionClear",
"SelectionRequest",
"SelectionNotify",
"ColormapNotify",
"ClientMessage",
"MappingNotify"

h

Note thateventnames.fs not a standard include file but one we have written for the purpose of printing the event typ
more legibly. You could use a similar method to identify windows, but since their IDs are not constants, you would
to load the array dynamically after you have created the windows.

Example 8-5 demonstrates printing an event using the include file shown in Example 8-4.

Example 8-5. Printing the event type

#ifdef DEBUG

#include "eventnames.h"

#endif

XEvent event;

XNextEvent(display, &event);

#ifdef DEBUG

fprintf(stderr, "winman: got a %s event\n", event_name[event.type]);
#endif

8.2.6 Routines that Get Events
There are several functions that get event structures from the queue. They differ in the following respects:

. The number of windows they monitor (whether they inspecivihdow member).

. Whether they look for particular event types.

. Whether the event is removed from the queue when it is read.

. Whether a routine you write is used to determine whether the event should be returned.

. Whether Xlib waits until an event meeting the criteria arrives or immediately returns a success or failure code

. Whether the connection to the server is flushed to see if any more events become available.

The following is a list of the event—handling routines and their differences. In all of these routines, you pass a poin
XEvent structure to be filled.

XNextEvent()

XMaskEvent()

Gets the next event of any type on any window. This function flushes the request buffer if Xlib
queue does not contain an event and waits for an event to arrive from the server connection.

Gets the next event matching the specified mask on any window. This function flushes the req
buffer if Xlib’s queue does not contain a matching event and waits for a matching event to arriy
from the server connection.

XCheckMaskEvent()

XWindowEvent()

Behaves likeXMaskEvent() but immediately returniSalse if there is no matching event in
Xlib’'s queue and none could be read from the server connection after flushing the request bufi
ReturnsTrue if a matching event was found.

Gets the next event matching both the specified mask and the specified window. This functior
flushes the request buffer if Xlib’s queue does not contain a matching event and waits for a me
event to arrive from the server connection.

XCheckWindowEvent()

XIfEvent()

XChecklIfEvent()

XPeekEvent()

XPeeklIfEvent()

Behaves likeXWindowEvent but immediately returniSalse if there is no matching event in
Xlib’s queue and none could be read from the server connection after flushing the request bufi
ReturnsTrue if a matching event was found.

Looks for an event on the queue that matches the conditions set by a user—supplied predicate
procedure. This function flushes the request buffer if Xlib’s queue does not contain a matching
event and waits for a matching event to arrive from the server connection.

Behaves likeXIfEvent() but immediately returniBalse if there is no matching event in Xlib’'s
queue and none could be read from the server connection after flushing the request buffer. Re
True if a matching event was found.

Gets the next event of any type from any window without removing the event from the queue.
function flushes the request buffer if Xlib’s queue is empty and waits for an event to arrive fron
server connection.

Gets the next event that matches the specified predicate procedure, without removing the evel
the queue. This function flushes the request buffer if Xlib’'s queue does not contain a matching
and waits for a matching event to arrive from the server connection.

XCheckTypedEvent()

Searches the queue from the oldest event for the desired event type, without discarding all thc
searched that do not match. If no matching event is found in Xlib’s queue, this function flushe:
request buffer and returfalse .

XCheckTypedWindowEvent()

XEventsQueued()

XPending()

Searches the queue from the oldest event for the desired window and event type, without disc
those searched that do not match. If no matching event is found in Xlib’s queue, this function fl
the request buffer and returiRalse .

Returns the number of events on the queue but has three modes that specify what else is don
three modes count the events already in Xlib’s queue and return if there a@umuedAlready
returns even if there are not any events in the qu@ueuedAfterFlush flushes the request
buffer and attempts to read more events from the connection before returning.
QueuedAfterReading attempts to read more events from the connection without flushing th:
buffer.

Returns the number of events on the queue. If there are none, it flushes the request buffer an

another count. This is identical XiEventsQueued() with modeQueuedAfterFlush

XPutBackEvent()
Puts an event you supply back on Xlib’s queue, so that it will be the next to be received by
XNextEvent()

XGetMotionEvents()
Gets all the motion events that occurred on the specified window in a specified time period. Mc
history buffers were implemented for the first time in the R5 sample servers from MIT. An
application should check to seXiDisplayMotionBufferSize(display) == , Which
indicates that motion history buffer is not supported.

XQLength() Returns the number of events on the queue, without flushing the request buffer.

Note that the functions that have mask arguments do not return non—-maskable events (MappingNotify, Selection e
and ClientMessage).

You may notice that there are two broad categories of routines that get input: those that wait for a matching event
those that do not wait. The latter may be used in porting applications that use the "polling" style of programming, v
checks to see if input has arrived at regular intervals by continuously calling a "polling" function in a loop. Given th
choice, however, it is much better to use the routines that wait for events as much as possible, since this technique
waste processor cycles. This is true evdrittenprogramming.

Table 8-1 organizes the event-receiving functions according to whether they wait for events if none are present or
queue.

Event Desired Desired Result:Return False Desired Result:Leave ir
Specifications Result:Wait if immediately if none queued
necessary
Any event XNextEvent n/a XPeekEvent
With predicate XIfEvent XChecklIfEvent XPeeklIfEvent
For window XWindowEvent XCheckWindowEvent n/a
For event mask XMaskEvent XCheckMaskEvent n/a
For type n/a XCheckTypedEvent n/a
For window and n/a XCheckTypedWindowEvent n/a
type

Table 8-1 Event—getting Routines

Note that most of the routines apparently missing from Xlib according to Table 8-1 can be simulated with other rou
and fairly simple code. The hole on the top row can be filled by call@tieckMaskEvent() with a mask set to all

1's. For the four routines missing in the last column, you can write a predicate procedure dRdeldfEvent()

An example predicate procedure is shown in Example 8-6. The two routines missing in the first column can also t
replaced with a predicate procedure XtitEvent()

The event—getting routines witbheck in their names are useful for programs that need to poll for input to handle
interrupts. To illustrate the handling of interrupts, let's say you have a routine in a program that performs a comple»
lengthy calculation like a Fourier transform. You want to be able to abort the calculation midway. Therefore, you n
be able to check the keyboard to see if a CTRL-C or other interrupt character has been typed. You also might wau
provide for exposure events during the long wait, though you might be able to get away without this provision. This
be a good application fdfCheckTypedEvent() or XCheckTypedWindowEvent() , since these routines poll
without waiting if no events can be read. When an event does arrive, you can decide from the type or window whet
bother processing it.

8.2.7 Predicate Procedures

The routinesXChecklIfEvent() , XIfEvent() , andXPeeklfEvent() allow you to supply a procedure that return
True orFalse depending on some characteristic of the event. You would use one of these routines if you have a
matching algorithm that is complicated or simply to enable you to clear up the code by putting some of the event
processing in a separate routine.

Your predicate procedure is called with the same arguments as the event—getting routine (except for the predicate

procedure pointer, of course). Example 8-6 shows a predicate procedureéiiiEtbnt() call that uses it. This
code would normally us€NextEvent() , but we have substitutedfEvent() so that we can filter out button events
on buttons other than button 1. This predicate procedure rdmrasfor all events except the undesirable button event

Example 8-6. A predicate procedure and XIfEvent() call
void main(argc, argv)

int argc;

char **argv;

{

Bool predproc();
static char *stuff = "do this or that";

XSelectinput(display, wint, ExposureMask | ButtonPressMask
| ButtonReleaseMask | ButtonMotionMask
| PointerMotionHintMask);

while (1) {
XIfEvent(display, &report, predproc, stuff);
switch (report.type) {

/* Note that no code here for eliminating button
* events on other buttons, because only button
* one events are returned by XIfEvent */

case ButtonPress:
points[index].x = report.xbutton.x;
points[index].y = report.xbutton.y;
break;

case ButtonRelease:
index++;
points[index].x = report.xbutton.x;
points[index].y = report.xbutton.y;
break;

}
}
}
Bool predproc(display, event, arg)
Display *display;
XEvent *event;
char *arg;
{
printf("The arg is %s\n", arg);
switch (event->type) {
case Expose:
case MotionNotify:
case ConfigureNotify:
case KeyPress:
return(True);
break;
case ButtonPress:

case ButtonRelease:

if (event—>xbutton.button == Button1)

return(True);
else
return(False);
break;
default:

8.3 Selecting Events

For each window, a client must select which event types it wants placed in its queue when they occur in that windo

is normally done wittXSelectinput()

, which sets thevent_mask attribute of a window. The client need not

select events on all of its windows, only those in which it wants to see the events that occur.

To select event types for a window, pasgaent_mask as an argument XSelectinput()
event_mask member of th&XSetWindowAttributes
XCreateWindow() . (For more information on théSetWindowAttributes

Window Attributes.")

or set the

structure and cakChangeWindowAttributes() or
structure, se&ection 4.1, "Setting

Theevent_mask is formed by combining the event mask symbols listed in the first column of Table 8-2 with the
bitwise OR operator]). Each mask symbol sets a bit in #vent_mask .

Table 8-2 also describes briefly the circumstances under which you would want to specify each symbol. You will r

read about each maskSection 8.3.3, "Event Masks! see the examples using the eventShiapter 9, "The Keyboard
and Pointer," and throughout this manual; and look at the event structures in Apperigiet, Referencéefore you

will really understand when to use each of these symbols.

Event Mask Symbol
NoEventMask
KeyPressMask
KeyReleaseMask
ButtonPressMask
ButtonReleaseMask
EnterWindowMask
LeaveWindowMask
PointerMotionMask
PointerMotionHintMask
Button1MotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
Button5MotionMask
ButtonMotionMask
KeymapStateMask
ExposureMask
VisibilityChangeMask
StructureNotifyMask
ResizeRedirectMask
SubstructureNotifyMask
SubstructureRedirectMask
FocusChangeMask
PropertyChangeMask
ColormapChangeMask
OwnerGrabButtonMask

Table 8-2 Event Mask Definitions

Circumstances

No events

Keyboard down events

Keyboard up events

Pointer button down events

Pointer button up events

Pointer window entry events

Pointer window leave events

All pointer motion events

Fewer pointer motion events

Pointer motion while button 1 down
Pointer motion while button 2 down
Pointer motion while button 3 down
Pointer motion while button 4 down
Pointer motion while button 5 down
Pointer motion while any button down
Any keyboard state change on EnterNotify , LeaveNotify
Any exposure (except GraphicsExpose and NoExpose)
Any change in visibility

Any change in window configuration.
Redirect resize of this window

Notify about reconfiguration of children
Redirect reconfiguration of children
Any change in keyboard focus

Any change in property

Any change in colormap

Modifies handling of pointer events

, F

Thedo_not_propagate_mask window attribute is formed in the same wayeaent_mask but can only be set with
XChangeWindowAttributes() or XCreateWindow() . Its function is described iBection 8.3.2, "Propagation of
Device Events."

Example 8-7 shows how to set #heent_mask and callXSelectinput()

Example 8-7. An example of selecting input
Display display;

Window window;

unsigned long event_mask;

[* Must open display, create window, etc. */

[* Select key events */

event_mask = ExposureMask | KeyPressMask | KeyReleaseMask;
XSelectinput(display, window, event_mask);

/* Map window after selecting */

[* Get events */

In Example 8-7, events are selechedorethe window is mapped. This sequence is important, since otherwise the

window will not receive the firdExpose event that occurs after a new window is mapped and it will not know when t
redraw the window. You will remember frdmasicwinthat anExpose event signifies that a window has become visibls
and needs to be redrawn. Eveémpose event, including the first, should trigger the drawing of the window’s contents

Also, note that you cannot add to the selected events by céfiatgctinput() with a single additional mask. You
must specify all the desired event masks every time you call it.

8.3.1 Correspondence Between Event Masks and Events

Each event mask symbol indicates that a certain type of event or group of event types should be queued when the
For example, when used alone ag®aent_mask argument tXSelectinput() , aKeyPressMask symbol
indicates that onlKeyPress eventsare desired. AocusChangeMask symbol, on the other hanihdicates an
interest in two types of event&ocusin andFocusOut .

On the other hand, there is more than one event mask symhdtionNotify events; the different masks specify the
conditions under which pointer motion events are desired. For example, Bitdin1MotionMask and
Button3MotionMask symbols are combined to form awent_mask argument toXSelectinput() , only one
event type is requestedotionNotify events. However, this event type will be queued only if the pointer moves
while the first or third button (or both) is held down.

Table 8-3 lists each event mask, its associated event types, and the associated structure definition. The structure:
event type are described in Appendix&xent Reference

Event Mask Event Type Structure
KeyPressMask KeyPress XKeyPressedEvent
KeyReleaseMask KeyRelease XKeyReleasedEvent
ButtonPressMask ButtonPress XButtonPressedEvent
ButtonReleaseMask ButtonRelease XButtonReleasedEvent
OwnerGrabButtonMask n/a n/a
KeymapStateMask KeymapNotify XKeymapEvent
PointerMotionMask MotionNotify XPointerMovedEvent
PointerMotionHintMask

ButtonMotionMask

Button1MotionMask

Button2MotionMask

Button3MotionMask

Button4MotionMask

Button5MotionMask

EnterWindowMask EnterNotify XEnterwWindowEvent

LeaveWindowMask
FocusChangeMask
ExposureMask

(Selected in GC by
graphics_expose member)
ColormapChangeMask
PropertyChangeMask
VisibilityChangeMask
ResizeRedirectMask
StructureNotifyMask

SubstructureNotifyMask

SubstructureRedirectMask

(Always selected)
(Always selected)
(Always selected)
(Always selected)
(Always selected)

LeaveNotify
Focuslin FocusOut
Expose
GraphicsExpose NoOExp
ose
ColormapNotify
PropertyNotify
VisibilityNotify
ResizeRequest
CirculateNotify
ConfigureNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify
CirculateNotify
ConfigureNotify
CreateNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify
CirculateRequest
ConfigureRequest
MapRequest
MappingNotify
ClientMessage
SelectionClear
SelectionNotify
SelectionRequest

XLeaveWindowEvent
XFocusIinEvent XFocusOutEvent
XExposeEvent
XGraphicsExposeEvent XNoEXxj

XColormapEvent

XPropertyEvent

XVisibilityEvent
XResizeRequestEvent
XCirculateEvent XConfigureEvent
XMapEvent XReparentEvent XUnr

XCirculateEvent XConfigureEvent
XGravityEvent XMapEvent XRepal

XCirculateRequestEven XConfigur

XMappingEvent
XClientMessageEvent
XSetSelectClearEvent
XSelectionEvent
XSelectionRequestEvent

Table 8-3 Event Masks, Event Types, and Event Structures

There is no event mask for several of the event types listed at the end of this table, because the X server or anothe
can send them to any client without them being selected. For exdnagupingNotify indicates that the keyboard
mapping (seeSection 9.1.2.3, "Keycodes to Keysym}'or pointer mapping has changed. This event is reported to all
clients by the server when any client changes those mappings. The selection events are a means of interclient
communication, where one client announces witheaant that it has a selection of text or graphics available for pastin
and another client responds with an event specifying in what format it would like the information. Similarly,
ClientMessage events are always selected because Hreysent from one client directly to another using the
XSendEvent() routine.

Also note thaSubstructureNotifyMask andStructureNotifyMask select the same event types but on
different windows. The former selects the events when they occur thddwf the window specified in the call to
XSelectEvent() , and the latter only when they occurtine window specified. (These are perhaps the two least oft
used masks.)

8.3.2 Propagation of Device Events

The fifth member in almost every event structwimdow , contains the ID of the window in which the event appears tc
have occurred. This is called tleent window ForButtonPress , ButtonRelease , KeyPress , KeyRelease ,
andMotionNotify events, the evenvindow is not necessarily the window in which the event originally happened,
which is called theource window

Which window is reported in the event on the queue depends on the results of propagation up through the window
hierarchy and is controlled by tlewent_mask anddo_not_propagate_mask window attributes.

The source window is tHewestvisible window in the hierarchy that encloses the pointer when the device event dtcL
is also thesmalleswisible window enclosing the pointer. Téndow member of the event in the queue (the event

window) will be the source window only if thevent_mask attribute (set wittXSelectinput()) of the source
window selected the event’s type.

If the event was not selected for the source window, then the event is sent to the parent and so on until the event a
an ancestor window that has selected the right event type. The ID of this window is then placedhidaive member of
the event structure and that structure is placed on the queue for this client. Once a window that has selected the e
found, the event no longer propagates. If no window selected the event anywhere in the hierarchy up to and includ
root window, the server never sends the event.

Thedo_not_propagate_mask window attribute also gets involved in this process. When an event arrives at a
window but finds it has not been selected,dbenot_propagate_mask determines whether the event will be sent t
ancestor windows. By default, all events that can propagate do. If the mask for the event type that occurred is inch
thedo_not_propagate_mask , the event is never sent.

Figures 8-2a, 8-2h, and 8-2c demonstrate the propagation of an event through the hierarchy, given three differen
event_mask anddo_not_propagate attribute settings.

Figure 8-2a. One possible selection scheme

1 event mask = ¢
do not propagate mask = &

ButtonPressevent occurs with the
pointer in window A2B. Event not
selected, propagates.

— B aevent mask = |{EayPrassMazk|
PointerMotiomMask!
do_not propagate_mask = ¢

Event notselected for window A2,
propagates.

3 event mask = {ButtonPressMask|

ButtorkeleaseMaslk}
do not propagate_mask = &

Event selected, queued for this client,
windowmember of event struchire s 10 of
this wihdow. sulbwindowmember is ID of
window A2,

o o s o s i — — [I
1 1 I = I ¥ |
O S SO SO N W N L U T T T T " T T 1
T ——— I T
L - L

Thedo_not_propagate_mask is rarely used. However, here is one scenario in which setting the
do_not_propagate_mask attribute would be useful. Consider an application with two windows, a parent and a (

The program lets the user draw in the child by moving the pointer while holding down a pointer button. However, li
basicwin the application exits onButtonPress event in the parent window. SinBattonPress events are not
selected in the child window, they will be propagated to the parent and will cause the application to exit. But a
ButtonPress is necessary because we want the drawing in the child window to occur only when a button is held.
setting thedo_not_propagate_mask attribute of the child window tButtonPressMask , this problem is solved.

Figure 8-2b. Another possible selection scheme

1 event_mask =
do_not propagate_mask = &

ButtonPress event octurs with the
painter in this window. Event not
selected, propagates.

— B aevent mask = |EayPrassMask|
PointerMot ionMask!
do_not propagate_mask =
ButtonPressMazsk
Event & not selected for this window, event
igim do_rot propagate_mask, event
thrown away.

— % event mask = {ButtonPrassMask |

ButtorkeleaseaMask}
do_not propagate_mask = &

g 1 1 1 & L b ok 3 O 3
T 11 o — — I—I

L ' —— - I—I— I —

I LN . LI T |

L I ||%

Event never reaches he windaw or his
applcation's event queue.

Figure 8-2c. Yet another possible selection scheme

—— 1 avent mask = {
do_not propagate mask = &

EuttornPraessz event acturs with the

pointer in this window. Event not
selected, propagates,

— & event mask = {KeyPreassMazk |
PointerMot ionMask!
do_not propagate mask = ¢

Event & notselected For this window,
propogates.

— 8 event mask = {EeyPrassMask|
PointerMot ionMask!
do_not propagate mask = ¢

Eventnot selected, thrown away sihce thi
the root window.

I N N N N N N N N LW T T T T T T 1
= =1 1 I ¥ L+ I

| o NP NN NN N N NN LN LY

1—1 — — — I |E

Here’s an example of where event propagation requires care in selecting events. Imagine a program that creates c
window and a small subwindow. The large window teeonPress events to exit, and the small subwindow draw:.
dots whenever the pointer is moved with a button held down. If you 8el#onPressMask alone for the parent, and
ButtonMotionMask alone for the child, it does not work! The reason is that wheButtenPress occurs, it
propagates tdhe parent, and initiates a grab of all pointer events. (This is an automatic grab, discussed in the next
not the result of akGrabButton() or XGrabPointer() call). Since the parent did not select motion events, no
MotionNotify events are received by the program. The moral of the story is that if a parent (or any ancestor) sel
ButtonPress events, then its children must also seRuttonPress events in order for the children to get any othe
type of pointer events (includingotionNotify ~ , EnterNotify , LeaveNotify).

Note:

For brevity, we need conventions for describing the distribution of events. We'll say that an seetibis
window when it is generated in that window either because of device action or as a side effect to an Xlib ra
A windowreceivesan event sent to it only if the window has selected that event type or if the event type is ¢
selected. Only when a windawceivesan event is it placed on the queue for that client. Another convention |
helpful in describing the selection of events. We will say that "the window has selected that event type" ratl
than the more cumbersome "the program has c¥fiedectinput() , specifying the window and the mask

that selects that event type."

We have described the way device events propagate normally. But two other actions can modify this operation: cl
the keyboard focus window or grabbing the keyboard or pointer. Not only do these change the distribution of norm
events, they create new events as side effects. We’'ll just introduce these here and return ©ttaptari®, "The
Keyboard and Pointer."

8.3.2.1 The Keyboard Focus Window

The keyboard focus window affects the distributiotKef/Press andKeyRelease events. Normally, the window
manager allows the user to specify which window, if any, should be the keyboard focus. Only the focus window ant
descendants receive keyboard input, and within them, event propagation occurs normally. Events occurring outsid
focus window are delivered to the focus window. By default, the focus window is the root and keyboard events are
normally distributed to all windows on the screen, since all the windows on a screen are descendants of the root.

The keyboard focus is set to a window wietinputFocus() . The focus window must be viewable.

For a window to be viewable, it must be mapped and all its ancestors must be mapped, but it may be obscured.

If it is not viewable or later becomes not viewable, the focus reverts to another window specified in the
XSetlnputFocus() call, therevert_to window.

The current focus window can be read wiiBetinputFocus()

FocusOut events are delivered to the old focus window, Badusin events to the window which receives the focus.
Windows in between these two windows in the hierarchy are said to be virtually crossed and receive focus change
depending on the relationship and direction of transfer between the origin and destination windows. Some or all of
windows between the window containing the pointer at the time of the focus change and that window’s root can als
receive focus change events. By checkingdétail member ofFocusin andFocusOut events, a client can tell
which of its windows can receive input. Sebapter 9, "The Keyboard and Pointer," for more information about
tracking the keyboard focus.

Applications should set the keyboard focus to one of their own windows only when absolutely necessary, because
prevent other clients from receiving keyboard events. It is permissible for clients to set the focus window when the
enters their top-level window, as long as they set it back to the root window when the pointer leaves again. A clien
want to do this to send all keyboard input to one of its subwindowsCl&gster 12, "Interclient Communication,” for
more information about what a client should do regarding the keyboard focus.

8.3.2.2 Keyboard and Pointer Grabbing

The keyboard and/or the pointer can be grabbed when their input should not be allowed to be interrupted by other
As the name implies, grabbing prevents other clients from receiving input and, therefore, can be antisocial. It shou
done unless absolutely necessary. Grabbing the pointer is particularly troublesome, because there is no event to a
to other clients that this has happened. See Appendikdrclient Communcation Conventigia Volume Zero, X
Protocol Reference Manuéas of the second printing).

In general, grabbing is an advanced topic that you do not need to understand in detail until you find a reason to ust
there are two exceptions to this rule. You do need to know what will happen when other clients grab, so that your
can prepare for it. Secondly, an automatic grab takes place bédwttenPress andButtonRelease events if

your client has selected both. You must understand grabbing to understand the implications of this automatic grab

An active grabcauses pointer and keyboard events to be sent to the grabbing window regardless of the current pos
the pointer. Active grabs are invoked directly by call@grabPointer() andXGrabKeyboard() . Apassive grab
(invoked by callingKGrabKey() or XGrabButton()) causes an active grab to begin when a certain key or button
combination is pressed. Passive grabs are useful in implementing menus.

When you grab a device, you have the option of confining the pointer to any window within the grabbing client and
controlling the further processing of both keyboard and pointer events.

Grabbing the keyboard effectively selects all keyboard events, whether you selected them previously or not. Grabl
keyboard also caus&®cusin andFocusOut events to be sent to the old and new focus windows, but they must be
selected by each window to be received. In the call to grab the pointer, however, you specify what types of pointer,
and enter/leave events you want.

Grabs take precedence over the keyboard focus window. Grabs of the keyboard gEpeteted andFocusOut

events, so that if your client selects these, it can determine whether or not it can get keyboard events. Pointer grat
more problematic, since no event notifies other clients when one client has grabbed it. However, pointer grabs are
always temporary.

For more on keyboard and pointer grabbing,3eetion 9.4, "Grabbing the Keyboard and Pointer."For a description
of server grabbing, which is a different topic though still related to eventShsgxter 16, "Window Management."

8.3.3 Event Masks

This section describes the event masks and the events they select. After reading this section, you should have a g
of what types of events exist, what they are for, how to select them, and when to us€theter 9, "The Keyboard

and Pointer," and the sections listed in Table 8-5 provide practical examples and describe the use of some of the |
commonly used events in more detail. Appendigtent Referen¢grovides a complete reference to each event type.

8.3.3.1 KeyPressMask and KeyReleaseMask

KeyPress andKeyRelease events report when a keyboard key has been pressed or released. Most, but not all,
are capable of generatikgyRelease events. Shift, Control, and other modifier keys generate events just like the m
keyboard.

TheKeyPress andKeyRelease events provide a keycode that identifies the key, but the keycodes are
server—dependent and should not be used to interpret the event. Instead yoXtaokigeString() to translate the
keycode into a portable symbol called a keysym, which represents the symbol on the cap of the key, and into an A
character string. Both the mapping between keycodes and keysyms and the mapping between keysyms and ASC
can be modified.

In XLookupString() , the main routine used for interpretikgyPress andKeyRelease events, there is a provisior
for a special Compose key which is available on some keyboards, so that multikey sequences, usually used to type
characters for languages other than English, can be entered and translated into the appropriate keysym. The Conr
feature, however, is not implemented in the versions of Xlib provided by MIT.

The events selected BeyPressMask andKeyReleaseMask are used in the examplesSaction 9.1.1, "Simple
Keyboard Input.”

8.3.3.2 ButtonPressMask, ButtonReleaseMask, and OwnerGrabButtonMask

ButtonPress andButtonRelease events occur when the pointer buttons are pressed. There are generally betv
three and five buttons on the pointer, and the event structure specifies not only the button that caused the event bt
current state of all the pointer buttons and the modifier keys on the keyboard. The mapping between the bits in the
mask and the physical buttons can be changedd@#tPointerMapping() and readwith

XGetPointerMapping() and is global to the server.

The pointer is automatically grabbed betweerBhtonPress andButtonRelease events on behalf of the client
for whose window th@&uttonPress was selected. This way, you always expect to receive button events in pairs s
the release will be sent to your client regardless of the position of the pointer at that time. Only one client can selet
events on any one window at one time, due to the grab that automatically takes place.

TheOwnerGrabButtonMask does not select any event by itself, but it controls the distribution of button events to
client during the automatic grab betweenBhttonPress andButtonRelease (and during any grab your client
might make). If it is selected, the automatic grab has the same effeck@sabButton() call with the

owner_events argument set tdrue , so that th®uttonRelease event is sent to whichever of the client’s window:
the pointer is in. If th&uttonRelease occurs outside the client's windows oOfvnerGrabButtonMask is not
selected, all events will be sent only to the window wher8th®nPress occurred. Current wisdom suggests that yc
should always sele@wnerGrabButtonMask with ButtonPressMask

The events selected ButtonPressMask andButtonReleaseMask are discussed fBection 9.2.2, "Handling
Pointer Button Events" and demonstrated in Examples 9-9, 16-1, and 16-2.

8.3.3.3 The Pointer Motion Masks
There are eight pointer motion maskinterMotionMask , PointerMotionHintMask , ButtonMotionMask

ButtonlMotionMask , Button2MotionMask , Button3MotionMask , Button4MotionMask , and
Button5MotionMask . Up to five pointer buttons are supported, even though most mice have only three buttons .
some have only one.

. PointerMotionMask selects motion events that occur when any or none of the pointer buttons are pressec
event includes the position of the pointer within the event window and the position relative to the origin of the
window. All motion events contain a mask that gives the current status of the modifier keys and pointer butto
the current server tim&lotionNotify events occur in large numbers while the pointer is moving steadily.
Therefore, this mask is selected alone only by clients that require a complete record of pointer position, such
painting programs.

. PointerMotionHintMask is used in concert with other pointer motion masks to reduce the number of evel
generated. By itself, it does not select any evetsnterMotionHintMask specifies that the server should
send only on&otionNotify event when the pointer moves, until a key or button state changes, the pointer
the window, or the client callQueryPointer() or XGetMotionEvents() . The idea is that instead of
processing hundreds of pointer motion events, the client gets only one event per movement and then queries
pointer position or examines the motion history buffer (the latter may not exist on some servers) for the currel
position. This approach is suitable for clients that need the pointer position at particular times but that do not
all the intermediate positions. Even though each query for the pointer position is a round-trip request, the
performance of this approach is better than that of selecting all the evenBimitrMotionMask alone,
because of the reduced network traffic.

. ButtonMotionMask selects any pointer motion events that occur when at least one button is pressed.

. Button1MotionMask , Button2MotionMask , Button3MotionMask , Button4MotionMask , and
Button5MotionMask select pointer motion events that occur when the specified button is pressed. If two

more of these masks are used, events with any combination of the specified buttons (except both released) v
selected.

Handling the events selected by these masks is descrilsstttion 9.2.1, "Tracking Pointer Motion" and demonstrated
in three examples in that section.

8.3.3.4 FocusChangeMask

Focusin andFocusOut events occur when the keyboard focus window is changed. A window that selects
FocusChangeMask receives &ocusOut event if it was the old focus window or is in the same branch of the hiera
as the old focus window. It receivegacusin eventifit is the new focus window or is in the same branch of the
hierarchy as the new focus window. Tdetail member in the event tells the relationship of the window to the new «
old focus window. With this information, it is possible to tell whether the window can receive keyboard input. You
read the details of what events are delivered in Appendivént Reference

EnterNotify , LeaveNotify , Focusin , andFocusOut events are often used together to track whether the poin
is in a window and whether the client has the keyboard fddise focus is the rooEnterNotify and
LeaveNotify events are used. With any other focus,Rbeusin andFocusOut events take precedence.

Focusin andFocusOut events are described and use&eéction 9.3, "Border Crossing and Keyboard Focus
Change Events."

8.3.3.5 EnterWindowMask and LeaveWindowMask

EnterNotify andLeaveNotify events are typically used to inform a client that the pointer just entered or just le
one of its windows. If the client receivet@aveNotify event in its top—level window, the client will not be receiving
any more key, button, or motion events until it get&aterNotify event, unless it is the keyboard focus window or
has grabbed the keyboard or pointer.

An EnterNotify event is also generated when a window is mapped over the current position of the pointer, and :
LeaveNotify is generated when a window containing the pointer is unmapped.

EnterNotify andLeaveNotify events are described and use&éction 9.3, "Border Crossing and Keyboard
Focus Change Events."

8.3.3.6 KeymapStateMask

A KeymapNotify event notifies the client about the keyboard state when the pointer or keyboard focus enters a w
The keyboard state is represented (in the event structure) by 32 bytes of datakelteabad vectomwith one bit for each

keyboard key. The number of a bit in the vector for a particular key is the same as the key’s keycode. This vector
same as the vector returnedXQueryKeymap() .

This event type, if it is selected, always follows immediately aftéEraarNotify orFocusin event. It allows a
client to find out which keys were pressed when the pointer or the keyboard focus entered the window. Since the ¢
the modifier keys is already reportedinterNotify andFocusin events, th&eymapNotify event is only useful
for reporting the state of other keys.

KeymapState events are not used in the examples in this manual, because they are rarely needed. For more infc
about them, see Appendix Eyent Reference

8.3.3.7 ExposureMask

An Expose event tells a client which window or area within a window has just become visible. The usual response
redraw the contents of the area or of the entire window, if that is easier and comparabigesB-3shows a typical
window hierarchy before and after wind@is lowered. TwdExpose events are sent to windowspecifying areagl
andE2, and onéExpose event is sent to windof® specifying ared&3.

Figure 8-3. Expose events generated by lowering of window C

i b |
1
1
1
1
1

E

The handling oExpose events is fully described and demonstrate8eation 3.2.13.1, "Repainting the Window."

8.3.3.8 VisibilityChangeMask

A VisibilityNotify event is sent when a window makes any change in visibility, as shown in Table 8-4, excej}
when the window becomes not viewable. (Becoming not viewable means that the window or one of its ancestors v
unmapped, which generates@dnmapNotify event.) This event might be used bgleéent that must be completely
visible in order to be useful.

The symbol returned in thetate flag of the event is shown in the third column of the table.

Beginning State Final State state Flag

unobscured partially obscured VisibilityPartiallyObscured
unobscured fully obscured VisibilityFullyObscured
partially obscured unobscured VisibilityUnobscured
partially obscured fully obscured VisibilityFullyObscured
fully obscured unobscured VisibilityUnobscured

fully obscured partially obscured VisibilityPartiallyObscured
not viewable unobscured VisibilityUnobscured

not viewable partially obscured VisibilityPartiallyObscured
not viewable fully obscured VisibilityFullyObscured

Table 8-4 Visibility Transitions Causing VisibilityNotify Events

VisibilityNotify events are not demonstrated in this manual. For more information on them, see AppErndixtE,
Reference

8.3.3.9 ColormapChangeMask

A ColormapNotify event reports when the colormap attribute of the window (for which this mask was selected)
changes and when the colormap specified by the attribute is installed, uninstalled, or freed.
XChangeWindowAttributes() can generate this event when tiodormap window attribute is changed.
XFreeColormap() , XinstallColormap() , andXUninstallColormap() generate this event if called on the
colormap specified in the attribute of the window. From the information in the structure, you can tell which of these
generated the event and what the current status of the colormap is. The conventions for what the client should do
response to each of these contingencies has not yet been determir@ta@ere12, "Interclient Communication."

ColormapNotify events are discussedSection 7.10.2, "The ColormapNotify Event."

8.3.3.10 PropertyChangeMask

A PropertyNotify event indicates that a property of a certain window was changed or deleted. This event is
generated wheKChangeProperty() , XDeleteProperty() , orXRotateWindowProperties() is called or
whenXGetWindowProperty() is called with certain arguments. Beyond its normal purpose, this event can be us
get the current server time. This is done by appending zero—length data to a propedXyChsingeProperty()

which generates RropertyNotify event containing the time.

The uses oPropertyNotify events are described@hapter 12, "Interclient Communication."

8.3.3.11 StructureNotifyMask and SubstructureNotifyMask

StructureNotifyMask selects a group of event types that report when the state of a window has changed. Thit
includes the window’s configuration (size, position, border width, stacking order), whether it was destroyed, whethe
moved due to itsvin_gravity window attribute, whether it was mapped or unmapped, and whether it was reparen

SubstructureNotifyMask selects the same events plus one that indicates that a window has been created; it
monitors all thesubwindowof the window specified in th&Selectinput() call that used this mask. Only
SubstructureNotifyMask selectCreateNotify events, because the window does not exist beforehand, and

therefore, no ID exists to use in a calXt®electinput() usingStructureNotifyMask

Applications often sele@tructureNotifyMask to be notified that they have been manipulated by the window
manager or some other client, so that they can act accordingly.

The following list describes the events selecte®tryctureNotifyMask andSubstructureNotifyMask

. A CirculateNotify event reports a call to change the stacking order and includes whether the final positic
on top or on bottom. This event is generated X®@irculateSubwindows() ,
XCirculateSubwindowsDown() , or XCirculateSubwindowsUp()

. A ConfigureNotify event reports changes to a window’s configuration, including its size, position, border

width, and stacking order. This event is generated®gnfigureWindow() , XLowerWindow() |,
XMapRaised() , XMoveResizeWindow() , XMoveWindow() , XRaiseWindow() , XResizeWindow()
XRestackWindows() , andXSetWindowBorderWidth()

. A CreateNotify event reports that a new window has been created with XifhreateSimpleWindow() or

XCreateWindow()
. A DestroyNotify event reports that a window has been destroyedXi#stroyWindow() or
XDestroySubwindows() . When a window is destroyed, this event is delivered to all subwindows of the

window before it is delivered to the window itself, unless the subwindows are in another client's save-set (se:
Chapter 16, "Window Management," for a description of save-sets).

. A GravityNotify event reports when a window is moved because its parent was resized and had its windc
gravity attribute set.

. A MapNotify event reports when a window is mapped. This event is generaxdddpindow() ,
XMapRaised() , andXMapSubwindows() .

. A ReparentNotify event reports when a client successfully reparents a windoisgxer 16, "Window
Management" for a description of window reparenting).

. An UnmapNotify event reports when a mapped window is unmapped. This event also indicates whether the
unmapping of a child window was due to the fact that the parent window was resized and the child had a win
gravity attribute oJnmapGravity

The ConfigureNotify event is used in thiegasicwinapplication described i@hapter 3, "Basic Window Program."
The rest of these events are used in a similar fashion by applications that need detailed knowledge of their state.

8.3.3.12 SubstructureRedirectMask

The three event types selectedSiybstructureRedirectMask ——CirculateRequest , ConfigureRequest
andMapRequest ——can be used by a client (virtually always the window manager) to intercept and cancel
window—configuration—changing requests made by other clients to change the window configuration. Only one clie
time can selecdubstructureRedirectMask on a particular window. Normally,

SubstructureRedirectMask is selected on the root window to allow the window manager to intercept
layout—changing requests for the top—level windows of each application. When these events are selected, the Xlib
noted in the paragraphs below do not perform their usual function but instead simply generate these events. The v
manager is then able to modify the requests according to its layout policy before repeating the requests itself with i
modified arguments.

These events differ fro@irculateNotify , ConfigureNotify , andMapNotify in that the!Request events

The wildcard (*) notation is used occasionally in this manual to indicate a number of events or routines with similar names. Iff@qiaest

means all event types whose symbols en@équest .

deliver the parameters of the request before the requests are carried out and indicate that the original request has
cancelled. Thé&Notify requests indicate the final outcome of such requests, unhindered.

Each of the event structures associated with the following event types inclunles@ohe_redirect member,

which is eitherTrue orFalse . Ifitis True , the window manager should ignore the event, since this indicates that
client has set theverride_redirect attribute to indicate that this is a temporary window. (For more information,
seeSection 16.2, "Substructure Redirection.")

. CirculateRequest events report when an Xlib function, suchX&irculateSubwindows() ,
XCirculateSubwindowsDown() , XCirculateSubwindowsUp() , or XRestackWindows() is called
to change the stacking order of a group of children.

. ConfigureRequest events report when an Xlib function, suchX&onfigureWindow()
XLowerWindow() , XMoveResizeWindow() , XMoveWindow() , XRaiseWindow()
XResizeWindow() , or XSetWindowBorderWidth() is called to resize, move, restack, or change the bord
width of a window.

. MapRequest events report wheXMapWindow() or XMapSubwindows() is called to map a window.

The uses of the event types selecte@blgstructureRedirectMask are described i€hapter 16, "Window
Management."

8.3.3.13 ResizeRedirectMask

TheResizeRequest event is generated when some other client (usually the window manager) attempts to resize
window on whichResizeRedirectMask is selected . XConfigureWindow() , XMoveResizeWindow() , and
XResizeWindow() generate this event. Only one client can sé&esizeRedirectMask at a time on a particular
window.

This event includes thequestedsize. The final size may be adjusted by the window manager and can be found fron
resultingConfigureNotify event or, if the window is visibldrom theExpose event.

A client might wish to select this mask if it has only one acceptable size. Then when any client attempted to resize
window, the request would be sent as an event and can be safely ignored. However, if some client (say, the windo
manager) has select@dibstructureRedirectMask for the parent of the window on which

ResizeRedirectMask was selected, the substructure redirect takes precedence. Therefore, this usually will not
ResizeRedirectMask is not very useful, given that most window managers select

SubstructureRedirectMask

8.3.3.14 Automatically Selected Events

Seven types of events can be sent to your program even if you do not explicitly select them. Your client must hanc
throw awayMappingNotify events regardless of whether the client retiiskeyboard. All the others are generated
response to your own actions (either by the server or by other clients), and therefore, you should know that you are
get them. Example 8-3 described when each of these events should be present in your event loop.

. MappingNotify events are caused By hangeKeyboardMapping() , XSetModifierMapping() , and
XSetPointerMapping() calls that set the pointer button, keyboard key, and keyboard modifier key mappir
Since these mappings are global to the server, each client must call the correct function to refresh its knowle:
the mappings.

If the changed mapping is of the keyboard, a receiving client shouldReaffeshKeyboardMapping() ,

which updates a client’s knowledg# the server's mapping between keycodes and keysyms.

If the changed mapping is of the pointer, the client carX&ditPointerMapping() to update its knowledge.
Most current clients do not do this, however, because it is assumed that the button mappings were intentiona
changed by the user. That means that the client should not attempt to adjust its operation so that the buttons
their old meanings.

. ClientMessage events are sent as a result of a cal$endEvent() by a client to a particular window. They
contain data described by Atom. These events are normally used to transfer selection dataeitheevent
member of the event structure will always be set.

. SelectionClear , SelectionNotify , andSelectionRequest events are used to communicate back ar
forth between two applications that are transferring information. This process is desc8betidn 12.4,
"Selections."

. GraphicsExpose andNoExpose events are selected not by an event mask but byréipdics_exposures

member of the GC. One or the other of them (or both) is generated bY@aphArea() orXCopyPlane()
request when the GC specifiddr the request has this member sefioe . Otherwise, the events are not

generated. Th@&raphicsExpose event indicates that a source area could not be completely copied into a
destination because the source was partially or fully obscuredNdmEpose event indicates that the copy was nt
affected by an obscured source. More than@raphicsExpose event can be generated by a single
XCopyArea() orXCopyPlane() request, depending on the number and position of the obscuring windows,
only oneNoExpose is possible as a result of a single co@raphicsExpose events are often handled just like
Expose events.

8.4 Sending Events

TheXSendEvent() function may be used to sen€ChentMessage event or any other event type toparticular
window, to the current keyboard focus window, or to the window in which the pointer is located. Sending events is
necessary in selection processing, as describ®@eddtion 12.4, "Selections."It may also be useful for designing test
procedures for your input handling or for making demonstration programs that simulate user input.

Thesend _event member of each event structure indicates the origin of the eveluelf, it was sent from another
client rather from the server. Note that, unless this flag is explicitly checked, events from the server and from othet
will appear the same to your application.

8.5 Where to Find More on Each Event

All event types are described in reference format in Appendevent ReferenceThe information on each page includes
the event structure definition, description of each event structure metivemt union name, how to select the event,
when it is generated, and notes on its use. Table 8-5 shows other places in this manual where you can find inforn
about using certain event types.

Event Type Section
KeyPress Section 9.1.1.1
KeyRelease

ButtonPress Section 9.2.2
ButtonRelease

KeymapNotify Section 9.3.1
MotionNotify Section 9.2.1
EnterNotify Section 9.3
LeaveNotify

Focusin Section 9.3
FocusOut

Expose Section 3.2.13.1
GraphicsExpose Section 5.6
NoExpose

ColormapNotify Section 7.10.2
PropertyNotify Section 12.1
ConfigureNotify Section 3.2.16
CirculateRequest Section 16.2
ConfigureRequest

MapRequest

MappingNotify Section 9.1.2.3
SelectionClear Section 12.4
SelectionNotify Section 12.4
SelectionRequest Section 12.4

Table 8-5 Where Events are Described Further

Also in Appendix L,Interclient Communcation Conventioré Volume Zero, X Protocol Reference Man{za of the second printing).

Chapter 9

The Keyboard and Pointer

This chapter not only describes how to handle keyboard and pointer events but also describes many other topics r
these two input devices. In particular, it discusses X's use of keysyms as portable symbols for character encoding
keyboard remapping, keyboard and pointer "grabs," and keyboard and pointer preferences. Internationalized keyhc
input is described in Chapter 11.

In Chapter 3, "Basic Window Program," we showed you quite thoroughly how to deal gpose events. But all we
did with pointer and keyboard events was to exit the program. As you can guess, there can be more to it than that
chapter describes and demonstrates the handling of keyboard and pointer events, describes keyboard and pointer
and describes how to set keyboard preferences. Internationalized keyboard input is described in Chapter 11,
Internationalized Text Inpuailthough it depends on many concepts described in this chapter.

9.1 The Keyboard

The keyboard is an area like color, where X clients have to be made portable across systems with different physice
characteristics. In the case of the keyboard, these variations are in two areas: whether the keyboardqy®redss
andKeyRelease events or jusKeyPress events, and the symbols on the caps of the keys.

Almost all serious workstations provide béthyPress andKeyRelease events. Some personal computers, howeve
may not. Therefore, avoid depending &eyRelease events if you want your client to be portable to the lowest class
of machines.

The second problem is adjusting for variations in the keys available on each keyboard and the codes they generat¢
start explaining how this problem is solved by describing the contents of a key event.

KeyPress andKeyRelease events are stored WKeyEvent structures, shown in Example 9-1. Each key event
contains the&keycode of the key that was pressed atdte , a mask which indicates which modifier keys and pointer
buttons were being held down just before the eventodifier keyis a key like Shift or Control that can modify the
meaning of a key event. In addition to their effect on the processing of other keys, the modifier keys also generate
events with unique keycodes.

Example 9-1. The XKeyEvent structure

typedef struct {
int type; [* Of event */
unsigned long serial; /* Last request processed by server */
Bool send_event; /* True if from a SendEvent request */
Display *display; [* Server connection */
Window window; [* "event" window reported in */
Window root; /* Root window event occurred on */
Window subwindow; /* Child window */
Time time; /* Milliseconds */
intx,y; /* Coordinates in event window */

int Xx_root, y_root; /* Coordinates relative to root */
unsigned int state; /* Key or button mask */
unsigned int keycode; /* Detail */
Bool same_screen; /* Same screen flag */

} XKeyEvent;

typedef XKeyEvent XKeyPressedEvent;

typedef XKeyEvent XKeyReleasedEvent;

Thekeycode member oiXKeyEvent is a number between 8 and 255. The keycode is the same regardless of whe
key is pressed or released. The keycode for each physical key never changes on a particular server, but the key v
same symbol on it on different brands of equipment may generate different keycodes. For portability reasons and
the keycode by itself without the state of the modifier keys does not provide enough information to interpret an evel
clients cannot use keycodes by themselves to determine the meaning of key events.

Instead of using the keycode alone, X clients XathokupString() to translate the key event into a keysym. A
keysymis a definedconstant that corresponds to the meaning of a key event. For example, the translation of the ke
generated by the "a" key on any system woulXXKea if no other keys were being held akdl_Aif the Shift key were
being held or if Shift Lock was in effect (all keysyms begin W). The translation of the keycode for the Return key
(which is labeled Enter or just with an arrow on some keyboards) wo# bReturn . The Enter key on the keypad, if
any, would have the keysy¥K_KP_Enter . Example 9-2 shows some keysym definitions. All keysyms are definec
<X11/keysymdeth

Example 9-2. Some sample keysym definitions

#define XK_BackSpace OxFF08 /* Back space, back char,... */
#define XK_Left OxFF51 /* Move left, left arrow */

#define XK_Undo O0xFF65 /* Undo, oops */

#define XK_Num_Lock OxFF7F

#define XK_KP_Multiply OxFFAA

#define XK_Shift L OxFFEL1 /* Left shift */

#define XK_space 0x020 /* Space */

#define XK_numbersign 0x023 /* # */

#define XK_3 0x033
#define XK_question Ox03f /*"?" */
#define XK_A 0x041
#define XK_e 0x065

XLookupString() also provides an ASCII string that corresponds to the keysytbt if there is no associated
string. By default, all the keys that have ASCII values will have that value as their string. For eXa&nmple,ould have
the string "A",XK_ampersand would have the string "&", andK_4 would have the string "4XK_Return ,

XK _Escape, andXK_Delete have ASCII values, but they are not printabl&. Shift L (the Shift key on the left
side of the keyboard) would not normally have an associated string.

The ASCII value for a particular keysym as returneckhpokupString() can be changed by the client using
XRebindKeysym() , and it can be a string of any length, not just a single character. Even though keysyis fike
(the F1 key) have no default ASCIlI mapping, they can be given strings. This mapping would apply only to the clier
calls XRebindKeysym()

With these introductory comments, we’ll move right to the examples that handle keyboard input. Then we’ll return
discuss keysyms in more detail and the various keyboard mappings and how they can be changed.

9.1.1 Simple Keyboard Input

Example 9-3 shows the framework of the code for translating a keyboard event into both a keysym and an ASCII ¢
You will need the keysym to determine what the keystroke means, and the ASCII string if the keystroke is a printak
character. If the keystroke is printable, the program would append the ASCII interpretation of the key event to the |
the result string (and display it). If the keystroke is a modifier key being pressed, the event can normally be ignoret
the modifier status of events on other keys is already dealt wixh bgkupString() . ButXK_Delete or
XK_Backspace would indicate that a character should be removed from the string.

The function keys are not initially mapped to ASCII strings and can be ignored, but if the client allows the user to m
them to an arbitrary string, it should treat them like any other printable character.

You may notice in Example 9-3 thdt ookupString() returns something called &ComposeStatus . Some
keyboards provide a Compose key, which is used to type characters not found on the keyboard keys. Its purpose
it possible to type characters from other languages without disturbing the normal operation of the keyboard. Asit L
works, you press the Compose key followed by some other key to generate chdileetersA table is usually provided
which tells you which keys correspond to each foreign character. Processing of multikey sequences using the Cor
key is now supported as an input method through the Release 5 internationalization featuresC8mguseStatus
argument oXLookupString() is now just a dummy.

Example 9-3. Translating a key event to keysym and ASCII
Display *display;

XEvent event;

char buffer[20];

int bufsize = 20;

KeySym key;
XComposeStatus compose;
int charcount;

[* Open display, create window, select, map */
XNextEvent(display, &event);
switch(event.type) {

case KeyPress:
charcount = XLookupString(&event, buffer, bufsize, &keysym,
&compose);
/* Branch according to keysym, then use buffer
* if the key is printable */
break;
case MappingNotify:
XRefreshKeyboardMapping(&event);
break;

}

Keysyms for accented vowels, tildes, and most combinations found in Western languages are provided in the LATI
If you want to display an accentedfor example, the keysym ¥K_eacute . If the desired character is not present in tl
desired font, the client can prepare two or more text item¥DoawText() for displaying the desired overstrike
character and use tldelta member to move the second character back over theXibitawText() is capable of
drawing in a different font for each text item, in case the desired accent is in a separate font from the desired chara

9.1.1.1 Getting a String —— A Dialog Box

Let's say you are porting a nonevent—driven program to X, and you have a routingeglistdng that gets an

ASCII string from the user. It gets the entire string before returning. But under X, the user might stop typing midwa
through, pop some other window on top to check some bit of information, then pop the original application back on
That means you need to handle exposure in the middle of the input string, which, in turn, means you need a functic
remembers the string’s state so that it can be redrawn gethstring routine. You also have to be prepared in cas¢
the keyboard gets remapped by some other client. Suddenly your tiny subroutine to get a string now must be intec
into the event loop.

Example 9-4is a modification to thbasicwinprogram described i@hapter 3, "Basic Window Program,” that puts up
a pop-up dialog box. If the user presses a button ihdakEwinwindow, the application puts up a dialog box, which the
user can type into until a carriage return is typed. All the printable characters except Tab are supported, and Delet
Backspace operate as would be expected. The code allows the user to type the string while also handling the othe
that might occur. This is done by placing the code for popping up the dialog in the braBatidoPress events,
placing the code to redraw the dialog string in the brancBxpose events, and placing the code to process key event
the branch foKeyPress events.

Example 9-4. Implementing a dialog box

[* Other include files */

#include <X11/keysym.h>

* Other defined constants */

#define MAX_POPUP_STRING_LENGTH 40
#define MAX_MAPPED_STRING_LENGTH 10
[* Global variables display and screen */

void main(argc, argv)

int argc;

char **argv;

{

[* Declarations from basicwin */

[* The following are for pop—up window */

static Window pop_win;

char bufferfMAX_MAPPED_STRING_LENGTH]J;
int bufsize=MAX_MAPPED_STRING_LENGTH;
int start_x, start_y;

KeySym keysym;

XComposeStatus compose;

int count;

unsigned int pop_width, pop_height;

char string[]MAX_POPUP_STRING_LENGTH];
int popped = False;

int length;

/* Create main window (win) and select its events */

XMapWindow(display, win);
[* Get events, use first to display text and graphics */
while (1) {
XNextEvent(display, &report);
switch (report.type) {
case Expose:
if (report.xexpose.window == pop_win) {
[* If pop_win is nonzero, it has been created,
* and window in Expose is never zero */
if (popped)
XDrawsString(display, pop_win, gc, start_x,
start_y, string, strlen(string));

else { /* It's the main window */
/* Refresh main window as in basicwin */
}
break;
case ConfigureNotify:
/* Same as in basicwin */

break;
case ButtonPress:
[* Put up pop-up window, create if necessary */
if (lpop_win) { /* Create it and pop it */
/* Determine pop—up box size from font information */
pop_width = MAX_POPUP_STRING_LENGTH *
font_info—>max_bounds.width + 4;
pop_height = font_info—>max_bounds.ascent +
font_info—>max_bounds.descent + 4;
pop_win = XCreateSimpleWindow(display, win, X, v,
pop_width, pop_height, border_width,
BlackPixel(display, screen),
WhitePixel(display, screen));
/* Calculate starting position of string in window */

start_x = 2;
start_y = font_info—>max_bounds.ascent + 2;
XSelectlnput(display, pop_win, ExposureMask | KeyPressMask);
}
/* If window is already mapped, no problem */
XMapWindow(display, pop_win);
popped = True;
break;
case KeyPress:
if (report.xkey.window == win) {
/* Key on main window indicates exit */
XUnloadFont(display, font_info—>fid);
XFreeGC(display, gc);
XCloseDisplay(display);
exit(1);
}
else {
[* Get characters until you encounter a
* carriage return; deal with backspaces, etc. */
count = XLookupString(&report, buffer, bufsize,
&keysym, &compose);
/* Now do the right thing with as many
* keysyms as possible */
if (keysym == XK_Return) || (keysym == XK_KP_Enter)
|| (keysym == XK _Linefeed)) {
XUnmapWindow(display, pop_win);
popped = False;
printf("string is %s\n", string);
break;
}
else if (((keysym >= XK_KP_Space)
&& (keysym <= XK_KP_9))
[| ((keysym >= XK_space)
&& (keysym <= XK_asciitilde))) {
if ((strlen(string) + strlen (buffer)) >=
MAX_POPUP_STRING_LENGTH)
XBell(display, 100);
else
strcat(string, buffer);
}
else if ((keysym >= XK_Shift_L)
&& (keysym <= XK_Hyper_R))
;/* Do nothing because it's a modifier key */
else if (keysym >= XK_F1)
&& (keysym <= XK_F35))
if (buffer == NULL)
printf("Unmapped function key\n");
else if ((strlen(string) + strlen (buffer)) >=
MAX_POPUP_STRING_LENGTH)
XBell(display, 100);
else
strcat(string, buffer);
else if (keysym == XK_BackSpace) ||
(keysym == XK_Delete)) {
if ((length = strlen(string)) > 0) {
string[length — 1] = NULL;
XClearWindow(display, pop_win);
}

else
XBell(display, 100);
}
else {
printf("keysym %s is not handled\n",
XKeysymTosString(keysym));
XBell(display, 100);
}
XDrawsString(display, pop_win, gc, start_X,
start_y, string, strlen(string));
break;
}
case MappingNotify:
XRefreshKeyboardMapping(&report);
break;
default:
/* All events selected by StructureNotifyMask
* except ConfigureNotify are thrown away here,
* since nothing is done with them */
break;
} I* End switch */
} * End while */
}

Example 9-4takes advantage of the fact that the keysyms are constants arranged in groups with consecutive valut
looking for any keysym in a given range, you do not need to specify every keysym you intend to match.

Notice that the program uses keysyms to match all the keystrokes and then does different things depending on wh
keysym is a normal key, a modifier key, a function key, a delete key, or an enter key. If the key is printable, it copie
ASCII values returned b)¥LookupString() into the result string.

This program does have some weaknesses.

We could say we left it this way because it is simpler, and it is, but that is not why we wrote it this way. We did not realize the other way would |
until the program was already done. We will leave it as an exercise for you to modify it as described!

One of them is that it redraws the entire string instead of just the character being changed. Secondiexitiemg
structures for each character and calkirawText() instead oXDrawString() would support Tab characters and
functions keys mapped to strings. Since a tab has to be expanded into a number of spaces before being drawn an
keys may be mapped to arbitrary strings, it is difficult to properly implement them with the approach we have used
Example 9-4

9.1.2 The Keyboard Mappings

As we have said, there are several translations that take place between the pressing of a key and its interpretation
program. The first, the mapping between physical keys and keycodes, is server—dependent and cannot be modifie
client cannot determine anything about this first mapping, and it is just a fact that gdmyaical keys generate certain

keycodes. The second mapping, keycodes to keysyms, can be modified by clients but is server-wide, so it usually
modified. The specification of which keycodes are considered modifiers is also part of the second level of mapping
because it affects the mapping of keycodes to keysyms. The third mapping, from keysyms to strings, is local to a ¢
This is the mapping withwhich a client can allow the user to map the function keys to strings for convenience of typi

We are going to describe the mapping between keysyms and strings first, because this is the mapping that applica
most likely to change. Following that, we’ll describe what you need to know about the keycode—-to—keysym mappir
modifier mapping to write normal applications. These mappings are normally only changed by clients run from the
startup script that do nothing else, because they change the keyboard mapping for all applications.

After that, Sections 9.1.3.1 and 9.1.3.2 are optional reading. They describe the background and development of ke
and how to write special purpose programs to change the server-wide mapping of keycodes to keysyms and the n

mapping. These techniques are not needed in normal applications.

9.1.2.1 Keysyms to Strings

The default mapping of keysyms to ASCII is defined by the server. The ASCII representation of the keys on the me
keyboard are the ASCII codes for the single characters on the caps of the keys. Keysyms that do not have ASCII
representations, such as the function keys, initially have mappindlth but they can sometimes be mapped to string:
as we’ll describe. However, the modifier keys on some machines cannot be mapped to strings at all.

Any client in which the user is expected to type a large amount of text should support remapping of the function ke
strings.XRebindKeysym() is the only function that can change tlsising, the one returned bt ookupString()
The string can be any length. This change affects only the client thaXRaklsndKeysym()

Example 9-5is a short code sample that demonstrates how to remap function keys to strings. It binds the string "S
to Shift-F1 and "ABORT" to CTRL-Shift-F1. Since keyboards may have two Shift and two Control keys, one on e
side, the process has to be done for both. Mapping the function keys combined with modifiers will not work on all ¢
(On the Sun sample server, this code results in STOP being generated when F1 is pressed with any modifiers and
never being generated.) However, mapping of unmodified function keys should work on all servers.

Example 9-5. Mapping keys to strings
#include <X11/keysym.h>

Display *display;

KeySym modlist[2]; [* Array of modifier keysyms */
unsigned int string_length;

unsigned int list_length;

[* Open display */

* Map Shift-F1 to "STOP" */

string_length = 4;

list_length = 1;

modlist[0] = XK_Shift_R; /* Do right shift key */

XRebindKeysym(display, XK_F1, modlist, list_length, "STOP",
string_length);

modlist[0] = XK_Shift_L; /* Do left shift key */

XRebindKeysym(display, XK_F1, modlist, list_length, "STOP",
string_length);

/* Map CTRL-Shift-F1 to "ABORT" */

string_length = 5;

list_length = 2;

/* Both right pressed */

modlist[0] = XK_Shift_R; modlist[1] = XK_Control_R;

XRebindKeysym(display, XK_F1, modlist, list_length, "ABORT",
string_length);

[* Left Shift, Right Control */

modlist[0] = XK_Shift_L; modlist[1] = XK_Control_R;

XRebindKeysym(display, XK_F1, modlist, list_length, "ABORT",
string_length);

/* Right Shift, Left Control */

modlist[0] = XK_Shift_R; modlist[1] = XK_Control_L;

XRebindKeysym(display, XK_F1, modlist, list_length, "ABORT",
string_length);

/* Both left pressed */

modlist[0] = XK_Shift_L; modlist[1] = XK_Control_L;

XRebindKeysym(display, XK_F1, modlist, list_length, "ABORT",
string_length);

XLookupString() currently uses a linear search to find the keysym corresponding to each key event, and each «
XRebindKeysym() causeXLookupString() to run somewhat slower. This problem is exacerbated if you want
function key (or any other key) to generate the same string with any combination of modifier keys, since this requir
more calls toXRebindKeysym()

9.1.2.2 The Modifier Keys

A keysym represents the meaning of a certain combination of a key and modifier keys such as Shift and Control. F
example XK_Arepresents the letter "a" pressed while the Shift key is held down or while Shift Lock is on. As in this
example, the keysym depends on what modifier key is being held.

Although Shift is present on all keyboards and Control on most, the remaining modifier keys are not standardized.
may be Meta, Hyper, Super, Left, Right, or Alternate keys. X, however, has a fixed set of logical modifiers, listed ir
first column of Table 9-1. Each of these logical modifier symbols corresponds to a bistatéhe member of the
XKeyEvent structure. On each keyboard, there is a mapping between the physical modifier keys and these logice
modifiers. Table 9-1 also shows the keysyms of the keys that are by default mapped to the logical modifiers on a
system and the corresponding keycodes for that system. You can ms®timapommand without arguments to find
out the default modifier mapping on any system.

Logical Modifier Default Keycodes of Modifier Keysym (Sun-3)
Modifier Keys (Sun-3)

ShiftMask (0x6a), (0x75) XK_Shift L , XK_Shift R

ShiftLockMask (0x7e) XK_Caps_Lock

ControlMask (0x53) XK_Control_L

Mod1Mask (0x7f), (0x81) XK_Meta_L, XK_Meta_R

Mod2Mask (unmapped)

Mod3Mask (unmapped)

Mod4Mask (unmapped)

Mod5Mask (unmapped)

Table 9-1 Logical Modifiers and a Typical Modifier Key Mapping

Each keycode may have a list of keysyms, one for every logical modifier. Each list, of varying length, conveys the
meanings for the key with each of the modifier keys pressed. This array of keysyms for each keycode is initially de
the server. In most cases, only two keysyms are defined for the keys that represent single printable characters ani
for the rest.

9.1.2.3 Keycodes to Keysyms

Clients can change the mapping of keycodes to keysymsX@itlangeKeyboardMapping()), but they rarely do
because thisnapping is global to the server. This change would affect every client operating on the server. Every
would receive MappingNotify event (regardless of whether they selected it or whether they actually use keyboa
input) and must then get a new keysym table from the serveXRitfreshKeyboardMapping() . (This table is
stored in theDisplay structure and is used by ookupString() and the other routines that return keysyms.)
XRefreshKeyboardMapping() works by erasing the copy of the keyboard and/or modifier mappings that are pr
in theDisplay structure (th&keysyms andmodifiermap members). The next time that an Xlib call is made that
requires either of these mappings, a request is made to the server, the new mappings are transferred to Xlib, and t
pointers in theDisplay structure are reset to the new mapping data. Subsequent calls to access this data use the
Display structure instead of querying the server.

One of few applications that might change the mapping between keycodes and keysyms would be an application tl
converted between QWERTY and DVORAK keyboard layout. These are the nicknames for two different layouts fc
alphabetic characters on English language keyboards. The QWERTY keyboard in common use was originally des
be slow enough so that mechanical typesetting machine operators would not be able to type fast enough to jam the
machines. The DVORAK keyboard, on the other hand, was designed to place the most common letters in the Eng
language under the home row of keys and is much faster.

Let's say a user wanted to use the DVORAK layout instead of the default, which is QWERTY. This application wot
even need to create a window, but it would change the mapping of keycodes to keysyms with
XChangeKeyboardMapping() . The user couldhen move the keycaps around on the keyboard or label them
somehow. Except for callingRefreshKeyboardMapping() , other applicationsvould operate as usual. From then
on, while the server was running, all applications would work properly with the DVORAK layout.

9.1.3 Background on Keysyms

Keysyms are a concept developed especially for X. It may help you to understand them better to read about how t
designed. But this is optional reading, and you can skjetdion 9.2, "The Pointer"if you do not plan to write
programs that change the mapping of keycodes to keysyms.

The keysyms are defined in two include fileX1&/keysymi and X11/keysymdef:h Together these files define sever:
sets of keysyms for different languages and purposes. There are sets for Latin, Greek, Cyrillic, Arabic, and so on,
to allow for internationalization of programs. There are also sets for publishing and technical purposes, because tr
fields have their own "languages.’X¥1/keysym:defines which character sets are active, attil#keysymdefzh

defines the symbols in all the sets. OnK/A4/keysym#ineeds to be included in an application because it includes
<X11/keysymdeth

By default, the enabled sets of defined keysyms include the ISO Latin character sets (1-4), a set of Greek charactt
set of miscellaneous symbols common on keyboards (Return, Help, Tab, and so on). These are sufficient for maki
application work in any Western language. Symbols for Katakana, Arabic, Cyrillic, Technical, Special, Publishing, .
and Hebrew character sets are defined{ta keysymdefhbut are not enabled inxd 1/keysym . and may not be

available on all servers. This is because some C compilers have a limit to the number of allowable defined symbols

Many of the keysym sets share keysyms with sets earlier inth#/keysymdefzhinclude file. For example, there is only
oneXK_space keysym because a space is common to all languagesspace is in LATIN1 so that it is always
available. The LATIN2 and LATIN3 sets are quite short because they share most of their symbols with the previou

9.1.3.1 The Design of Keysyms

English language keyboards tend to be quite standard in the alphanumeric keys, but they differ radically in the
miscellaneous function keys. Many function keys are left over from early timesharing days or are designed for a sp
application. Keyboard layouts from large manufacturers tend to have lots of keys for every conceivable purpose, w
small workstation manufacturers often have keys that are solely for support of some unique function.

There are two ways of thinking about how to define keysyms given such a situatiéngthgingapproach and the
Commorapproach.

The Engraving approach is to create a keysym for every unigue key engraving. This is effectively taking the union
key engravings on all keyboards. For example, some keyboards label function keys across the top as Fh,tbtberh |
label them as PF1 through ®RH hese would be different keys under the Engraving approach. Likewise, Lock would
from Shift Lock, which is different from the up—arrow symbol that has the effect of changing lower case to upper ca
There are lots of other aliases such as Del, DEL, Delete, Remove, and so forth. The Engraving approach makes it
decide if a new entry should be added to the keysym set: if it does not exactly match an existing one, then a new ¢
created. One estimate is that there would be on the order of 300 to 500 miscellaneous keysyms using this approar
counting foreign translations and variations.

The Common approach tries to capture all of the keys present on a number of common keyboards, folding likely al
into the same keysym. For example, Del, DEL, and Delete are all merged into a single keysym. Vendors would be
expected to augment the keysym set (using the vendor—specific encoding space) to include all of their unique keys
were not included in the standard set. Each vendor decides which of its keys map into the standard keysyms. It is
difficult to implement this approach, since a judgement is required whether a sufficient set of keyboards implement
engraving to justify making it a keysym in the standard set and which engravings should be merged into a single ke
Under this scheme, there are an estimated 100 to 150 keysyms for an English language keyboard.

While neither scheme is perfect, the Common approach has been selected because it makes it easier to write a pc
application. Having the Delete functionality merged into a single keysym allows an application to implement a delet
function and expect reasonable bindings on a wide set of workstations. Under the Common approach, application

are still free to look for and interpret vendor—specific keysyms, but because they are in an extended set, applicatiot
developers should be more conscious that they are writing applications in a nonportable fashion.

9.1.3.2 Conventions for Keysym Meaning

For each keycode, the server defines a list of keysyms, corresponding to the key pressed while various modifier ke
being held. There are conventions for the meanings of the first two keysyms in the list. The first keysym in the list 1
particular key should be construed as the symbol correspondirgetgPaess when no modifier keys are down. The
second keysym in the list, if present, usually should be construed as the symbol when the Shift or Shift Lock modifi
are down. However, if there is only one keysym for a particular keycode, if it is alphabetic, and if case distinction i<
relevant for it, then the appropriate case should be based on the Shift and Lock modifiers. For example, if the sing
keysym is an uppercage you have to use thetate member ofiXKeyEvent to determine if the Shift key is held.
XLookupString() should translate the event into the correct ASCII string anyway.

X does not suggest an interpretation of the keysyms beyond the first two and does not define any spatial geometry
symbols on the key by their order in the keysym list. This is because the list of modifier keys varies widely betweel
keyboards. However, when programming, it should be safe to assume that the third member in the keysym list wo
correspond to the key pressed with the next most common modifier available on the keyboard, which might be Cor

For keyboards with both left-side and right—side modifier keys (for example, Shift keys on each side that generate
different keycodes), the bit in tis¢gate member in the event structure defines the OR of the keys. If electronically
distinguishable, these keys can have separate keycodes and up/down events generated and your program can tra
individual states manually.

9.1.4 Changing the Server-wide Keyboard Mappings

Both the keycode-to—keysym mapping and the modifier mapping affect all clients when they are changed by any ¢
That is why normal applications will not change them. Special purpose programs, however, can be written to chan
mappings, usually to be run from a user’s startup script. These sections describe how to write such programs. Ify
not plan to write one, you can skip ahea&éeztion 9.1.5, "Other Keyboard-handling Routines."

9.1.4.1 Changing the Keycode—to—Keysym Mapping
XChangeKeyboardMapping() changes the current mapping of thpecified range of keycodes to keysyms.

Example 9-6shows a simple program callethpkeythat changes the keyboard mapping for all the applications runnir
on the server. This application takes pairs of arguments that are keysyms and maps the keycode associated with
keysym to the second keysym. In other words, you could use it to map the F1 key to be Escape and Home to be a
key on the right side of the keyboard by typing the following:

$ mapkey F1 Escape Home Control_R

Usemapkey with care, because it is easy to disable a server by remapping an alphanumeric key. Such a remappit
cannot be reversed except by restarting the server.

Example 9-6. An application for server-wide keymapping
#include <stdio.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xatom.h>
#include <X11/keysym.h>
main(argc, argv)
int argc;
char **argv;
{
KeySym old, new;
int old_code;
Display *display;
if (!(display = XOpenDisplay(™))) {

fprintf(stderr,"Cannot open display '%s"\n",
XDisplayName(™));
exit(1);
}
argv++, argc——;
if (argc & Ox1) {
fprintf(stderr,"Usage: Keysymfrom Keysymto Keysymfrom \
Keysymto ...\n");
exit(1);
}
while (argc > 1) {
old = XStringToKeysym(*argv++);
new = XStringToKeysym(*argv++);
argc——, argc——;
old_code = XKeysymToKeycode(display, old);
XChangeKeyboardMapping(display, old_code, 1, &new, 1);

}
XFlush(display);
XCloseDisplay(display);
exit(0);

}

The application ifExample 9-6could be rewritten on a larger scale to change a keyboard from QWERTY to DVORA
layout as described Bection 9.1.2.3, "Keycodes to Keysyms.'Since the keycodes aierver—dependent, the
QWERTY-to—-DVORAK conversion program would not be portable between machines unless it used
XGetKeyboardMapping() to get the current mapping of keycodes to keysyms and then remapped them.

XGetKeyboardMapping() returns an array of keysyms that represent the current mapping of the specified range
keycodes.

9.1.4.2 Changing Modifier Mapping

X allows you to control which physical keys are considered modifier keys. Normal applications will not do this. The
modifier mapping might be changed for a left-handed user if, by default, there was only one Control key on the left
the keyboard and the user preferred to have a Control key on the right side. In that case, a conveniently placed ke
right side could be mapped to a logical Control key. Like keycode—to—keysym remapping, this would typically be dc
a special purpose application run from the user’s startup script.

While modifier keys generatéeyPress andKeyRelease events like other keys, modifier keys are the only keys
reported in thestate member of every key, button, motion, or border crossing event structurastaldhe member is a
mask that indicates which logical modifiers were pressed when the event occurred. Easfategit ins represented by a
constant such &ontrolMask . state is used byXLookupString() to generate the correct keysym from a key
event. Note that th&tate member of events other than key, button, motion, and border crossing events does not +
the meaning described here.

XlInsertModifiermapEntry() andXDeleteModifiermapEntry() provide the easiest ways by far to add or
delete a few keycodes for a modifier.

UsingXInsertModifiermapEntry() andXDeleteModifiermapEntry() is straightforward. You get the
current modifier mapping stored in AModifierKkeymap structure with a call tXGetModifierMapping() . You
specify this structure, a keycode, and one of the eight modifier symbols as the three arguments to
XlInsertModifiermapEntry() or XDeleteModifiermapEntry() . Both routines return a new
XModifierKeymap structure suitable for callingSetModifierMapping() . You should add or delete all the

keycodesyou intend to change before calliX@etModifierMapping()

You should not need to understand how the modifiers are stored to use the procedure described above for adding
deleting keycodes.

XSetModifierMapping() is the routine that actually changes the mapping. As such, it is when calling

XSetModifierMapping() that any errors appear, even though they are usually caused by an invalid
XModifierKeymap structure that was set earlier.

These are the requirements for ¥ModifierKeymap structure specified t8SetModifierMapping()

. Zero keycodes are ignored.
. No keycode may appear twice anywhere in the map (otherwigBsg\dalue error is generated).

. All nonzero keycodes must be in the range specifiettiny keycode andmax_keycode in theDisplay
structure (else BadValue error).

. A server can impose restrictions on how modifiers can be changed. For example, certain keys may not gene
transitions in hardware or multiple modifier keys may not be supported. If a restriction is violated, then the st
reply isMappingFailed , and none of the modifiers are changed.

If the new keycodes specified for a modifier differ from those currently defined and any (current or new) keys for th
modifier are in the down state, then the status regiaigpingBusy , and none of the modifiers are changed.

XSetModifierMapping() generates MappingNotify ~ event on &appingSuccess status.

When finished mapping the keyboard, you can freXtfledifierKeymap structures by calling
XFreeModifiermap()

9.1.5 Other Keyboard-handling Routines

Several routines in addition ¥d_ookupString() provide ways to translate key events. None of these routines are
commonly needed in applications.

You might think thalXKeysymToString() andXStringToKeysym() describe the mapping between keysyms an
strings, but they don'XKeysymToString() does not return the same string as is placed inufier argument of
XLookupString() , whenXKeysymToString() is given the keysym thatLookupString() returns.
XKeysymToString() changes the symbol form of a keysy¥K(Return), which is a number, into a string form of
the symbol ("Return"), an¥StringToKeysym() does the reversKeysymToString()(XK_F1) would return
"F1" regardless of what string is currently mapping to the F1 key. XirdgkupString() returns the string mapped tc
a particular keysym witlKRebindKeysym()

XKeycodeToKeysym() andXKeysymToKeycode() make the mappindetween single keycodes and keysyms mc
accessible. XLookupKeysym() actually takes a key event, extracts the keycode, anddadigcodeToKeysym() .)
ForXKeycodeToKeysym() andXLookupKeysym() , you must specify which keysym you want from the list for the
keycode, with théndex argument. Remember that the list of keysyms for each keycode represents the key with ve
combinations of modifier keys pressed. The meaning of the keysym list beyond the first two (unmodified, Shift or £
Lock) is not defined. Therefore, threlex values of O and 1 are the most commonly used.

9.2 The Pointer

The pointer generates events as it moves, as it crosses window borders, and as its buttons are pressed. It provide
information that can define a path in the two—dimensional space of the screen, tell you which window the pointer is
allow the user to "point and click," generating input without using the keyboard. In fact, the pointer is the most uniq
feature of a window system.

This section describes how to track the pointer and how to handle the pointer buttons. Border crossing events are
in Section 9.3, "Border Crossing and Keyboard Focus Change Eventsiiecause they must be handled in concert wit|
keyboard focus change events.

9.2.1 Tracking Pointer Motion
There are three ways of handling pointer motion events:

. Getting all motion events. The program simply receives and processes every motion event. This option is st
for applications that require all movements to be reported, no matter how small. Since many motion events &
generated and reporting the processing of the events may lag behind the pointer, this approach is not suitabl
applications that require the most current information about pointer position.

. Getting hints and querying pointer position. This method greatly reduces the number of motion events sent t
requires thaXQueryPointer() be called to get the current pointer position. This option is suitable for
applications that require only the final position of the mouse after each movement.

. Reading the motion history buffer. After checking that the buffer existsXGatMotionEvents() when you
want the array of events occurring between two specified times. This option is not available on all servers, bt
suitable for detailed pointer position reporting. Its advantage over getting all motion events is that the list of
positions in the motion history buffer can be used for undoing or responding to exposure events in drawing
applications.

Let's look at each of these methods in detail.

9.2.1.1 Getting All Motion Events

The most obvious way to handle motion events is to get all motion events. The only complication is that you must
processing of each event to a minimum so that the feedback loop to the user is reasonably fast.

Example 9-7shows another modification basicwin the program described @hapter 3, "Basic Window Program."
It creates a child window of the top-level window of the application and allows the user to draw into it by moving th
pointer with any button held down.

Example 9-7. Getting all motion events
/* Global declarations of display and screen */

#define BUF_SIZE 2000
void main(argc, argv)

int argc;

char **argv;

{

[* Declarations from basicwin */

Window wint;

int xpositions[BUF_SIZE], ypositions[BUF_SIZE];
int i;

int count = 0;

Bool buffer_filled = False;

/* Open display and create window win */

wint = XCreateSimpleWindow(display, win, 20, 20, 50, 50,
border_width, BlackPixel(display, screen),
WhitePixel(display,screen));

XSelectlnput(display, wint, ExposureMask | PointerMotionMask);

XMapWindow(display, wint);

/* Select events for and map win */
while (1) {
XNextEvent(display, &report);

switch (report.type) {
case MotionNotify:
printf("got a motion event\n");
Xpositions[count] = report.xmotion.x;
ypositions[count] = report.xmotion.y;
XDrawPoint(display, wint, gc,
report.xmotion.x, report.xmotion.y);
[* The following implements a fast ring buffer
* when count reaches buffer size */
if (count <= BUF_SIZE)
count++;
else {
count = 0;
buffer_filled = True;
}
break;
case Expose:
printf("got expose event\n");
if (report.xexpose.count != 0)
break;
if (report.xexpose.window == wint) {
[* This redraws the right number of points;
* if the ring buffer is not yet filled,
* it draws count points; otherwise, it
* draws all the points */
for (i=0 ; i < (buffer_filled ?
BUF_SIZE : count) ; i++)
XDrawPoint(display, wint, gc, xpositionsi],
ypositionsli]);
}
else {
if (window_size == SMALL)
TooSmall(win, gc, font_info);
else {
/* Place text in window */
draw_text(win, gc, font_info, width, height);
/* Place graphics in window */
draw_graphics(win, gc, width, height);
}
}

break;
/* Other event types handled same as basicwin */

} I* End switch */
} * End while */
}

The program keeps a record of the points drawn so that they can be redrawn in cd&Sgotanevent. The event
record is a ring buffer so that the latB&tF _SIZE pointer positions are always maintained.

The program requires that one or more of the pointer buttons must be held down while drawing. (Most drawing
applications require a button to be held, because otherwise it is impossible to move the pointer into a different appl
without drawing a trail of points to the edge of the window.) Therefore, drawing applications normally select
ButtonMotionMask

It would be quite easy to extend this program by giving each button a different meaning. Drawing with button 1 cot

mean drawing in black, button 2 could mean drawing in white, and button 3 could mean toggling the previous state
drawn pixels. The only change necessary to implement this would be code that changes the foreground pixel valu
logical operation in a GC or creates three GCs with these variations. The routine would determine which button wz
pressed from thstate member of the event structure and determine what to do if more than one button was press

9.2.1.2 Using Pointer Motion Hints

If you do not need a record of every point the pointer has passed through but only its current position, using motior
the most efficient method of handling pointer motion events. This method could be used for dragging in menus or
scrollbars, in a window manager when it moves the outlines of windows, or in a drawing application in a line drawir
mode. We’'ll demonstrate the technique in a line drawing application.

To use this method, seld@binterMotionHintMask in addition to the specific event masks you desire.
PointerMotionHintMask is a modifier; it does not select events by itself.
Example 9-8demonstrates how to read pointer events RimterMotionHintMask selected. The code shown in

the example draws lines between the series of points the user specifies with button clidksttortiress event
indicates thebeginning of a linelMotionNotify events allow the application to draw a temporary line to the current
pointer position, an8uttonRelease events indicate that the line should be drawn permanently between the points
indicated by th8uttonPress andButtonRelease events.

Example 9-8. Using pointer motion hints
[* Declare global variables display and screen */

void main(argc, argv)
int argc;

char **argv;

{

[* Declarations from basicwin */

int root_x, root_y;
Window root, child;
unsigned int keys_buttons;
Window wint;
XPoint points[BUF_SIZE];
int index = 1;
int pos_x, pos_y;
int prev_x, prev_y;
GC gcx;
wint = XCreateSimpleWindow(display, win, 20, 20, 50, 50,
border_width, BlackPixel(display, screen),
WhitePixel(display,screen));
XSelectinput(display, wint, ExposureMask | ButtonPressMask
| ButtonReleaseMask | ButtonMotionMask
| PointerMotionHintMask);
gex = XCreateGC(display, win, 0, NULL);
XSetFunction(display, gcx, GXxor);
XSetForeground(display, gcx, BlackPixel(display, screen));
XMapWindow(display, wint);
while (1) {
XNextEvent(display, &report);
switch (report.type) {
case ButtonPress:
points[index].x = report.xbutton.x;

points[index].y = report.xbutton.y;
break;
case ButtonRelease:
index++;
points[index].x = report.xbutton.x;
points[index].y = report.xbutton.y;
break;
case MotionNotify:
printf("got a motion event\n");
while (XCheckMaskEvent(display,
ButtonMotionMask, &report));
if (IXQueryPointer(display, report.xmotion.window,
&root, &child, &root_x, &root_y,
&pos_x, &pos_y, &keys_buttons))
[* Pointer is on other screen */

break;
/* Undraw previous line, only if not first */
if (index = 1)

XDrawLine(display, wint, gcx, points[index].x,
points[index].y, prev_x, prev_y);
/* Draw current line */
XDrawLine(display, wint, gcx, points[index].x,
points[index].y, pos_X, pos_Y);
prev_x = pos_Xx;
prev_y = pos_y;
break;
case Expose:
printf("got expose event\n");
if (report.xexpose.window == wint) {
while (XCheckTypedWindowEvent(display,
wint, Expose, &report));
XSetFunction(display, gcx, GXcopy);
XDrawLines(display, wint, gcx, points,
index, CoordModeOrigin);
XSetFunction(display, gcx, GXxor);
}
else {
[* Same code as basicwin */
}
break;
} I* End switch */
} * End while */
}

In some applications, you do not need to track pointer motion events to know where the pointer is at particular time
pointer position is given iButtonPress , ButtonRelease , KeyPress , KeyRelease , EnterNotify , and
LeaveNotify events. You can use any of these events to locate objects in a window.

9.2.1.3 Motion History

If the motion history buffer exists on the servEb{splayMotionBufferSize() (display) > 0), all selected
motion events are placed in a lisb6fimeCoord structures. There is no macro for accessing this member of the
display structure. You specify the desired range of time§GetMotionEvents() , and it returns a pointer to a list
of XTimeCoord structures, representing all the poinpasitions during the range of times. The reported pointer
positions may be in finer detail than would be reporteibgionNotify events.

In the MIT sample distribution of Xlib, motion history buffers were first implemented in Release 5. In any case, the
not a required part of a server implementation. Therefore, an application that uses motion history should also supy

all-motion—events approach for use on servers that do not have the buffer.
TheXTimeCoord structure is shown iBxample 9-9

Example 9-9. The XTimeCoord structure
typedef struct _XTimeCoord {
short x,y; /* Position relative to root window */
Time time;
} XTimeCoord;

Example 9-10 shows another version of the program used to demonstrate getting all motion events.

Example 9-10. Reading the motion history buffer
[* Global declarations of display and screen */

#define BUF_SIZE 2000
void main(argc, argv)

int argc;

char **argv;

{

[* Declarations from basicwin */

Window wint;

int xpositions[BUF_SIZE], ypositions[BUF_SIZE];
int i

int count = 0;

Bool buffer_filled = False;

[* Open display and create window win */

if (XDisplayMotionBufferSize(display) <= 0)
{
printf("%s: motion history buffer not provided on server",
argv(0));
exit(-1); /* Or use all events method instead */
}
wint = XCreateSimpleWindow(display, win, 20, 20, 50, 50,
border_width, BlackPixel(display, screen),
WhitePixel(display,screen));
XSelectlnput(display, wint, ExposureMask | ButtonMotionMask
| PointerMotionHintMask);
XMapWindow(display, wint);

[* Select events for and map win */
while (1) {
XNextEvent(display, &report);
switch (report.type) {
case MotionNotify:
printf("got a motion event\n");
while (XCheckTypedEvent(display, MotionNotify, &report));
start = prevtime;
stop = report.xmotion.time;

xytimelist = XGetMotionEvents(display, window, start,
stop, &nevents);
for (i=0;i<nevents;i++)
XDrawPoint(display, window, gc, xytimelist[i]—>X,
xytimelist[i]—>y);
break;
case Expose:
printf("got expose event\n");
if (report.xexpose.window == wint) {
while (XCheckTypedWindowEvent(display,
wint, Expose, &report));
xytimelist = XGetMotionEvents(display, window,
0, CurrentTime, &nevents);
for (i=0 ; i < nevents ; i++)
XDrawPoint(display, window, gc, xytimelist[i]->X,
xytimelist[i]->y);
}
else {
while (XCheckTypedWindowEvent(display,
win, Expose, &report));
if (window_size == SMALL)
TooSmall(win, gc, font_info);
else {
/* Place text in window */
draw_text(win, gc, font_info, width, height);
/* Place graphics in window */
draw_graphics(win, gc, width, height);
}
}

break;
/* Other event types handled same as basicwin */

} I* End switch */
} * End while */
}

9.2.2 Handling Pointer Button Events

The examples of tracking pointer motiorSaction 9.2.1, "Tracking Pointer Motion" use the buttons to some extent, b
they do not tell you the whole story. There is the subject of automatic button grabs, and there are issues involved i
making each button perform a different function. Let's tackle grabs first.

When a pointer button is pressed, an active grab is trigganeainatically (as described$ection 8.3.2.2, "Keyboard

and Pointer Grabbing," an active grab means that all button events before the maBiliilogRelease event on the
same button always goes to the same application, or sometimes the same windoByiasnReess). The automatic
grab does not take place if an active grab already exists or a passive grab on the present key and button combinat
for some higher level window in the hierarchy than the window in whicBtitnPress occurred.

The OwnerGrabButtonMask that you can specify in calls XSelectinput() controls the distribution of the
ButtonRelease event (and any other pointer events that occur betwedButienPress andButtonRelease). If
OwnerGrabButtonMask is selected, thButtonRelease event will be sent to whichever window in the applicatior
the pointer is in when the event occurs. If the pointer is outside the applicati@ddvaréfGrabButtonMask s not
selected, the event is sent to the window in whictBilmonPress occurred.

OwnerGrabButtonMask should be selected when an application wants to know in which wiBdtenRelease
events occur. This information is useful when you require that boButtenPress and the matching

ButtonRelease events occur in the same window in order for an operation to be executed. In practice, it does ni
to selectOwnerGrabButtonMask even if you do not need the response it provides. If you do not select
OwnerGrabButtonMask , any changes you try to make to the event mask of the grabbing window before the
ButtonRelease will not take effect.

The automatic grabs affect only the window to which button events are sent. To be more precise, they affect the v
thewindow member in the button event structures in the application’s event queue. And for the event to be placec
queue in the first place, it must have been selected on the window specifiediindbe member.

Now let’s talk about distinguishing which pointer button was pressed. Two members<&utienEvent structure
contain information about the button state. Bh#on member specifies the button that changed state to trigger the
event. Thestate member gives the state of all the buttons and modifier keys just before the event. You will need
state member only if you require that certain key or button combinations be pressed to trigger an operation.

Especially if you require that the same button must be pressed and released in a certain window, be sure to accoul
case where, for example, button 1 is pressed, then buttons 2 and 3 are pressed and released (perhaps repeatedly’
and held, before button 1 is again released. You must be careful if you structure your code asEkamplén9-11to
handleButtonPress andButtonRelease events in pairs.

This code is an excerpt frowinman the simple window manager describe€hmapter 16, "Window Management.”

There is no case f@uttonRelease in the example. Instead the code ButtonPress looks for the matching
ButtonRelease event. The matchinButtonRelease might not be the next button event, so intervening events
must be dealt with. This problem appears only if you are trying to distinguish the button that was pressed.

Example 9-11. Accepting button events in pairs
case ButtonPress:
/* Draw pane in white on black */
paint_pane(event.xbutton.window, panes, gc, rgc,
font_info, BLACK);
/* Keep track of which button was pressed */
button = event.xbutton.button;
/* Keep track of which window press occurred in */
inverted_pane = event.xbutton.window;
/* Get the matching ButtonRelease on same button */
while (1) {
/* Get rid of presses on other buttons */
while (XCheckTypedEvent(display, ButtonPress,
&event));
[* Wait for release; if on correct button, exit */
XMaskEvent(display, ButtonReleaseMask, &event);
if (event.xbutton.button == button)
break;
}
I* All events are sent to the grabbing window
* regardless of whether this is True or False,
* because owner_events only affects the
* distribution of events when the pointer is
* within this application’s windows; we don’t
* expect it to be for a window manager */
owner_events = True;
/* We don’t want pointer or keyboard events
* frozen in the server */
pointer_mode = GrabModeAsync;
keyboard_mode = GrabModeAsync;
[* We don’t want to confine the cursor */
confine_to = None;
GrabPointer(display, menuwin, owner_events,
ButtonPressMask | ButtonReleaseMask,

pointer_mode, keyboard_mode,
confine_to, hand_cursor, CurrentTime);
I* If press and release occurred in same window,
* do command; if not, do nothing */
if (inverted_pane == event.xbutton.window)
{
/* Convert window ID to window array index */
for (winindex = 0; inverted_pane !=
panes[winindex]; winindex++)

switch (winindex)
{
case O:
raise_lower(display, screen,
RAISE);
break;

case 9: /* Exit */

XSetlnputFocus(display,
RootWindow(display,screen),
RevertToPointerRoot,

CurrentTime);

/* Turn all icons back into windows */

/* Must clear focus highlights */

XClearWindow(display, RootWindow(display, screen));

/* Need to change focus border width back here */

XFlush(display);

XCloseDisplay(display);

exit(1);

default:
(void) fprintf(stderr,
"Something went wrong\n");
break;
} * End switch */
}/* End if ¥/
* Invert back here (logical function is GXcopy) */
paint_pane(event.xexpose.window, panes, gc, rgc,
font_info, WHITE);
inverted_pane = NONE;
draw_focus_frame();
XUngrabPointer(display, CurrentTime);
XFlush(display);
break;
case DestroyNotify:

9.2.3 Changing the Pointer Button Mapping

Some applications may allow the user to modify the mapping between the physical pointer buttons and the logical |
that are reported when a button is pressed. In other words, if physical button 1 were mapped to logical button 3, th
either button 3 or button 1 were pressed, it would appear to all applications that only button 3 was pressed.

There are five logical buttons, but the number of physical buttons may range from one up to and perhaps greater tt

Mapping the pointer buttons might be done, for example, to simulate buttons 4 and 5 on a system with a three—but
mouse. However, while physical buttons 1 and 2 were mapped to logical 4 and 5, no buttons would be mapped to
and 2. Therefore, there would have to be a way of toggling between the modes, perhaps using a function key.

The mapping of pointer buttons is analogous to the mapping between keycodes and keysyms in that it is global to
server and affects all clients. However, since the translation of a pointer event takes place in the server, unlike key
processing routines that use information stored in Xlib whenever possible, no routine is necessary to update the pc
mapping likeXxRefreshKeyboardMapping() updates the keyboard mapping.

XGetPointerMapping() returns the current mapping between physical and logical pointer buttons.
XSetPointerMapping() sets this mapping.

9.2.4 Moving the Pointer

The XWarpPointer() routine moves the pointer to a relative or global position. Its use should be minimized and
constrained to particular predictable circumstances, because it often confuses the user.

XWarpPointer() has various features for moving only in certain situations. See the reference dalygria Two,
Xlib Reference Manugafor details.

Warping the pointer generate®tionNotify and bordercrossing events just as if the user moved the pointer.

9.3 Border Crossing and Keyboard Focus Change Events

LeaveNotify andEnterNotify events are generated when the pointer crosses a window border. If the window
manager is of the real—-estate—driven variety (asvig), you might be tempted to assume thaeaveNotify event
indicates that the window will not receive keyboard input until it receives a mathtagNotify . However, this
assumption is not true if the user has been allowed to set a keyboard focus window. It is also not true if the window
manager is of the listener variety (see Chaptehstdgduction 12, Interclient Communicatigrand 16 Window
Management Ideally, you should be prepared to deal with either type of window manager.

Pointer input can only be delivered to a window when the pointer is inside the window (unless the window grabs th:
pointer). Therefore, an application that depends on pointer input can expect to be idle when the pointer leaves the
and to be active again when the pointer enters. Notice that keyboard input can be diverted with the keyboard focu
grabs, while pointer input can only be diverted by grabs.

Focusin andFocusOut events occur when the keyboard focus window changes (when some client calls
XSetlnputFocus()). By using focus events together with the border crossing events, an application should be a
determine whether or not it can get keyboard input. If it cannot get keyboard input, it may change its behavior som
If it polls for keyboard input to allow for interrupts, it can stop polling. If it normally highlights a window when the
pointer enters it, it should not do so if the keyboard focus is not the root window.

In general, to determine if it will get keyboard input, an application should first &wetlsin andFocusOut events.
If the focus window is the root window, then the application should cheakeNotify = andEnterNotify to see if
keyboard events are possible.

Additional focus change and border crossing events are generated when the origin and destination of the focus or
crossing do not have a parent—child relationship. These events arevcali@dtrossingevents. See Appendix Eyent
Referencgefor a description of when these events are generated and how to distinguish them from normal crossing

Example 9-12shows the code that would be used to monitor whether the application will receive keyboard input. v
keyboard_active is True in this code, the application could highlight its main window.

Example 9-12. Monitoring whether keyboard input will be available
Bool keyboard_active;

Bool focus;

/* Open display, create window, select input */

[* Select input before setting keyboard focus, if application does */

while (1) {
XNextEvent(display, &report);
switch (report.type) {

case EnterNotify:
printf("enter\n™);
/* Make sure focus is an ancestor */
(report.xcrossing.focus) ?
(keyboard_active = True)
: (keyboard_active = False);
break;
case LeaveNoaotify:
printf("leave\n");
/* We get input only if we have the focus */
(focus) ? (keyboard_active = True)
: (keyboard_active = False);
break;
case Focuslin:
/* We get keyboard input for sure */
printf("focus in\n");
focus = True;
keyboard_active = True;
break;
case FocusOut:
/* We lost focus, get no keyboard input */
printf("focus out\n");
focus = False;
keyboard_active = False;
break;

}
} /* End while */
Example 9-12could be used as a basis for code that highlights a portion of an application when it can get keyboart
It would be inactivemode when thkeyboard_active flag isTrue . When arEnterNotify event is received, the
focus member of the event structure is checked to see that the focus window is an ancestor of the window in que:
so,keyboard_active is True . When d_eaveNotify event is receivekeyboard_active is True only if the
application has the focus. Gocusin eventskeyboard_active is True , and a flagfocus) is set to indicate
whether the keyboard will be active afteraveNotify events.

9.3.1 The KeymapNotify Event

TheKeymapNotify event, when selected, always follows thre queue immediately aftefFacusin or

EnterNotify event. Its purpose is to allow the application to easily determine which combination of keys were p
when the focus was transferred to the window or the pointer entered iKeyhwpNotify event contains a keyboard
vector, which is a 32—element array of typlear , in which each bit represents a key. For a given key, its keycode is il
position in the keyboard vector.

The XQueryKeymap() function also returns this keyboard vectéryboard vectors are always independent of all the
keyboard mapping and reading functions, since the bits in the vector correspond to keycodes that cannot be chanc
way of reading the keyboard is just like reading the pointer buttons. It can be useful for applications that treat the k
not as characters but, for example, as piano keys or drum pads.

SinceXQueryKeymap() makes a routine trip request, reading the keyboard this way could not achieve the same

performance when operating over a network as the same program implemented using events.

9.4 Grabbing the Keyboard and Pointer

There are times when a program might want to bypass the normal keyboard or pointer event propagation path in o
get input independent of the position of the pointer. This is the purpose of grabbing the keyboard and pointer. The
routines to grab the keyboandGrabKeyboard()) or the pointerXGrabPointer()), or to arrange that they become
grabbed when a certain combination of keys and/or buttons is pre&SeabButton() , XGrabKey()). There are
corresponding calls to ungrayngrabButton() , XUngrabKey() , XUngrabKeyboard() ,

XUngrabPointer()), and there is one call to change the characteristics of a pointer grab
(XChangeActivePointerGrab()).

One of the most common situations where grabbing takes place is with button events. Most applications want bott
ButtonPress and aButtonRelease , so that they can compare the two positions. Since this is such a common d
the serveautomaticallygrabs the pointer between BettonPress andButtonRelease if both are selected, so that
you do not have to make an explicit grab.

One reason for grabbing a device is so that you can handle a series of events contiguously without fear of interven
events. But when you grab a device, no other application can receive input from that device. Therefore, it is somet
do only when absolutely necessary.

The routines that grab take several arguments that tailor the input response in these ways:

. When the pointer is grabbed, the cursor may be confined to any windogo(ifiee_to argument).

. The distribution of events to windows within the application can be modified lpywher_events argument. If
owner_events is True , then the grabbed events will be sent to the window within the application that the pc
indicates. lowner_events isFalse orthe pointer is outside the applications, then the events are always s¢
only to window specified bwindow .

. A window called thegrab_window is specified. All events that occur outside the calling application’s window.
are reported to the grab window. All events within the application’s windows will be sent to the grab window i
owner_events argument ig-alse , or they will be reported normally within the application (to the window
indicated by the pointer or propagating from that window if it did not select the evewt)éfr_events isTrue .

. For events that occur outside the calling application’s windows, and events that occur insidemdéervents
is False , theevent_mask argument specifies which types of events are selected for the grab window. This
event_mask overrules the existingvent_mask for the grab window unlessvner_events is True .

. Event processing for either keyboard or pointer events or both may be halted altogether during the grab until
releasingXAllowEvents() call is invoked by setting thmointer_mode or keyboard_mode arguments to
GrabModeSync .

. Thecursor argument specifies a particuldursor to be displayed while the grab is active. This cursor indical
to the user that input is going to the grabbing window, since the cursor will not change when moved across tt
screen as it normally would.

. Grabbing calls may specify a time when the grab should take pladginf{theargument).

You can change several of the conditions of an active pointer grab, nameletitemask , cursor , andtime , using
XChangeActivePointerGrab()

XGrabKey() andXGrabButton() arrange for a grab to take place when a certain combination of keys or buttons
pressed. After one of these routines is called, a passive grab is said to be in effect, until the specified keys and but
pressed. At that time, the grab is active and is indistinguishable from a grab generated byxacabk@yboard()

or XGrabPointer() . After a passive grab, an active pointer grab will take effect when the following four conditior
are met:

. The specified button is pressed when an optional set of modifier keyboard keys is pressed and no other keys
buttons are pressed.

. The pointer is contained in the grab window specified in the grabbing call.

. The cursor—confining window (specified in tbenfine_to argument oXGrabPointer() or
XGrabButton()) must be visible, if one is specified.

. These conditions are not satisfied by any ancestor.

Grabbing the keyboard is similar to setting the keyboard focus window, but grabbing is more flexible, since there ai
arguments to modify the effect. Focus changes and keyboard grabs and ungrabs all generatédocasamand
FocusOut events.

If pointer grabs and ungrabs cause the pointer to move in or out of a window, they dememrdetify and
LeaveNotify events.

The XAllowEvents() routine is used only when tipointer_mode orkeyboard_mode in previous grabbing calls
were set taGrabModeSync . Under these conditions, the server queues any events that occur (but does not send tl
the Xlib event queues for each application), and the keyboard or pointer is considered "KéHemEvents()

releases the events that are queued in the server for the frozen device. After the call, the device is still frozen, and
server again queues any events that occur on that device until theAlemtEvents() or Ungrab* call. In effect,
XAllowEvents() allows events to come in a batch through the network to the event queues for each application

The pointer modes have no effect on the processing of keyboard events and vice versa.

Both a pointer grab and a keyboard grab may be active at the same time by the same or different clients. If a devic
frozen on behalf of either grab, no event processing is performed for the device. It is possible for a single device tc
frozen by both grabs. In this case, the freeze must be released on behalf of both grabs before events can again be
processed.

9.4.1 Implementing Type—ahead for Information Entry

Normally, the keyboard input focus, which is the window to which all keyboard input is sent, is controlled by the wir
manager. However, the window manager only gives the keyboard input focus to top—level windows. So essentially
window manager gives the keyboard focus to one application at a time.

Order entry applications need to move the keyboard focus from subwindow to subwindow within the application. N
them interpret the Tab key as a command to move to the next information entry field. To do this reliably while allov
type—ahead, they must use the keyboard focus in combination with grabs. Here’s why, as written by Wayne Dykse
Purdue Universitylt begins with a little more about synchronous and asynchronous grabs, which you need to under
to follow the rest.

This is an excerpt of the paper "Controlling Event Delivery with Grabs and Keyboard Focus," by Wayne Dyksen, that afpeare&esourcéssue
2.

As "raw" events occur on devices, the Server processes them and sends them to clients. For example, given a raw
Server must determine to which window the event is to be sent; that is, the Server must determine the valirelofthe
member of the event structure. The paramegteirser mode andkeyboard _mode arguments of

XGrabButton() , XGrabPointer() , XGrabKey() , andXGrabKeyboard() control the processing of raw events
during a grab; they can have either of the vatBiebModeAsync or GrabModeSync .

If the valueGrabModeAsync is used, then event processing for the grabbed device is asynchronous, as usual. Thi
the Server processes and sends all grabbed events to the grabbing client as soon as they occur. Note that all ungr
events (e.gExpose) are processed and sent normally.

If GrabModeSync is used, then, when the grab occurs, the Server records raw device events in an internal queue,
temporarily stops processing and sending them to the grabbing client. The Server resumes raw event processing '
grabbing client sends either XAllowEvents() request or an ungrab request.

UsingGrabModeSync is often referred to dseezingthe keyboard or pointer. This term is the source of some confusi
since usingsrabModeSync doesnotfreeze (lockup) the pointer or keyboard themselves in any intuitive sense. One
would guess that if the pointer or keyboard were "frozen," then using them would have no effect. In fact, use of the
and keyboard during a freeze continues to generate raw events which are recorded (but not processed or sent) by
Server. For example, the pointer cursor continues to move on the screenGtasiktpdeSync doesnot freeze the

physical pointer or keyboard themselves, but rather it freezes the raw pointer or keyteodsat the Server. The raw
events (not the devices) are eventudiwed(processed and sent) when the freezing client sends either an
XAllowEvents() request or an ungrab request.

Consider the simplified forms fill-in application illustratedrigure 9-1 Recall that the user gets from one blank to the
next (from one window to the next) by using a special key (say Next). Each blank in the form is implemented by a ¢
X window. The client changes the keyboard input focusX8atinputFocus()) to the next blank (window) each
time it receives a NeXeyPress event.

Figure 9-1. Simplified forms fill-in application

KKKxKKKKKKKKKKKKKKKKKKxKKKKKKKKKKKKKKKKKKxKKKKKKKKKKKKKKKKKKKKKKKKK}
L L L L L L i i L N L R N M M M N M MMM L M NI K XY
K

HHEANNNANN NN NN
HE ::K'

Suppose first that a client were to attempt to implement this forms fill-in application by having the "form" window (tl
parent of the blankggsynchronouslgrab the Next key. When the form window receives a KeyPress event, it
issues aiXSetlnputFocus() request, changing the keyboard input focus to the next blank.

Consider the possible scenario of events when a user types "D-y-k-s—-e-n-Next-W-a-y-n-e," as illuBitate in

9-2. Each Snapshot shows the events and requests in queues at a moment in time; events as they are first genere
Events"), events as the server determines the window to which they should be delivered ("Cooked Events"), and re
made by the client in response to the arrival of these events. "Raw Events" are physical device events which the S
queued and must process; for example, "s ——> ?" indicates that the "s" key has been pressed and that the Server |
decide to which window thikeyPress event is to be sent. "Cooked Events" are events which the Server has proces
and is about to dispatch; for example, "D ——> Last" indicates that the "D" key has been pressed and that the event
sent to the "Last Name" window. "Requests" are requests which have come from the client in response to events; 1
example, "D ——> Last" indicates that the client has requested the Server to draw a "D" in the "Last Name" window.

Figure 9-2. Possible scenario of events using an asynchronous key grab

Contignons Snapshols of the Server Quenes
Snapshot Raw Events Cooked Events Requests
i O - sois 7
W R ?
v
p, 5 7 Last
Y Last
e 7 Last
B 7
B 7
H i:l
7
3 i Y Last
B Last
9 Last
By
7
4 7 Last Last
B Last Last
Last Last
First
5 i First # Last
First | ast
Last
G First
First

Consider now what might happen if a user were to type "D-y—-k-s—e—n-Next-W-a-y—-n-e." When the event "Next
Form" illustrated in Snapshot 2 is received by the "Form" window, the client issues the request "Focus ——> First" si
Snapshot 3. Unfortunately, while the client is processing the Kied®ress event, the Server is asynchronously
processing further keyboard events. Thus, until the Server actually receives and processes the "Focus ——> First" ri
continues to dispatdkeyPress events to the "Last Name" window. This is illustrated in Snapshot 3 where the Servt
dispatching "W-a-y" to the "Last Name" window. Since the events "W-a-y" are sent to the "Last Name" window, t
client issues the requests shown in Snapshot 4 to draw "W-a-y" in the "Last Name" window. Eventually, the Serve
receive and process the "Focus ——> First" request. Snapshot 4 and 5 show "n—e" being sent to and drawn in the "
Name" window. The above scenario produces the incorrect result illustrdtigaiia 9-3.

Figure 9-3. Possible incorrect forms fill-in result using an asynchronous key grab

i M M N N M M M M N N MMM MMM NN K
I I M I M I M M M M N M M M M N NI NN
-

EHE R HE R R o HEHEHT HE R HEH
N N N N N M N N N N N N N N N N N N M N N N N N N N N N N N MR M HE N RN

Note that the actual forms fill-in result using an asynchronous grab varies depending on the timeKestiRiesss
events. In fact, the form would produce the correct result if a user were to type "D-y—k-s—e—n—Next" followed by a
sufficiently long pause followed by "W-a-y-n—-e."

Consider again the above example, only this time suppose that thesgtiehtonoushgrabs the Next key (before any key
events are processed). The sequence of events that occur in response to the user typing
"D-y-k-s—-e—-n—-Next-W-a-y—-n—e" is illustrated kigure 9-4

Figure 9-4. Scenario of events using a synchronous key grab

Contignons Snapshols of the Server Quenes
Enﬂpﬂhﬂt Raw Eventis Cooked Events Hﬂquﬂﬂtﬂ
1 R
AR
a Last
Last
Last
3 i 7 Last
Y Last - Last
9 Last Last
7 s Form
Y
4 i
Y
Y
7
7
5 f W o
g - d
¥
G f - Last
i - Last
Last
7 First
- First

As soon as the Server sees the raw KeyPress event, it initiates a synchronous grab. Snapshot 3 shows that the
Server is continuing to record rd¢eyPress events, but it has stopped "cooking” them. KlegPress events
"W-a-y—-n-e" have accumulated in the Server’s "Raw Events" queue. After receiving théehfExess event, the
client sends a request to the Server to change the focus to the "First Name" window ("Focus ——> First") followed b'
request to start cooking events ("Allow Events"). Because of the synchronous grab, the client knows that the Serve
receives and processes the "Focus ——> First" request before it processes the raw event "W ——> ?." The desired re
illustrated inFigure 9-5

Figure 9-5. Correct forms fill-in result using a synchronous key grab

KKKxKKKKKKKKKKKKKKKKKKxKKKKKKKKKKKKKKKKKKxKKKKKKKKKKKKKKKKKKKKKKKKK}
L L L L N L M L N L N L M M N M MMM MK X

4
-
H
H
-
H
H
-
H
H
-
-
i
b

KK KK KKKK KKK KKK
KKKxKKKKKKKKKKKKKKKKKKxKKKKKKKKKKKKKKKKKKxKKKKKKKKKKKKKKKKKKKKKKKKK

To summarize, the solution to this form of type—ahead problem is GraddviodeSync as thekeyboard_mode
argument of the passive grab on the Tab key. TheXadbwEvents() in response the arrival of the Tab key event
that signals the change in windows. This synchronizes the change of keyboard focus from one window to another
assures that the events go to the intended window.

9.5 Keyboard Preferences

Xlib provides routines to control beep pitch and volume, key click, Shift-Lock mode, mouse acceleration, keyboard
and keyboard auto-repeat. Not all servers will actually be able to control all of these parameters.

There are five routines that deal with the keyboard and pointer preferet@etiKeyboardControl() and
XChangeKeyboardControl() are the primary routinefor getting or setting all these preferences at once.
XAutoRepeatOff() andXAutoRepeatOn() set theglobal keyboard auto-repeat status but are not able to contr
the auto-repeat of individual keys ¥€hangeKeyboardControl() can.

9.5.1 Setting Keyboard Preferences

XChangeKeyboardControl() uses the standard X method of changing internal structure membergalUédse
argument toXChangeKeyboardControl() specifies the structure containitige desired values; thalue_mask
argument specifies which members in the structure specifieirs should replace the current settings. See the
reference page fotChangeKeyboardControl() in Volume Two, Xlib Reference Manyufr a list of the mask
symbols.

Example 9-13shows thexKeyboardControl() structure.

Example 9-13. The XKeyboardControl() structure
typedef struct {

int key_click_percent;

int bell_percent;

int bell_pitch;

int bell_duration;

int led;

int led_mode; /* LedModeOn or LedModeOff */

int key;

int auto_repeat_mode; /* AutoRepeatModeOff, AutoRepeatModeOn,

* AutoRepeatModeDefault */

} XKeyboardControl,
The following list describes each member of #ieyboardControl() structure:
. key_click_percent sets the volume for key clicks between 0 (off) and 100 (loud), inclusive.

. bell_percent sets the base volume for the bell (or beep) between 0 (off) and 100 (loud), inclusive.
. bell_pitch sets the pitch (specified in Hz) of the bell.

. bell_duration sets the duration (specified in milliseconds) of the bell.

. led_mode controls whether the keyboard LEDs are to be useléd Ifis not specified anttd_mode is
LedModeOn, the states of all the lights are changededf mode is LedModeOff , then the states of the lights
are not changed. Ieéd is specified, the light specified ied is turned on ifed_mode is LedModeOn or turned
off if led_mode isLedModeOff .

. led is a number between 1 and 32, inclusive, which specifies which light is turned on or off, depending on
led_mode .

. auto_repeat_mode specifies how to handle auto—-repeat when a key is held down. If only
auto_repeat_mode s specified, then the global auto-repeat mode for the entire keyboard is changed, with
affecting the per—key settings. If theito_repeat_mode isAutoRepeatModeOn , the keys that are set to
auto—repeat will do so. If it is set AutoRepeatModeOff |, no keys will repeat. If it is set to
AutoRepeatModeDefault | all the keys or the specified key will operate in the default mode for the server.
Normally the default mode is for all nonmodal keys to repeat (everything except Shift Lock and similar keys).
auto_repeat_mode can also be set using tKé&utoRepeatOff() andXAutoRepeatOn() routines. None
of the other members of theyboardControl() structure have convenience routines for setting them.

. key specifies the keycode of a key whose auto-repeat status will be changed to the setting specified by
auto_repeat_mode . If this value is specifiequto_repeat_mode affects only the key specified key .
This is the only way to change the mode of a single key.

Setting any obell_duration , bell_percent , bell_pitch , orkey_click_percent to -1 restores the
default value for that member.

The initial state of many of these parameters may be determined by command line arguments to the X server. On
that operate only under the X Window System, the server is executed automatigaliy dyring the boot procedure, and
the defaults may have been modified in one oftfraconfiguration files.

Table 9-2 shows the ranges for each member when no command line arguments are specified for the server. The
when these values are not set are server—-dependent.

Parameter Range

key_click_percent 0to 100

bell_percent 0 to 100

bell_pitch hertz (20 to 20K)

bell_duration milliseconds

led 1to 32

led_mode LedModeOff , LedModeOn

key 8 to 255

auto_repeat_mode AutoRepeatModeDefault , AutoRepeatModeOff , AutoRepeatModeOn

Table 9-2 Keyboard Preference Settings —— Ranges

9.5.2 Getting Keyboard Preferences

To obtain the current state of the user preferences{@s&eyboardControl() . This routine returns an
XKeyboardState() structure, as shown Example 9-14

Example 9-14. The XKeyboardState() structure
typedef struct {

int key_click_percent;

int bell_percent;

unsigned int bell_pitch, bell_duration;

unsigned long led_mask;

int global_auto_repeat;

char auto_repeats[32];
} XKeyboardState;

Except fodled_mask , global_auto_repeat , andauto_repeats , these members have the same range of poss
values listed in Table 9-2.

Theled_mask member is not directly analogous to any membetkdyboardControl() . Each bitsetto 1in
led_mask indicates a lit LED. The least significant bitlefl_mask corresponds to LED one.

Theglobal_auto_repeat member is eithedutoRepeatModeOff or AutoRepeatModeOn . It reports the state
of the parameter set by theto _repeat mode member oXKeyboardControl()

Theauto_repeats member is a key vector like the onekiaymapNotify events and returned by
XQueryKeymap() . Each bit setto 1 iauto_repeats indicates that auto—repeat is enabled for the corresponding
key. The vector is represented as 32 bytes. Byfsom 0) contains the bits for keycod& to 8N+7, with the least
significant bit in the byte representing keyc@&iée Every key on the keyboard is represented by a bit in the vector.

9.6 Pointer Preferences

XChangePointerControl() sets the parameters that control poirdeceleration, andGetPointerControl()

gets them.Pointer acceleratioris a feature that allows the user to move the cunsore quickly across the screen. If
pointer acceleration is activayhen the pointer moves more than a ceittaiesholdamount in a single movement, the
cursor will move anultiple of the amount the physical pointer moved. The effect of acceleration is that you can have
detailed control over the pointer for fine work and, by flicking the wrist, you can also move quickly to the far reache:
the screen.

XChangePointerControl() takes three arguments (in addition to the ubiquithsiglay): accel_numerator
accel_denominator , andthreshold

Theaccel_numerator andaccel_denominator arguments make up a fraction that determines the multiple use
to determine how many pixels to move the cursor based on how much the physical pointer movecksfdld
argument specifies how many pixels the physical pointer must have moved for acceleration to take effect.

9.7 X Input Extension

As of Release 5, the X Input extension is now a standard way to get input from devices other than keyboard and m
(such as trackballs and tablets), or from multiple such devices. However, not many servers cupgatythe
extension. For more information on the X Input extensionTheeX Resourcéssue 4, or the forthcoming volume
Extensions and Utilities

Chapter 10

Internationalization

There are several good reasons to internationalize your applications, including sales to foreign markets and simple
to users who would prefer to run those applications in different languages. Because internationalization involves sc
confusing concepts, the topic is divided into two chapters. If there is any chance, however, that you will someday h
port your applications to run in a different country or language, you should at least be familiar with the concepts an
techniques introduced in these chapters. If you know what is involved in internationalization, you can avoid writing
applications that will be difficult to internationalize later on.

An internationalized application is one that runs, without changes to the binary, in any given "locale." Among other
this means that a program must display all text in the user’s language, accept input of all text in that same languag
display times, dates, and numbers in the user’s accustomed format.

The internationalization of terminal-based programs is a problem that has been satisfactorily solved where termine
that can display and accept input for a particular language. The ANSI-C library contains mechanisms for this

terminal-based internationalization, and R5 internationalization is based on these mechanisms. This chapter begii
detailed overview of the goals, concepts, and techniques of internationalization, starting with ANSI-C internationali

and progressing to the new R5 internationalization features. After the overview, each section covers an individual
X internationalization. Internationalized text input with R5 is a large subject and is given its own chapter following t
one.

Internationalization is implemented with a separate set of functions for handling keyboard input and drawing text, tt
new in Release 5. All the input and drawing techniques shown in previous chapters continue to work, but they do 1
support internationalization. So it is up to you which set of functions to use depending on your needs.

Also note that the internationalization features of R5 are not self contained, and therefore may not work on all syste
you do not have the ANSI-C internationalization features, you may be able to make do with alternatives provided t
and by contributed libraries, but these have not been thoroughly tested and you may encounter difficulties. In ANS
internationalization, the C library reads a "localization database" customized for each locale. Many systems (syste
in the U.S., at least) support ANSI-C internationalization, but do not ship databases for any but a default locale.

If you have a system like this and are building X from the MIT distribution, and would like to experiment with X internationalization, add
-DX_LOCALEo theStandardDefines definition in the.cf file for your system (in the directoryit/config) before you build the release.
This variable should allow X internationalization to work without the ANSI-C locale databases. It will not, of course, make ANSI-C internationa
itself work. If your system does not have any of the ANSI-C internationalization support, and in particular does not defing/Cleaypé (a "wide
character" used for text in some locales), you will also need to BB WCHAR theStandardDefines variable. Finally, your programs
should include the filgX11/Xlocale.h>instead of the standasdocale.h>and be compiled withr DX_LOCALEthis will replace the ANSI-C
setlocale with an X version of the function.

One more warning and disclaimer is required. These internationalization features are new in Release 5, and there
is no experience in their use. So the coverage in this book probably does not yet answer every question you might
nor present a foolproof procedure for writing an internationalized application. We hope to add more practical instru
once we know better what to tell you.

A final point of terminology: the word "internationalization" contains 20 letters. In the MIT X documentation and
elsewhere, you may find it abbreviated E8n——the letter "i" followed by 18 letters and the letter "n."

10.1 An Overview of Internationalization

If you are a native English speaker, particularly an American, you may never have thought much about what is req
the internationalization of programs for the simple reason that all the programs you use already speak your langua
are four general areas that require attention when writing an internationalized application:

. An internationalized application must display all text in the user’s native or preferred language. This includes
prompts, error messages, and text displayed by buttons, menus, and other widgets. The obvious approach t
of internationalization is to remove all strings that will be displayed from the source code of the application an
them instead in a file that will be read in when the application starts up. Then it is a relatively simple matter tc
translate the file of strings to other languages and have the application read the appropriate one at startup. M
applications that use the X resource manager to provide an app—defaults file are already internationalized in"
though some still have non—-internationalized error messages. Another approach to the internationalization o
is the message catalog facility defined byXi#®pen Portability Guide, Issue(8ften known as XPG3).

X/Open is an influential international group working to encourage computer inter-operability. It is not related to the X Consortium or the
Window System.

The three functionsatopen , catgets , andcatclose , provide a simple mechanism for retrieving numbered
strings from a plain text file. These functions are available on some systems, but are not part of any formal st
and are not universally available.

. An internationalized application must display times, dates, numbers, etc. in the format that the user is accustc
Where an American user sees a date in the foomtiday/year, an English user should sdaymonthlyear, and a
German user should sday.monthyear. And where an American user sees the number 1,234.56, a French use
should see 1.234,56. The definition of "alphabetical order" is a similar customary usage that varies from coul
country. In Spain, for example, the string "ch" is treated as a single letter that comes after "c." So while the ¢
"Chile" and "Colombia" are in alphabetical order for an American user, they are out of order for a Spanish us¢

Theseand related problems of local customs are resolved with the ANS#ti@cale mechanism. Calling this
function causes the ANSI-C library to read a database of localization information. Other functions in the C lil
(such agrintf for displaying numbers arstrcoll for comparing strings) use the information in this databas
so that they can behave correctly in the current locale. The R5 internationalization mechanisms are built upo
setlocale mechanism. It is described in more detail in the next section.

. An internationalized program must be capable of displaying all the characters used in the user’s language, ar
allow the user to generate all these characters as input. For terminal-based applications, this can be though
hardware issue: a French user’s terminal must be capable of displayiagdieted characters used in French, ar
there must be some way to generate those characters from the keyboard. With X and bit-mapped displays,
display is not a problem—--simply a matter of finding the required font or fonts. For languages like Chinese, fc
with many characters are required, but X supports 16-bit fonts, which is large enough for almost all language
Keyboard input for Chinese and other ideographic Asian languages is another matter, however. When there
more characters in a language than there are keys on a keyboard, some sort of "input method" is required foi
converting multiple keystrokes into a single character. Ideographic languages require complex input methods
often there is more than one standard method for a language. An internationalized application must support
input method chosen by the user. R5 provides this capability; it is descriBbdpter 10,

"Internationalization.”

. An internationalized program must operate regardless of the encoding of characters in the user’s language. .
program (or operating system) that ignores or truncates the eightth bit of every character won’t work in Europ
because the accented characters used in many European languages are represented with numbers greater t
An application that assumes that every character is 8 bits long won't work in Japan where there are many thc
of ideographic characters. Furthermore, common Japanese usage intermixes 16-bit Japanese characters w
Latin characters, so it is not even safe to assume that characters are of a uniform width. When internationaliz
application, two areas of particular difficulty are string manipulation (how, for example, can you iterate throug!
characters of a string when those characters have differing widths) and text input and output. (How, for exan
you display a Japanese string that contains characters from different fonts?)

One approach to the encoding problem is to side—step it by defining a unieesaling used everywhere. The
Latin—1 encoding is suitable for English and most western European languages, and this shared encoding
dramatically simplifies the problem of porting applications to work in many European countries. But this appr
does not work outside of Europe, and while ANSI-C provides some rudimentary internationalized string
manipulation functions, it leaves issues of text input and output to the terminal hardware or terminal driver so
It is here that R5 makes its real contribution to internationalization——in an extensios¢étidbale model, an
internationalized X application reads a localization file at startup that contains information about the text enco
used in the locale. This information allows X to correctly parse strings into characters and figure out how to ¢
them. There are a number of issues surrounding character encoding in internationalized applications, and it i
possible to explore them in full and confusing detail. In practice, though, most of the string encoding details ¢
hidden by the operating system, or with X internationalization, by >8#uxction 10.1.2, "Text Representation in

an Internationalized Application” explains some of the basics of text encoding in more detail.

When thinking about applications that run in other languages, it is important to recognize the distinction between ai
internationalized application and a multilingual application. A text editor that works in any given locale is
internationalized; a mail reading program that labels its push buttons with text in the language of the locale is
internationalized, but if it also allows a user to compose mail in a second language and include excerpts from a me
a third language, then it is multilingual. The requirements and problems of multilingual applications are not yet wel
understood, and the X Consortium made a considered decision that R5 would support internationalized application
explicitly support multilingual ones.

The following sections continue this introduction to internationalization with a description of the AN&te€ale
mechanism and a further discussion of character encoding and text representation issues.

10.1.1 Internationalization with ANSI-C

Clearly it is not feasible to write an application that has special case code for the formatting customs of every coun
world. A simpler approach is to use a library that reads a customizing database at startup time. This database wot
contain the currency symbol, the decimal separator symbol, abbreviations for the days of the weeks and names of
months in the local language, the collation sequence of the alphabet, etc. This is the approach taken by the ANSI-
The process of writing an application that is flexible enough to use the values from this database is called

internationalization, and the processakating the runtime database for a locale is clilealization

The first step in any internationalized application is to establish the locale—-to cause the localization database to b
This is done with the C library functicetlocale . It takes two arguments: a locale category and the locale name.
locale name specifies the database that should be used to localize the program, and the locale category specifies
behaviors (for example, the collation sequence of the alphabet or the formatting of times and dates) of the prograrr
be changedsetlocale will most often be used as shown below:

setlocale(LC_ALL, ");

Passing the empty string as the locale name will ceettmcale to get the name of the locale frothe operating
system environment variable name®NG This allows the application writer to leave the choice of locale to the end u
of the application. There is no standard format for locale names, but they often have the form:

language [_ territory [. codeset]]

So the locale "Fr" might be used in France, while "En_GB" might specify English as used in Great Britain, and "En_
English as used in the U.S. Toedesefield can be used to specify the encoding (i.e., the mapping between numbers
characters) to be used for all strings in the application when there is not a single default encoding used for the lang
the territory. The locale "ja_JP.ujis" is an example—-"ujis" is the name of one of the encodings in common use for
Japanese. The name of the default locale is simply "C." This locale is familiar to American computer users and all
programmers. Finally, note that the return valusatfocale is achar* . It returns the name of the locale that was
just set, or if it is passed a locale nam@&bfLL (not the same d$), it will return the name of the current locale.

The category. C_ALL instructssetlocale to set all internationalization behavior defined by ANSI-C to operate in tl
given locale. The locale may also be specified for each category individually. The standard categories (other,
non-standard, categories may also be defined) and the aspects of program behavior that they control are listed be

LC _COLLATE This category defines the collation sequence used by the ANSI-C library fursttiosls and
strxfrm which are used to order strings alphabetically.

LC CTYPE This category defines the behavior of the character classification and case conversion macros
asisspace andtolower) defined in the header filectype.h> Different languages will have
different classifications for characters. Not all characters have uppercase equivalents, for exal
and characters with codes between 128 and 255 which are non—printing in ASCII are importar
alphabetic characters in many European languages.

LC_MONETARY This category does not affect the behavior of any C library functions. The problem of formattin
monetary quantities was deemed too intricate for any standard library function, so the library s
provides a way for an application to look up any of the localized parameters it needs to do its ¢
formatting of monetaryquantities. The ANSI-C functidncaleconv returns a pointer to a
structure of typéconv that contains the parameters (such as decimal separator, currency sym
and flags that indicate whether the currency symbol should appear before or after positive and
negative quantities, etc.) needed for numeric and monetary formatting in the current locale.

LC_NUMERIC This category affects the decimal separator useatibyf (and its variantsgcanf (and its
variants),gcvt (and related functions3trtod , andatof . It also affects the values in the
Iconv structure returned Hgpcaleconv

LC TIME This category affects the behavior of the time and date formatting funstiftimae and
strptime . It defines such things as the names of the days of the week and their standard
abbreviations in the language of the locale.

If you usesetlocale and the new C library functions mentioned above (and carefully avoid the use of the old C
functions that they replace), you will be well on your way to an internationalized application. For more information c
setlocale and the functions it affects, see the documentation supplied by your vendor (a UNIX system should he
reference pages for these functions). PRESIX Programmer’s Guidey Donald Lewine, published by O'Reilly

& Associates, may also be useful--it has a chapter on ANSI-C internationalization and a complete reference secti
ANSI-C and POSIX (IEEE standard UNIX) functions.

10.1.2 Text Representation in an Internationalized Application
Think for a minute about the fundamentals of text representation by computer. Remember that characters displaye

computer are represented by numbers. The correspondence between numbers and characters (on most American
computers) is defined by the ASCII (American Standard Code for Information Interchange) encoding. There is noth
special about ASCII except that it is one of the most firmly established standards of the computer world. Text com,
one encoding (ASCII, for example) and displayed in another (perhaps EBCDIC, still used by IBM mainframes) will |
nonsense because the number-to—character mappings of the encodings are not the same.

We've been using the term encoding rather loosely. Before we consider text representation any further, some defii
are appropriate. Aharacteris an abstract element of text, distinct frofiorat glyph which is the actual image that gets
displayed. Acharacter seis simply a set of characters; there are no numbers associated with those characters. We
familiar with the character set used by ASCII. The Latin—1 character set used by many Western European Latin-b
languages is an extension of ASCII that contains the accented characters required by timassy lahguages. An
encoding is any numeric representation of the characters in a character set. Toelésgis sometimes used as a
synonym for encoding. Aharset(not the same as a character set) is an encoding in which all characters have the sa
number of bits. ASCII is a 7-bit encoding, for example, and is therefore a cRégset. 10-1diagrams the relationship
between character sets, charsets, fonts, and font glyphs.

Figure 10-1. Character sets, encodings, charsets, fonts, and glyphs

character character
encading lg Index af :
V#xg..... - charset |B[66| famt glyph (56
abedefgh. .. : : 5 ﬁ
{ |]""
E ﬁ
-\-\-\-\.__ f
Character set Charset Fomt Farmt Glyphs

The last two fields of an X font name specify a charset. By definition, the index of a font glyph in the font is the san
the encoding of the corresponding character in that charset. When the encoding of a locale is a charset, this obvio
simplifies matters a great deal: text in the locale can be displayed using glyphs from a single font, and the characte
encoding can be used directly as the index of the corresponding font glyph.

Not all languages can be represented with a single charset, however. Japanese text, for example, commonly requ
Japanese ideographic characters, Japanese phonetic characters, and Latin characters. Each of these character s
own standard fixed-width encoding, and is therefore a charset. Note, however, that the ideographic charset is 16-
while the phonetic and Latin charsets are 8—bits wide. Full Japanese text display requires a font for each charset,
Japanese text representation requires a "super—encoding” that combines each of the component encodings. Ther
fact, several encodings commonly used for Japanese text. What they have in common is the use of "shift sequenc
indicate which charset the following character belongs to.

Itis crucial to the concept of a locale that each locale has a single well-defined encoding. Many languages have c
single standardized encoding. If a language can be encoded in more than one standard way, each encoding define
of its own, and the name of the encoding is part of the name of the locale.

10.1.2.11S08859-1 and Other Encodings

If you examine the names of the X fonts on your system (ud@fignts) you will probably find that most of them have
the charset "iso8859-1." This charset is sometimes called "Latin—1" and was designed to be suitable for use by mc

Western European languages (Greek being a notable exception). The character set of ISO8859-1 comprises all th
characters plus a wide variety of accented and special characters. (You can take a look at the charactexédusing the
program.) Because there afewer than 256 characters in the set, ISO8859-1 can use a state—independent 8-bit en
This means that all characters are 8 bits long, and there are no special shift sequences that modify the interpretatic
characters. Because there are not any shift sequences, it is possible to use the encoding of all Latin—1 characters
font indices.

1ISO8859-1 contains a superset of the ASCII characters. Every character in the ASCII character set has the same
in Latin—1 as it does in ASCII. (But Latin—1 does not define any control characters such as linefeed, backspace or
character.) Because it is an 8-bit encoding, Latin—1 strings can be represented using the usual C null-terminated :
char . Because the characters are a uniform 8 bits and because strings do not contain embedded shift states, it is
to use Latin—-1 strings with the standard C string manipulation rousitdsn(, strcat , etc.) In conjunction with the
ANSI-C internationalization facilities, the careful design of ISO8859-1 means that most programs originally written
ASCII use can easily be ported for use in most Western European countries.

But it is not so simple once we try to go beyond Western Europe and Latin—based alphabets. Japanese text, for e;
commonly uses (at least within the computer industry) words written in the Latin alphabet along with phonetic chari
from thekatakanaandhiraganaalphabets and ideographianji characters. Each of these types of text has its own cha
(8- or 16-hit), but they must be combined into a singheoding for Japanese text. This is done with shift sequences,
bytes embedded in the running text which control the character set in which the following character will be interpret
is possible to use "locking shifts" which modify the interpretation of the next and subsequent characters, but this sc
infrequently used because it makes strings of text very difficult to manipulate.

Compound Text is another text representation that is used in X applications. Compound Text strings identify their
encoding using embedded escape sequences (they can also have multiple sub—strings with multiple encodings) ar
therefore locale-independent. The Compound Text representation was standardized as part of X11R4 for use as i
interchange format for interclient communication. It is often used to encode text properties and for the transfer of t
selections, and is not intended for text representation internal to an application. There are new R5 routines that co
property values to and from the Compound Text representation. Note that Compound Text is not the same thing a
Compound Strings used by the Motif widget set.

10.1.2.2 Multi-byte Strings and Wide—character Strings

Strings in encodings that contain shift sequences and characters with non—uniform width can be stored in standarc
NULL-terminated arrays of characters, but can be difficult to work with in this form: the number of characters in a ¢
cannot be assumed to be equal to the number of bytes, and it is not possible to iterate through the characters in a:
simply incrementing a pointer. On the other hand, stringhaf are usefully passed to standard functionsgikeat
andstrcpy , and assuming a terminal that understands the encoding, functiopsrike work correctly with these
strings.

As an alternative to these multi-byte strings, ANSI-C defines a wide—charactewtjyze, t , in which each character
has a fixed size and occupies one array element in the stringw€hiae t is 2 bytes on some systems, 4 bytes on othe
and may be 1 byte on systems that support nothing but the default C locale.) ANSI-C defines functions to convert
multi-byte and wide—character stringsblen , mbstowcs , mbtowc, westombs , andwctomb.

If your C library does not define these functions, you can try the library contributed withcBStii/lib/Xwchar

As you can see here, and as you will see with the R5 internationalized text input and output functions, "multi-byte"
commonly abbreviated "mb" in function names, and "wide character” is abbreviated "wc." Multi-byte strings are us!
more compact than wide—character strings, but wide—character strings are easier to work with. Note that ANSI-C
provide wide—character string manipulation functions. There is, however, a contributed library of wide character fu
that is shipped with the MIT R5 release; see the direcimnyrib/lib/Xwchar

In an internationalized application, you must take care to handle all strings properly. Unfortunately the ANSI-C libr
does not provide adequate functions or conventions for sophisticated internationalized text manipulation. Note, thc
that many applications can do internationalized text input and output without performing any manipulations on that
The following list gives a few guidelines for handling internationalized strings:

. Multi-byte strings are null-terminated. There is no single convention for the termination of wide character sti

but strings passed tecstombs are null-terminated. As was the case before R5, X text output and input functi
take and return strings with a count of the characters they contain.

. If an encoding is state—dependent (i.e., if it uses locking shifts) multi-byte strings are assumed to begin in the
shift state of the encoding. There is no convention for the shift state at the end of a string, so when concaten
two strings, the first may need to be reset to the default shift state in order to guarantee correct interpretation
second. In practice, state—dependent encodings are rarely used.

. None of the C library string—handling functions work with wide—character strings.

. The following C string—handling functions may be safely used with multi-byte strings (in a state—independent
encoding)strcat , strcmp , strcpy |, strlen |, strncmp . Note that the string comparison routines are only
useful to check for byte—for-byte equality. To compare strings for sortingtresé

. Multi-byte strings can be written to file or output streams. Assuming a terminal that operates in the current Ic
printing a multi-byte string tetdout orstderr will cause the correct text to be displayed.

. Multi-byte strings can be read from files or from #tein input stream. If the file is encoded in the current
locale, or the terminal operates in the locale, then the strings that are read will be meaningful.

10.1.3 Internationalization Using X

The techniques of internationalization described so far have had little to do with X, and they have been sufficient ol
internationalize a terminal-based application. X applications draw text directly into their windows and get input dire
from keyboard events. When an application must use multi-byte strings in an encoding that contains shift sequen
non—-uniform width characters, deciding which characters to draw can be tricky, and when a language contains far
characters than fit on a keyboard, interpreting KeyPress events becomes difficult. Additionally, X clients often
communicate with other clients. Because internationalized clients can run in different locales an internationalized
interclient communication method is required. Also, X clients make heavy use of resource files and databases, and
need a mechanism for the correct localization of resources. The internationalization of R5 is based on the ANSI-C
model, but the functiosetlocale is not sufficient for locale management in an X application. Two new functions a
defined which are used along wihtlocale ~ when an X application starts up. Finally, all these new internationalizai
features of Xlib will require some changes to the Xt architecture as well.

The sections below cover these topics as follows:

. Section 10.2, "Locale Management in X"describes the X locale management functions.
. Section 10.3, "Internationalized Text Output in X" describes internationalized text output with R5.

. Section 10.4, "String Encoding Changes for Internationalization"describes string encoding changes in various
Xlib functions.

. Section 10.5, "Internationalized Interclient Communication" describes interclient communication using
internationalized properties and interlocale string conversions.

. Section 10.6, "Localization of Resource Databaseslescribes the localization of resource databases.

. Section 10.7, "Summary: Writing an Internationalized Application" describes changes to the X Toolkit to
support internationalization.

Chapter 11, "Internationalized Text Input,” covers the lengthy topic of internationalized text input.

10.2 Locale Management in X

An internationalized X application begins in the same way as a ANSI-C terminal-based internationalized program:
call tosetlocale . An X program, however, generally goes two steps further.

Immediately after callingetlocale , an application should caliISupportsLocale() to determine if the Xlib
implementation supports the current locale. This function takes no arguments and Betain H this function returns
False , an application will typically print a "Locale not supported" message and exit.

After verifying that the locale is supported, an application should&stLocaleModifiers() . A "locale modifier"

can be thought of as an extension to the name of a locale; it specifies more information about the desired localized
of an application. R5 as shipped by MIT recognizes one locale modifier, used to specify the input metbbap(szel 0,
"Internationalization”) to be used for internationalized text input for the locale.

XSetLocaleModifiers() allows the programmer to specify a list of modifiers (usually none) which will be
concatenated with a list of user—specified modifiers from an operating system environment VékEBIHKIERSINn
POSIX). The strings passedX&etLocaleModifiers() and set in thXMODIFIERSenvironment variable are a
series of concatenated ‘t@tegoryvalu€' strings. Thus to specify that the "Xwnmo" input method should be used by ¢
application, a user might set the XMODIFIERS as follows:

setenv XMODIFIERS @im=_XWNMO

Example 10-1shows code that usestlocale and the two functions described here to correctly estaliidbcale.

Example 10-1. Establishing the locale of an X application
#include <stdio.h>
#include <X11/Xlib.h>
/*
* include <locale.h> or the non-standard X substitutes
* depending on the X_LOCALE compilation flag
*/
#include <X11/Xlocale.h>
main(argc, argv)
int argc;
char *argv[];
{
char *program_name = argv|[0];
/*
* The error messages in this program are all in English.
* In a truly internationalized program, they would not be
* hardcoded; they would be looked up in a database of some sort.
*
if (setlocale(LC_ALL, ") == NULL) {
(void) fprintf(stderr, "%s: cannot set locale., program_name);
exit(1);
}
if (IXSupportsLocale()) {
(void) fprintf(stderr, "%s: X does not support locale %s.,
program_name, setlocale(LC_ALL, NULL));
exit(1);
}
if (XSetLocaleModifiers("") == NULL) {
(void) fprintf(stderr, "%s: Warning: cannot set locale modifiers.,
program_name);

}

Not all systems support tisetlocale function, but X can be built for these systems by defining<theOCALE
compilation flag. When writing programs in an environment that does notsetleeale , include the header file
<X11/Xlocale.h> If this file is compiled withX_LOCALEdefined, it definesetlocale = as a macro for an
Xlib—internal function. Otherwise, it simply includes the standard heddeale.h> to get the correct declaration of the
realsetlocale

10.3 Internationalized Text Output in X

Before R5, the Xlib drawing routines made the fundamental assumption that the encoding of a character was equa
index of the character’s glyph in the font. As explaine8awtion 10.1.2, "Text Representation in an Internationalized
Application,” this is a useful and valid assumption when text in a language can be most naturally encoded as an 8
16-bit wide charset. Unfortunately, it is not valid in many important cases.

R5 bases its new text output routines on a new Xlib abstractiokFSet . AnXFontSet is bound to the locale in
which it is created, and contains all the fonts needed to display text in that locale, or all the independent charsets u
encoding of that locale. Technical Japanese text, for example, often mixes Latin with Japanese characters, so for
Japanese locale, fonts might be required with the charsets jisx0208.1983-0 for Kanji ideographic characters,
jisx0201.1976-0 for Kana phonetic characters, and iso8859-1 for Latin characters.

Drawing internationalized text in R5 is conceptually very similar to drawing text in X11R4--there are routines that ¢
you to query font metrics, measure strings, and draw strings. The new R5 functionXEset@®t rather than an
XFontStruct or a font specified in a graphics context. The drawing and measuring routines interpret text in the
encoding of the locale of the fontset, and correctly map wide or multi-byte characters to the corresponding font gly

glyphs).

10.3.1 Creating and Manipulating Fontsets

A fontset is created with a call XCreateFontSet() . This function checks the current setting of the locale to
determine which charsets are required for the locale, and uses a sbapéddnt name ligdb load a set of fonts that
supply those charsets. A base font name list can be a single wildcarded font name that specifies little more than tt
size of the fonts, or it can be a (comma separated) list of partially wildcarded font names, or it can even be a list of
fully—specified names. Note of course that if a fully—specified base font name list is used, it will only work for one
particular locale. Generally you will want to use a very generic base font name, and allow the end user to override
choose individual typefaces that look good together, for example) with application resources.

XCreateFontSet() returns a list of the charsets for which no font could be found, and a default string that will be
drawn in place of characters from the missing charset or charsetdisTbemissing charsets should be freed with a cal
to XFreeStringList() . The returned default string should not be freed by the prograrBmeenple 10—-2shows

how to create akFontSet .

Example 10-2. Creating an XFontSet
XFontSet fontset;

char **missing_charsets;

int num_missing_charsets = 0;

char *default_string;

inti;

fontset = XCreateFontSet(dpy,
"—misc—fixed—*—*—*—*—*-130~-75-75—*—*—*—*",
&missing_charsets, &num_missing_charsets,
&default_string);
/*
* if there are charsets for which no fonts can
* be found, print a warning message.
*/
if (num_missing_charsets > 0) {
(void)fprintf(stderr, "%s: The following charsets are missing:,
program_name);
for(i=0; i < num_missing_charsets; i++)
(void)fprintf(stderr, "%s: %s, program_name,
missing_charsets]i]);
(void)fprintf(stderr, "%s: The string %s will be used in place,
program_name, default_string);
(void)fprintf(stderr, "%s: of any characters from those sets.,

program_name);
XFreeStringList(missing_charsets);

}

If you use a very generic base font name list, be awarX@atateFontSet() may have to search through a large
number of font names in order to find fonts of the appropriate charset. Also, when using an R5 X server, try to spe
base font name that will not require scaling. For example, many of the Japanese fonts shipped with the MIT distrik
are defined at odd point sizes (11, 13, 15, etc.) instead of the even sizes more commonly used for Latin—1 fonts. If
base font name list specifies a 14—point font, the X server or font server may have to scale thousands of ideograpt
characters, causing a significant delay in your application; the server may even freeze up while the scaling is perfo
See Chapter 6 and Appendix A for more information about font scaling.

The following routines also use or operate on font sets:

XFreeFontSet()
Frees arXFontSet and all information associated with it.

XFontsOfFontSet()
Returns the list oKFontStruct s and font names associated with an XFontSet.

XBaseFontNameListOfFontSet()
Returns a string containing the comma-separated base font name list for theogit&et .

XLocaleOfFontSet()
Returns the name of the locale of the speciKédntSet .

Complete documentation for these (and all functions described in this chapter) can be found in the reference sectic
book.

10.3.2 Querying Fontset Metrics

Because th&XFontSet is an opaque structure, it is not possible to read font metrics directly fridffomtSet as is
done with arXFontStruct . Instead, R5 defines the functidiExtentsOfFontSet() which takes aXFontSet as
its sole argument and returns a pointer to a structure oiiypetSetExtents . This structure is shown Example
10-3

Example 10-3. The XFontSetExtents() structure
typedef struct {
XRectangle max_ink_extents; /* over all drawable characters */
XRectangle max_logical _extents; /* over all drawable characters */
} XFontSetExtents;

EachXRectangle specifies, as usual, the upper left—hand corner of a rectangle, and a positive width and height. -
max_ink_extents rectangle specifies the bounding box around the actual glyph image of all characters in all fon
the font set. Thenax_ logical_extents rectangle describes the bounding box for all characters in all fonts of th
font set that encloses the character ink plus intercharacter and interline spacing. For the layout of running text, the
extents will be more useful. Note that these rectangles do not simply describe the biggest character in the font set
describe a bounding box that will enclose all characters in the font set; a box big enough to accommodate the large
descent, the largest ascent, and so on. XHmntSetExtents() structure returned byExtentsOfFontSet() is
private to Xlib and should not be modified or freed by the application.

10.3.3 Context Dependencies in Displayed Text

In some text, such as Arabic script, there is not a one—to—one mapping between characters and font glyphs—-the ¢
used to display a character depends on the position of the character in the string. In other languages, a sequence «
characters may map to a single glyph or a single character may map to multiple glyphs. In cases like this, it is not
to assume that the width of a string is the sum of the widths of its component characters, and it may not be possibl

insert or delete a character from a displayed string without redrawing the surrounding characters. The only safe
assumption is that context dependencies do not extend beyond whitespace in a string. An example of context dep
in the English language is the use of ligatures in typeset text——the substitution of the special glyphs "fl ligature" anc
ligature" for the character sequences "fl" and "fi." This is an artificial example though, and for practical purposes, nc
Latin—based language has context dependencies.

The functionXContextDependentDrawing() returnsTrue if the locale associated with a font set includes conte»
dependencies in text drawing. An internationalized application could use this function to check if it can take the va
shortcuts allowed in non—context dependent localeéSifpportsLocale() returnsTrue , then any context
dependencies in the text of a locale are correctly handled by the text-measuring and text—displaying routines desc
below.

There is another, more difficult, kind of context dependency in languages such as Hebrew and Arabic which are dr:
right-to—left except for numbers which are drawn left-to—right. In this case it is not valid to assume that characters
are adjacent in a string will be adjacent when displayed. R5 does not make any provisions for handling this sort of
with mixed drawing directions.

10.3.4 Measuring Strings

R5 provides internationalized versionsxdfextWidth() and XTextExtents() . They require aXFontSet and
either a multi-byte or wide—character string. They are described below:

Xmb/XwcTextEscapement()

In this and following sections, functions that operate on multi-byte (mb) strings and the equivalent functions that oper:
wide characters (wc) will often be grouped together and named witKIthie/XWcC syntax. FotXmbfunctions, thetext
argument is of typehar * | and thdengthargument gives the number of bytes in the string, which may not be the

number of characters.)WC functions, theextargument is of typgvChar_t * | and thelengthargument specifies the
number of wide characters in the string, which is not the same as the number of bytes.

Return the number of pixels the given string would require in the x dimension if drawn.

Xmb/XwcTextExtents()
Return the text escapement as the value of the function, and also return a bounding box for all
ink in the string, and a bounding box for all the ink plus intercharacter and interline spacing.

The public release R5 version of the Xsi implementation had some serious bugs. However, later patches from the X
Consortium fixed many of them. You should make an effort to get a patched version before attempting to use Xsi.

The term "escapement” is used instead of "width" to emphasizEritaXwcTextEscapement() returns a positive
value whether text is drawn left—to—right or right—to-left. This differs fiéfiextWidth() which returns a negative
width for strings drawn right-to—left.

There is another pair of text extent functions that are useful when there are context dependencies in the displayed
Xmb/XwcTextPerCharExtents() return the escapement and extents of a string as the above functions do, but
return the ink extents and the logical extents of each character in the string. These extents are measured relative ti
drawing origin of the string, not the origin of the particular glyph. Note that these extents are returned for each cha
the string, not for each font glyph displayed. If a sequence of characters map to a single glyph, each of those char
will have identical extent rectangles. Similarly if a single character requires several font glyphs to display, its exten
be the combined extents of those glyphs. The dimensions of the rectangle are independent of the drawing directio
character.

As this book goes to press, there are two major bugs in the Xsi implementafontafXwcTextPerCharExtents() . First, the returned
per—character metrics are not relative to the drawing origin——the logical extents rectangles all have an x—coordinate of 0. Second, these functic
allow a programmer to pass NULL for bounding boxes or arrays of bounding boxes that are not of interest——a dummy pointer to valid memory r
always be passed.

Example 10-4in the next section shows a useXofib TextExtents() andXmbTextPerCharExtents()

10.3.5 Drawing Internationalized Text

R5 provides internationalized wide—character and multi-byte versiokBrafvString() , XDrawlmageString()
andXDrawText() . They are listed below:

Xmb/XwcDrawString()
Draw the specified string. The foreground pixels of each font glyph are drawn, but the backgrc
pixels of each glyph are not.

Xmb/XwcDrawlmageString()
Draw the specified string. Both the foreground and background pixels of each glyph are drawr

Xmb/XwcDrawText()
Draw text with complex spacing or font set changes. These routines draw text described in an
of XmbTextltem orXwcTextltem structures. These structures are showlExample 10-4

These functions are passed a graphics context and a font set, and draw with fonts from the font set rather than the
the GC. For this reason, they may modify the font value of the GC. Other than the font, they use the same GC ele
their pre—R5 text—drawing analogs. When using these functions, remember that context dependencies may mean
not valid to draw or modify displayed strings a single character at a time.

Example 10-4. The XmbTextltem() and XwcTextltem() structures
typedef struct {

char *chars; [* pointer to string */

int nchars; /* number of bytes in string */

int delta; [* pixel delta between strings */

XFontSet font_set; [* fonts, None means don’t change */
} XmbTextltem;
typedef struct {

wchar_t *chars; /* pointer to wide char string */

int nchars; /* number of wide characters */

int delta; [* pixel delta between strings */

XFontSet font_set; [* fonts, None means don’t change */

} XwcTextltem;

Example 10-5shows the use ofwcDrawlmageString()

Example 10-5. Centering and drawing a multi-byte string
#include <X11/Xlib.h>
/*
* This function draws a specified multi-byte string centered in
* a specified region of a window.
*/
void DrawCenteredMbString(dpy, w, fontset, gc,
str, num_bytes, X, y, width, height)
Display *dpy;
Window w;
XFontSet fontset;
GC gc;
char *str;
int num_bytes;
int X, y, width, height;
{
XRectangle boundingbox;
XRectangle dummy;
int originx, originy;

* Figure out how big the string will be.

* We should be able to pass NULL instead of &dummy, but

* XmbTextExtents is buggy in the Xsi implementation.

* Also, it should return the escapement of the string, but doesn't.

*/
(void) XmbTextExtents(fontset, str, num_bytes,
&dummy, &boundingbox);

/*
* The string we want to center may be drawn left-to-right,
* right—to—left, or some of both, so computing the
* drawing origin is a little tricky. The bounding box’s x
* and y coordinates are the upper left hand corner and are
* relative to the drawing origin.
* if boundingbox.x is 0, the string is pure left-to-right.
* If it is equal to —boundingbox.width then the string is pure
* right—to—-left, but it may not be either of these, so what
* we've got to do is choose the origin so that the bounding box
* is centered in the window without assuming that the origin is
* at one end or another of the string.
*/
originx = x + (width — boundingbox.width)/2 — boundingbox.x;
originy =y + (height — boundingbox.height)/2 — boundingbox.y;
/*
* now draw the string
*/
XmbDrawlmageString(dpy, w, fontset, gc,

originx, originy,

str, num_bytes);

10.4 String Encoding Changes for Internationalization

Perhaps the most fundamental concern of internationalization is the encoding of strings. So far we’ve considered t
drawing and string input, and have used multi-byte or wide—character strings in the encoding of the locale. Becau
networked window system, however, an X client must communicate with the X server, usually with a window mana
sometimes with a session manager, and often with other clients through the X selection mechanism (which is used
implement copy—and-paste). When we allow the internationalization of X programs, we must confront the issues ¢
communication between clients that use different locales, and of communication between an internationalized clier
"locale—neutral” X server. Furthermore we must make decisions about the encodings of any other strings used in t
Xt specifications.

Some of the issues that must be considered are the appropriate encoding for color and font names passed to the >
the encoding of bitmap files, the encoding of strings selected in one client and copied to another, and the encoding
resource values and names. When making decisions on questions like these, the designers of X internationalizatic
several choices. They could specify that particular strings were:

. In the encoding of the locale.

. In the COMPOUND_TEXT encoding, in which each string is encoded along with the name of its encoding.

. In the STRING encoding, which is Latin—1 plus the newline and tab control characters.
. In ASCII, which as the encoding of the C language, is actually fairly portable.
. In an implementation—dependent encoding.

. Not in any encoding, and are simply interpreted as a sequence of bytes.

Compound text is an encoding designed to represent text from any locale. As such it is well suited to be a standar
format for clients that communicate using string properties. It does not, however, address the problem of convertin
strings from one locale to another, and often this is simply not possible. In most cases it is not meaningful to selec
from an application running in one locale and paste it into an application running in a different one. This is the real
multilingual applications which are not addressed by R5.

Note that the above list refers to the COMPOUND_TEXT and STRING encodings. These capitalized names refer
Atom names used in the ICCCM to specify the type of a "Property.” The ICCCM also specifies a selection convers
target Atom, TEXT, which simply means a string in whatever encoding is convenient for the selection owner.

Sometimes the best choice of encodings is ASCII. It may seem unfair to non—-English locales that the ASCII encod
should be singled out for special treatment, but for strings that are to be shared between X client and X server (suc
Display, Property, and font and color names) some standard encoding must be specified. Because ASCII is widesj
is the usual encoding for C programming, it is a natural choice. In many cases, though, it is not the specific ASCII
encoding that is important, but the fact that there is some common encoding for all the characters used by ASCII.
actually refers to ASCII. Instead, it defines d@ortable Character Sets a set of basic characters that must exist in all
locales supported by Xlib. Those characters are:

a.zA..Z0.9

"#$%& () +,—./;;<=>?@N"_{|}~

<space>, <tab>, and <newline>

R5 also defines thdost Portable Character Encodiras the encoding for that character set. The encoding itself is not
defined; the only requirement is that the same encoding is used for all locales on a given host machine. A string in
Host Portable Character Encoding is understood to contain only characters from the X Portable Charkatetl\gdhe
Latin Portable Character Encoding the characters of the X Portable Character Set encoded as a subset of the Latir
encoding. (Latin-1 is itself a superset of ASCII.) Note that if an X client running on one host has a different portah
encoding than an X server running on a different host, then translation from one encoding to the other will be requil
color names, font names, etc.) and would be done by the Xlib communication layer. In practice, however, it is likel
all systems will simply use an encoding which is a superset of ASCII, (with the possible exception of mainframes tt
EBCDIC) and therefore all characters in the X Portable Character Set will share a single, standard (ASCII) encodin
Appendix K ofVolume Two, Xlib Reference Manwsalmmarizes all the encodings.

String—encoding issues arise throughout Xlib, and particularly so for functions that involve X properties and resourt
databases. The internationalization of client—-to—window—manager and client—to—client communication via propertie
described in 10.5 below and the internationalization of X resource databases is discussed in 10.6. Here we itemiz¢
remaining changes to the Xlib specification that involve string encodiafte 10-1lists Xlib functions and the
encodings of the strings that are passed in and out of them. These are not so much changes to the Xlib specificati
clarifications of it to make the encodings explicit.

Function String Encoding

XDrawImagesString() No encoding; "characters" are treated as glyph indexes into the font, independent
XDrawsString()

XQueryTextExtents()

XTextExtents()

XTextWidth()

XTextltem

structureXChar2b

structure

XServerVendor() If the X server uses the Latin Portable Character Encoding, this function will return
ServerVendor() macro Host Portable Character Encoding; otherwise the encoding is implementation—-dep
XOpenDisplay() Display names in the Host Portable Character Encoding are supported; additional
XDisplayName() implementation dependent.

DisplayName() macro

XDisplayString()

DisplayString()

macro

XAllocNamedColor() Color names in the Host Portable Character Encoding are supported; Xlib impleme
XLookupColor() support additional encodings, and may look up color names in locale—specific date
XStoreNamedColor() passing them to the server.

XParseColor()

XLoadFont() Font names in the Host Portable Character Encoding are supported; implementatic
XLoadQueryFont() additional encodings.

XListFonts() Font patterns in the Host Portable Character Encoding are supported; implementa

XListFontsWithinfo()

XSetFontPath()

additional encodings. Returned strings are in the Host Portable Character Encodir
returns strings in the Latin Portable Character Encoding; otherwise the encoding is
implementation—-dependent.

The encoding and interpretation of the font path is implementation—dependent.

XGetFontPath()
XParseGeometry()
XGeometry()
XWMGeometry()
XInternAtom()

XGetAtomName()
XStringToKeysym()

XKeysymToString()
XInitExtension()
XQueryExtension()

XListExtensions()

XReadBitmapFile()
XWriteBitmapFile()
XFetchBytes()
XFetchBuffer()
XStoreBytes()
XStoreBuffer()
XGetErrorDatabaseTex

10

XGetErrorText()
XSetWMProperties()
XSetStandardProperti
es() XStoreName()
XSetlconName()
XSetCommandP()
XSetClassHint()
XFetchName()
XGetlconName()
XGetCommand()
XGetClassHint()

Geometry strings in the Host Portable Character Encoding are supported; impleme
support additional encodings.

Atom names in the Host Portable Character Encoding are supported; implementat
additional encodings.

The returned atom name is in the Host Portable Character Encoding if the server r
the Latin Portable Character Encoding.

Keysym names in the Host Portable Character Encoding are supported; implemen
support additional encodings.

The returned string is in the Host Portable Character Encoding.

Extension names in the Host Portable Character Encoding are supported; impleme
support additional encodings.

The returned strings are in the Host Portable Character Encoding if the server retu
Latin Portable Character Encoding.

The bitmap file is parsed in the encoding of the current locale.

The file is written in the encoding of the current locale.

No encoding; data in cut buffers is treated as uninterpreted bytes.

Name and message arguments in the Host Portable Character Encoding are supp
implementations may support additional encodings. The default_string argument i
current locale, and the returned text is also in encoded in the current locale.

The returned text is in the current locale.

Strings in the Host Portable Character Encoding are supported; implementations n

additional encodings. The strings are set as the values of a property of type STRII

Returned strings are in the Host Portable Character Encoding if the data returned |
the Latin Portable Character Encoding.

Table 10-1 String Encodings Used by Various Xlib Functions

10.5 Internationalized Interclient Communication

You'll need to understand non-internationalized interclient communication before reading this; see Chapter 12.

When writing an internationalized application it is not safe to assume that all interclient communication with text
properties will be done with Latin—1 or ASCII strings. R5 provides some new functions that d@kethis assumption.
The first is a convenience routine for communication with window manageitsSetWMProperties() is a function
very similar toXSetWMProperties() , except that thevindow_name andicon_name arguments are multi-byte
strings (rather thakTextProperty pointers) in the encoding of the locale. If these strings can be converted to the
STRINGencoding (Latin—1 plus newline and tab), then their correspodMgNAMENdWM_ICON_NAMgroperties

are created with typ®TRING. If this conversion cannot be performed, the strings are converted to Compound Text |
conversion can always be done, by the definition of Compound Text), and the properties are created with type
COMPOUND_TEXTNote that there is no wide—character version of this function.

Since X properties have a single contiguous block of data as their value, they cannot directly represent typasasuch
** But sometimes such a complex type must be represented (imagine a text editor setting a property to a set of d
selected strings). To allow this, X11R4 defined XfiextProperty structure (shown iExample 10-§ and the

functionsXStringListToTextProperty()

andXTextPropertyToStringList()

Example 10-6. The XTextProperty structure

typedef struct {

unsigned char *value; /* property data */

Atom encoding; [* type of property */

int format; /*8, 16, or 32 */

unsigned long nitems; /* number of items in value */
} XTextProperty;

These functions assume input strings are in Latin—1 and always create properties of type STRING, which is not col
behavior in internationalized applications. So R5 provides the new functions

Xmb/XwcTextListToTextProperty() andXmb/XwcTextPropertyToTextList() which operate correctly
with localized strings, converting between text encoded in the local®T@RIING or COMPOUND_TEXjpes. The
Xmb/wcTextListToTextProperty() functions take a new argument of tyf€CEncodingStyle , which is

shown inExample 10-7

Example 10-7. The XICCEncodingStyle type
typedef enum {

XStringStyle, [* STRING */
XCompoundTextStyle, /* COMPOUND_TEXT */
XTextStyle, [* text in owner’s encoding (current locale) */

XStdICCTextStyle [* STRING, else COMPOUND_TEXT */
} XICCEncodingStyle;

Thestyle argument to these functions specifies how the text is to be converted. The possible values have the fol
meanings:

. XStringStyle specifies that the text should be converted t&SFRING encoding, and the encoding field of the
returnedXTextProperty should be set to the AtoBTRING. Note that text cannot always be converted to this
type without loss of data——only characters that are in the Latin—1 character set will be convertible.

. XCompoundTextStyle specifies that the text should be converted to the Compound Text encoding and the
encoding field of the returneXiTextProperty ~ should be set to the Ato@OMPOUND_TEXT

. XTextStyle specifies that the text should be left unconverted in the encoding of the current locale. The enc
field of the returneTextProperty structure is set to an Atom which names that encoding.

. XStdICCTextStyle specifies that the text should be converted to STRING if that conversion is possible an
otherwise it should be converted to Compound Text. The encoding field of the rettimdfroperty will be
set to the AtonSTRING or COMPOUND_TEXIEpending on which conversion was performed.

The returnedXTextProperty is suitable to pass XSetTextProperty()

The other two routine{mb/XwcTextPropertyToTextList() , perform the conversion in the opposite direction.
They are passed afTextProperty (obtained with a call tXGetTextProperty() , perhaps) and return an array of
pointers tochar * or an array of pointers tgchar_t *. These routines do not require an argument of type
XICCEncodingStyle ; they always convert from the encoding of the property to the encoding of the current locale
such a conversion is possible. The application is responsible for freeing the memory allocated by these functions.

the array of multi-byte strings (and the strings themselves) returnéchbyextPropertyToTextList() use
XFreeStringList() , Which is a pre—R5 function. To free the array of wide—character strings (and the strings
themselves) allocated B§wcTextPropertyToTextList() use the new functiokwcFreeStringList()

These four functions return an integer. The possible values and their meanings are as follows:

Success The conversion is completely successful; all characters were converted.
XNoMemory There was not enough memory available to perform the conversion.
XLocaleNotSupported

The current locale is not supported. By definition, no conversions are possible to or from the
encoding of an unsupported locale. This error code will never be returned if
XSupportsLocale() has returnedrue for the current locale.

XConverterNotFound
No converter could be found between the encoding of the text property and the current locale.
is always a converter for converting betw&IrRING andCOMPOUND_ TE>Xahd encoding of the

current locale (if that locale is supported, of courseXrmb/wcTextListToTextProperty()
never returns this error code, axichb/XwcTextPropertyToTextList() will never return it
if the text property is in thE TRING or COMPOUND_TE>éhcodings.

any value > 0

There were unconvertible characters in the string, and the return value indicates how many. E
when the current locale is supported, and an appropriate converter is found, it is by no means
guaranteed that all the characters of the string can be converted. If two locales use the same
character set but simply encode those characters differently, then strings will be fully convertib
between the locales. But imagine trying to convert from French text to ASClI-—any accented
characters would be unconvertible because they simply do not exist in the ASCII character set
When converting between languages as dissimilar as Arabic and Korean, for example, there w
no convertible characters.

If Korean is the current (supported) locale, and the Arabic text has been "wrapped" into a Compound Text encoding, ¢
converter will exist between Compound Text and the current locale, but no meaningful conversion will be performed.
the advent of multilingual applications (or specialized applications using a special Korean/Arabic locale) such a conve
attempt (triggered by a user’s copy—and-paste actions, for example) will not be meaningful, and should be ignored or
an error message.

Note that the return valuguccess has a value of 0, and the other return val¥éMemory,
XLocaleNotSupported , andXConverterNotFound all have negative values. Therefore an
positive return value indicates unconvertible characters.

Table 10-Zhows the possible results of the conversions performanisyXwcTextListToTextProperty() and
Xmb/XwcTextPropertyToTextList()

Xmb/XwcTextListToTextProperty()

XICCEncodingStyle Converter found? Characters convertible?
XStringStyle yes maybe
XCompoundTextStyle yes yes

XTextStyle yes yes

XStdICCStyle yes yes

Table 10-2 Results of Converting to and from the Encoding of a Supported Locale

Xmb/XwcTextPropertyToTextList()

Encoding of property Converter found? Characters convertible?
same as current locale yes yes

STRING yes maybe
COMPOUND_TEXT yes maybe

other locale maybe maybe

Table 10-3 Results of Converting to and from the Encoding of a Supported Locale (continued)

When there are unconvertible characters in a string, the conversion functions substitute a locale—dependent defaul
(encoded in the current locale). The value of the default string may be queriDeftultString() , and may be
the empty string"(). There is no way to set the value of the default string. The default string is independent of the ¢
string used by the R5 text—-drawing routines wheXlgontSet does not contain all the characters needed to represer
text in a locale.

10.6 Localization of Resource Databases

We’'ve seen that X resources are a useful way to allow the localization of strings——rather than hardcoding its string
client can look them all up by name from a locale—dependent resource file. The twist here is that although resourc
can be localized, and may contain text in the encoding of the locale, resaomesmust still be hardcoded into the

application. As you might expect, R5 specifies that resource names in the Host Portable Character Encoding are ¢
supported, and that any other encodings are implementation—-dependent. What this means is that a Chinese user
wishes to customize the behavior of an application written by a Japanese programmer will have to specify values fi

resources that are named using Latin characters in the X Portable Character Set. Those resource names may be
phonetic representations of Japanese words which are mnemonic to the Japanese programmer, but which are mei
to the Chinese (or American) user. This situation is unfortunate but there is no way around it within the scope of th
Resource Manager mechanisms. If resource names are to be localized, they would have to be looked up in a data
well, and then we would need hardcoded names for the names. Another approach would be to use resource numt
place of resource names. These remain constant across all locales, but where a resource name is mnemonic to tt
programmer, at least, a resource number would be mnemonic to no one.

When a resource file or string are parsed intXianDatabase() , that parsing is done in the current locale, and the
database is bound to that locale even if the current locale changes. We can speak of the "locale of the database" i
same way that we speak of the "locale ofXlf®@ntSet ." To determine the locale of a database, call
XrmLocaleOfDatabase()

The internationalization of resources requires additions to the Xlib specification to make explicit the encoding and
interpretation of the strings that are passed in and out ofrthdunctions.Table 10-4lists the resource manager
functions that have been respecified.

Function String Encoding and Locale Changes

XrmStringToQuark() ~ XrmStringToQuark Quark names in the Host Portable Character Encoding are ¢

List() XrmStringToBindingQuarkList(support additional encodings.

XrmQuarkToString() No specified encoding; the returned string is equal byte—for-
one of the string—to—quark routines.

XrmGetFileDatabase() The file is parsed in the current locale.

XrmGetStringDatabase() The string is parsed in the current locale.

XrmPutLineResource() The line is parsed in the locale of the database. The resourt
are in the Host Portable Character Encoding or some impler

XrmPutFileDatabase() The resource file is written in the locale of the database. Re

Character Encoding, and resource values in the encoding of
supported; implementations may support additional encodin

XrmPutResource() Resource specifiers and types in the Host Portable Characte
implementations may support additional encodings. The res
bytes.

erQPutR_esource() The resource value is stored as uninterpreted bytes.

XrmPutStringResource() Resource specifiers in the Host Portable Character Encodini

support additional encodings. The resource value is stored
type is set to the quark for the string "String" encoded in the

XrmQPutStringResource() The resource value is stored as uninterpreted bytes. The res
string "String" encoded in the Host Portable Character Enco
XrmGetResource() Resource names and classes in the Host Portable Characte
implementations may support additional encodings.
XrmMergeDatabases() The database values and types are merged as uninterpretec
databases. The locale of the target database is not changet
XResourceManagerString() The RESOURCE_MANAGER property is converted from ST
current locale in the same way that XmbTextPropertyToTexl
XrmParseCommand() The option strings in the XrmOptionDescList are compared t

argv, independent of locale. The name argument and the re

XrmOptionDescList are in the Host Portable Character Enca

implementation—dependent encoding. The resource values

uninterpreted bytes, and all database entries are created wit

string "String" in the Host Portable Character Encoding.
XGetDefault() The use of this function is discouraged.

Table 10-4 String Encoding and Locale Changes to Xrm Functions

10.7 Summary: Writing an Internationalized Application

This chapter has covered a lot of tricky material. The following guidelines summarize the requirements for ANSI-C

R5-based internationalization:

. Set the locale desired by the user by callietjocale with the empty string"() as the locale name argument.
Verify that the locale is supported by Xlib wiXSupportsLocale() . Set the X locale modifiers as desired by
the user by passing the empty stringK®etLocaleModifiers() . In an X Toolkit application, use
XtSetLanguageProc to register a procedure to set the locale. The default language procedure (which is ne
actually registered by default) performs all of the above functions.

. Use ANSI-C functions such asrcoll andstrftime which make use of the current setting of the locale.
Avoid the superseded functions that do not.

. Place all strings which will be displayed by the application in an X resource file. Use X Resource Manager fu
in the application to look those strings up.

. Do not assume that the strings your application handles have a uniform state—independent encoding. Treat 1
multi—byte strings or convert them to wide—character strings.

. Create arKFontSet for the locale and use it with the new R5 text output functions to measure and display
multi-byte and wide—character strings.

. UseXmbSetWMProperties() to set the essential properties for communication with the window manager.

. Use the new R5 property routines to convert from or to the encoding of the current locale when setting or rea
text properties.

. Pay attention to the encoding of strings such as Atom and Display hames, font and color names, resource na
resource values specifications.

. Use the new X input method mechanisms to get correctly encoded multi-byte and wide—charact©hiapiet
11, "Internationalized Text Input " explains how to do this.

Chapter 11

Internationalized Text Input

Converting user keystrokes into text in the encoding of the locale is perhaps the most difficult task in internationaliz
This chapter is a continuation of the last, and assumes knowledge of the basics of internationalization covered in tt
chapter. The first two sections provide an overview of the internationalized text input model used by R5, and are v
to any programmer writing internationalized applications. The remaining sections describe the new Xlib functions ¢
datatypes for internationalized text input, and are quite detailed. Programmers who will be writing output—only
applications or who will be using toolkits or widgets with internationalized text input capabilities built in can skip the
sections.

In an internationalized program, you can’t assume any particular mapping between keystrokes and input character
internationalized program must run in any locale on a single workstation, using a single keyboard. The mapping b
keystrokes and Japanese characters is very different (and more complex) than the mapping between keystrokes a
characters, for example. When there are more characters in the codeset of a locale than there are keys on a keyb
sort ofinput methods required for mapping between multiple keystrokes and input characters. R5 supports the
internationalization ofkeyboard input with the new abstractiochsnput MethodXIM) andX Input Contex{XIC) and the
new functionsXmbLookupString() andXwcLookupString() , Which return a string in the encoding of the locale
Because internationalized text input is a complex topic, we begin with a discussion of the important issues of
internationalized text input iBection 11.1, "Issues of Internationalized Text Input'and an overview of the X input
method architecture iBection 11.2, "Overview of the X Input Method Architecture.” The remaining sections explain
the individual topics required in order to implement internationalized text input.

Before beginning with internationalized text input, bear in mind that input methods are a technology that has previo
been used only iad hocways for specific languages. Driven by industry demand, it has very quickly advanced from
research topic to X Consortium standard, and now must operate correctly in any locale. It is a difficult problem anc
does not provide a complete solution. One frustration is the ambiguity, in places, of the XIM specification, which de
how an input method interacts with an Xlib application. This book attempts to resolve those ambiguities in reasone
ways, but in practice, much remains "implementation defined," and internationalized programs may have to be tailc
operate correctly with a few particular target input methods. None of the input methods that are shipped with R5 a

of the core distribution, and none are fully robust or well documented (not in English, at least). The XIM designers
envision that their internationalized text input mechanism will be incorporated within toolkits and Xt widgets, and thi
be hidden from most programmers. Until these widgets are available, however, performing truly internationalized t
input may be a difficult task.

R5 as shipped from MIT contains two separate implementations afifhg method internationalization facilities. The
"Xsi" implementation is the default on all but Sony machines, which use the "Ximp" implementation. Each
implementation defines its own protocol for communication between Xlib and input methods (which are implemente
Separate processes). Ximp and Xsi each come with contributed input methods which are not compatible with each
Steps are now going on within the X Consortium to standardize on one of these implementations, so you should er
about the status of that effort before putting significant effort into a product using one of these implementations.

11.1 Issues of Internationalized Text Input

Think for a moment about how we use a keyboard to enter text into a computer. There are not enough keys on a ¢
keyboard for all the lowercase and uppercase letters used in English as well as the number and punctuation chara
we use a shift key to effectively double the number of characters we can enter.

But for many European languages, this technique is not sufficient. The most common accented characters may af
directly on a keyboard (the é, &, and ¢ in French, for example) but this still leaves a variety of other characters that
be entered with any single shifted or unshifted keystroke. French typewriters have a key that will produce an umla
caret, without advancing the carriage, so to produce a 0, for example, you would strike the caret key followed by th
key. In computer systems, a variety of methods have been developed for entering these accented characters. Oft
involve a Compose key (found on many DEC keyboards) or any "dead key" which, does not send a code when strt
places the keyboard into a special compose mode (sometimes indicated by a light on the keyboard) in which one ¢
the following keystrokes are combined into a single character. If this sort of input method is implemented in the ke’
hardware or in the operating system software, then it behaves transparently to the programmer who can simply rec
characters, assured that the user will have some way of entering any text desired.

As with internationalized text output, it is with the Asian ideographic languages that things become complicated. J:
and Korean both have phonetic alphabets that are small enough to physically map onto a keyboard. It is sometime
adequate to leave text in this phonetic alphabet, but usually the user will want the final text to be in the full ideogray
language. Input methods for these languages commonly have the user type the phonetic symbols for a particular \
words and signal somehow when this composition or pre—editing is finished. The input method then looks up that s
phonetic characters in a dictionary and converts it to the equivalent character or characters in the ideographic syst
Sometimes there will be more than one character with a given phonetic representation, in which case the user will
select between them.

These methods are obviously more complex than European compose methods. They are modal, and must display
state information. It is not enough to have a keyboard light that tells users that they are composing an ideographic
character; the computer must display the phonetic characters as the user types them, allow the user to edit them, ¢
when the user is done, compose them into an ideographic character or characters. The conversion from phonetic
ideographic characters requires a large dictionary, and finally, as noted above, the input method may have to displ
menu or popup dialog box so the user can choose among ideograms with the same phonetic representation.

Because input methods can be so large and complex, and because they vary so much from locale to locale, it doe:
sense to link every application with a generic input method which is somehow localizppligation startup. Instead, an
input manageis usually run as a separate process that communicates with the X server and with the application. #
application startup, the setting of the locale or the "im" locale modifier determines to which input manager the appli
establishes a connection. R5 provides new routines and datatypes in Xlib which support this sort of internationalize
input. The next section provides an overview of the Xlib architecture for internationalized text input.

11.2 Overview of the X Input Method Architecture

The sections below present an overview of the concepts, datatypes, and functions used in R5 to support input metl

understanding of material presented here will make the implementation details presented in later sections easier tc

11.2.1 Input Methods and Input Servers

An internationalized X application gets user text input by communicating with an input method. At application start
application is localized by opening the particular input method appropriate for the locale. Often, opening an input m
causes Xlib to establish a connection to another process known as the "input manager"” or "input server." The inpu
manager can provide input method service to multiple X clients that use the same locale. Sometimes an input mar
connect to a third process, the translation server, which performs dictionary lookup and translation from pre—edit te
(often phonetic) to composed text (often ideographic). The details of input method architecture are of course
implementation dependent. Simple input methods, for example, can be implemented directly in Xlib, without need
processes. The default Xsi implementation shipped with the MIT distribution does just this for European compose
methods that do not require any dictionary lookup or graphical feedtigake 11-1diagrams several possible
connections between a client and its input method.

Figure 11-1. Possible input method architectures

- ¥ Clients "B" & "C" use a complex Aslam

% Sewer - IN and cannect ta a single (back-end)
j: Input Dex The Inpuiemenonnects

SRR yith a translakm welch fpms

dict logadaakup.

rrrrrrr

e

¥ Cllent uses a sinple Eurapean
IN bullt imta X1lih.

Jther namX
:g:;s llents an the
hast ar netuark

The XIM architecture was designed to support two models of input method, known as front-end and back—end me
A front—end input methoithtercepts events from the X server before they reach the applicatibackAend method
filters events from the application, before the application has processed them. Because internationalized program:
support either model of input method, the distinction is of little importance to the programmer. It is discussed in the
specification, however, and you may run across it in other discussions of input methods.

Recall the distinction between internationalized and multilingual applications. There is nothing to prevent an applic
from opening multiple input methods for multiple locales, but internationalized applications will generally operate or
a single locale and will therefore only need a single input method.

11.2.2 User Interaction with an Input Method

In order for a complex input method to provide feedback or otherwise interact with the user, it must have regions of
screen that it can draw text or bitmaps into. The X Input Method specification defines three of these areas:

. The Statusarea is an output—only window in which the input method can display information about its internal
It can be thought of as a logical extension of the keyboard mode indicators, such as the Caps Lock indicator.
client generally provides this area to the input method, but the input method is solely responsible for its conte

. ThePreeditarea is the region for the display of the intermediate text typed while composing a character. The
generally provides this area to the input method, which is responsible for its contents.

. TheAuxiliary area is a transient window used for any popup menus or dialog boxes that are needed by the in|
method. This area is managed entirely by the input method.

The location and use of the Preedit and Status areas depend on the interaction style used between the application
input method. Four interaction styles are defined by the X Input Method specification.

. In theroot-windowpre—-editing style, the input method displays data outside of the application in a window the
child of the root window.

. In the off-the—spotpre—editing style, the input method displays pre—edit data in a fixed location of the applicat
window, often in a "message line" near the bottom.

. In the over—-the—spotpre—editing style, the input method displays pre—edit data a window of its own which is pl
over the current insertion point.

. In theon-the-spotpre—editing style, the input method directs the application to display the pre—edit data. Whe
using this style, the application can display the pre—edit text in a way that matches the display of the already
composed text.

The client must choose an interaction style from a list of styles supported by the input method, and must provide th
Preedit and Status areas as required by that style. Additionally, in the case of on—-the—spot pre—editing, the client 1
supply callbacks that the input method can call to control the pre—edit process.

11.2.3 The X Input Method

An application that wishes to use an input method must firsk€lenIM() . This function establishes a connection to
the input method appropriate for the current locale, and returns an opaque handlX@¥ity@pening an inpuimethod

is conceptually similar to opening a display, andXtd returned is analogous to tBbésplay * returned by
XOpenDisplay() . Aninput method is bound to the particular locale that was in effect when it was created, even
locale is subsequently changeXiOpenIM() and related functions are documente8éation 11.4.1, "Opening and
Closing an Input Method."

11.2.4 The X Input Context

Just as the X server can display multiple windows for a single client, an input method can maintaininpuitipntexts
for an application. The functioiCreatelC() creates a new input context in an input method. The function returns
opaque handle of typ€lC. Like theWindow or GCtypes, XIC has a number of attributes which can be set. These
attributes control the interaction style for input done under that context, the regions to be used for the Preedit and ¢
areas, th&XFontSet with which the text should be drawn, and so ¥&reatelC() and related routines to set and ge
the values of input context attributes are documenté&atation 11.5.2, "Creating and Destroying Input Contexts."

A text editor that supported multiple editing windows within a single top—level window could choose to create one I
each editing window, or to share only one IC among all such windows. In the first case, each window would have
Preedit and Status areas, and each could be in a different intermediate state of pre—editing. In the second case, tt
be a single Preedit and a single Status area shared by all editing windows, and the application would probably rese
state of the IC each time the input focus moved from one window to another.

11.2.5 Input Context Focus Management

Because there is only one keyboard associated with an X display, X allows only one window to have the input focu
time. For the same reason, only one input context (per application) can have the focus at a time. The function

XSetICFocus() causes key events to be directed to a particular IC. It should be called at least once by every ap;
that uses input contexts. In addition, the application should sebthesWindow attribute of the IC to the window in
which the key events will occur.

If an application has multiple text entry windows using multiple input contexts, that application will have to call
XSetICFocus() every time the input focus changes. An application that shares a single IC among multiple text €
windows will have to set thEocusWindow attribute of that IC each time the focus changes. Note that focus change
be changes of the focus window known to the X server, or they can be application—-internal focus changes, controll
event redirection as is done in Xt and other toolkits.

11.2.6 Preedit and Status Area Geometry Management

Depending on interaction style, an input method may require screen space to display pre—edit and status informati
application is responsible for providing these areas, but except for the on—the—spot interaction style, the input mett
handle all output to them. When an input method requires screen space, the application should query its desired s
attempt to honor it. Note however that the input method must make do with whatever area it is given. This geomet
management and geometry negotiation is handled through attributes of each input context and with a "geometry ce
function. These are described in Sections 11.7 and 11.8.1.

11.2.7 Preedit and Status Callbacks

When using the on—-the-spot interaction style, the IM will request the application to display pre—edit and status info
for it. This is more complicated for the application, but because the application has finer control over the positionin
information, it allows the appearance of a seamless interface with the IM. The IM makes requests of the applicatio
through a series of callback functions specified as attributes of the IC. The prototypes and responsibilities of these
functions will be described iSection 11.8, "Geometry, Preedit, and Status Callbacks."”

11.2.8 Getting Composed Input

When the application getskeyPress event, it should use that event in a caKiobLookupString() or
XwcLookupString() . These functions are analogsxafookupString() , but return multi-byte or wide—character
strings in the codeset of the locale, whet@okupString() can only return Latin—1 strings. Because it may take
multiple keystrokes to enter a single character of text, these functions may return a status code that indicates that 1
composed input is ready.

Some input methods intercept keyboard events before the application has a chance to see them. If this is the case
send a syntheti€eyPress event with a keycode of 0 when there is composed input that should be looked up by the
application.

11.2.9 Filtering Events

In order for an input method to perform pre—editing of input, it must have acceskKéyRikss events. These events
are passed to it through one of the internationalizekupString functions. All but the most simple input methods,
however, need access to other events as well. An IM that displays graphical feedback to the user will have to rece
expose events, and an IM that displays a menu of homonyms, for example, will need to receive mouse motion and
events XFilterEvent() provides the hook that makes this possible. This function must be called from within an
application’s event loop before each new event is processed. If the IM has registered a (Xlib—internal) filter for that
XFilterEvent() invokes the filter and the IM has a chance to examine the event. If the IM is interested in the ev
XFilterEvent() will return True , and the application should not dispatch the event any further. Notice that an IN
useXFilterEvent() to filter KeyPress events before the application can call one bbtieipString functions,

but this is not the primary purpose of the function.

It is not safe to assume that the IM will only need events that the application currently receives, so the IM places ar
mask for events in which it is interested in an attribute of each IC. The application is responsible for requesting to |
those events in the window of the IC.

11.2.10 The Big Picture

With the above explanations in mind, we can now consider the saga of a keystroke as it is processed through an
internationalized applicatiofrigure 11-2 diagrams the path a character follows between being typed on the keyboar
being displayed on the screen in an internationalized application.

Figure 11-2. How a keystroke becomes a displayed character in an internationalized application

1. When the user strikes a key on the keyboard, the keyboard sends a hardware—specific keycode to the X server

2. The X server sends an event to the client or clients that have expressed interest in keystroke events for the win
had focus when the keystroke occurred.

3. The keystroke event will be received in the client’s event loop by a céNléxtEvent()

4. The event is immediately passedXteilterEvent() to give the input method the opportunity to use it. Generall
the input method will not filter &eyPress event.

5. Back in the application, XFilterEvent() returnsTrue , then the application will discard the event and wait for
the next one.

6. Otherwise, the application will go ahead and process the event. Foikeydtyess event, the application will call

XmbLookupString() or XwcLookupString()

7. The input method now processes the keystroke: it adds a new character to its pre—edit text and updates the dit
the Preedit and Status areas of the application. If the keystroke is a control character such as Delete, the input
may modify the pre—edit text.

8. If the keystroke indicates that the user is done pre—editing and wishes to compose the pre—edited text, the inpu
does any necessary translation and the result becomes the return Yahl&XfvcLookupString() . In most
applications, this returned string will be immediately echoed in the window with a call to one of the internationali
text drawing functions. If the keystroke merely adds to the pre—edit text, then the status value returned by
Xmb/wcLookupString() indicates that there is no composed text ready.

The above sections have presented an overview of the XIM architecture. The sections below describe how to write
programs with input methods and input contexts. They explain how to implement each of the steps in the "big pictu
above.

11.3 XIM Programming Interface

The input method programming interface departs in some ways from the style established by the rest of Xlib. Funci
that set, modify, or query the attributes odM or XIC have a variable-length argument list interface, similar to the
interface of the X ToolkiXtVaSetValues function, for example. Attributes are specified by a null-terminated list of
name/value pairs. Names are null-terminated character strings (chipe), and values are of typéPointer

which is a new Xlib generic pointer type, lix¢éPointer , which replaces the non-standasetldr_t . There are
predefined symbols for all of t M andXIC attribute names. These are named similarly to X Toolkit resource name
they are prefixed wittKN (not XtN) and words in the name are separated by capitalization rather than underscores.
differ from the Xt convention in that the first letter after ¥idprefixis capitalized Example 11-1shows this naming
convention and the varargs interface used in C code. There is only a single ¥&¥iregttibute, which is explained in
Section 11.4.2, "Querying Input Method Values." There are a number &iC attributes, which are explainedS®gction
11.6, "Input Context Attributes."

Example 11-1. The XIM varargs interface and attribute naming conventions
status = XSetlCValues(ic, XNFocusWindow, w,

XNGeometryCallback, HandleIMGeometry,

NULL);

The XNPreeditAttributes andXNStatusAttributes attributes of an input context have a number of
sub-attributes. In order to set or query these values, the programmer must specify a nested argument list of type
XVaNestedList *. A value of this type is created with a call to the funcidaCreateNestedList() . This
function takes a dummy integer argument (as required by ANSI-C) followed by a null-terminated variable length li
name/value pairsXVaCreateNestedList() can be conveniently called from within an argument list to another
function, as is shown iBExample 11-2

Example 11-2. A nested call to XVaCreateNestedList()
XVaNestedList nlist;
ic = XCreatelC(im, XNInputStyle, XIMPreeditPosition | XIMStatusNothing,
XNPreeditAttributes, nlist = XCreateVaNestedList(
0, /* dummy argument */
XNSpotLocation, cursor_location,
XNFontSet, font_set,
NULL),
XNFocusWindow, focus_window,
NULL);
XFree(nlist);

Nested argument lists can also be used to specify top—level attributes. To do this, use the special name
XNVaNestedList which will cause the contents of the following nested list to be logically inserted into the argume
list at the current position.

Note thatXVVaCreateNestedList() allocates memory for the list it returns, which must be freed with a call to
XFree() . Also note that if any of the values in the list are pointer types, the data pointed to must remain valid for
lifetime of the list.

The designers of the XIM specification chose this varargs—and—-named-attributes interface over the more familiar
structure—and-flags interface usedXfyhangeWindowAttributes() andXChangeGC() , for example, because
they felt it provided "more flexibility." The perceived flexibility to the programmer is probably a matter of personal t:
but the varargs interface certainly provides more flexibility for future extensions——new attributes and vendor— or
IM-specific attributes can easily be added without destroying binary compatibility.

11.4 XIM Functions

An XIM is an opaque structure that serves as a handle to the input method. Because input methods are generally
implemented as separate processes, we generally talk about "opening," not "creating," an input method. In this res
XIM can be thought of as analogous Digplay * . The sections below explain how to open and close a connectiol
an input method, and how to query the values of input method attributes.

11.4.1 Opening and Closing an Input Method

A connection to an input method is opened with a call@penIM() . This function takes as arguments the Display, ar
XrmDatabase() , and a resource name and resource class othgre® . The database is used by the input method
look up resources private to it. The resource name and class are used as resource hame and class prefixes by the
method when looking up resources for input contexts. In an Xt program, the database created when the display is
initialized can be used. In Xlib programs, the programmer will have to explicitly build the database, or simply pass
empty one.

XOpenlIM() also uses the current locale and locale modifiers as implicit arguments. The locale determines the de’
input method thakOpenIM() will connect to, as well as the encoding of the strings which will be returned by
Xmb/XwcLookupString() . The locale is bound to an input method when it is open——the locale that was in effect
when the input method was opened will be used by all input contexts of that input method regardless of the current
when they are created.

The locale determines a default input method to be open®®pgnIM() , but it cannot be assumed that only one input
method will be available in each locale. Therefore X defines a locale modifier named "im" géridbe used to override
the default input method of the locale. The programmer shoulX8allocaleModifiers() to set all X locale
maodifiers ("im" is currently the only one). The user can specify a desired input method by setting the (UNIX) envirc
variableXMODIFIERSto a string of the form "@inmrput method name

When an input method will no longer be used, it may be closed with a ealloselM()
Example 11-3hows how to establish the locale and open a connection to the input method for that locale.

Example 11-3. Establishing the locale and opening an XIM
#include <stdio.h>
#include <X11/Xlib.h>
/*
* include <locale.h> or the non-standard X substitutes
* depending on the X_LOCALE compilation flag
*/
#include <X11/Xlocale.h>
main(argc, argv)
int argc;
char *argv[];
{
Display *dpy;
XIM im;
char *program_name = argv|[0];

/*
* The error messages in this program are all in English.
* In a truly internationalized program, they would not
* be hardcoded; they would be looked up in a database of
* some sort.
*
if (setlocale(LC_ALL, ") == NULL) {
(void) fprintf(stderr, "%s: cannot set locale.,program_name);
exit(1);
}
if ((dpy = XOpenDisplay(NULL)) == NULL) {
(void) fprintf(stderr, "%s: cannot open Display., program_name);
exit(1);
}
if (IXSupportsLocale()) {
(void) fprintf(stderr, "%s: X does not support locale %s.,
program_name, setlocale(LC_ALL, NULL));
exit(1);
}
if (XSetLocaleModifiers(") == NULL) {
(void) fprintf(stderr, "%s: Warning: cannot set locale modifiers.,
program_name);
}
/*
* Connect to an input method.
* In this example, we don't pass a resource database
*
if ((im = XOpenIM(dpy, NULL, NULL, NULL)) == NULL) {
(void)fprintf(stderr, "%s: Couldn’t open input method,
program_name);
exit(1);
}

11.4.2 Querying Input Method Values

The functionXGetIMValues() is used to query attributes of the input method. At this point, there is only one defir
attribute, name&NQuerylnputStyle . This is a read—only attribute that specifies the interaction styles supported
the input method. When an input context is created, one of the interaction styles from this list must be specified. B
the one attribute currently defined for input methods is read-only, thereXSettMValues procedure.

To get the list of supported interaction styles, ¥&letiMValues() passing the IM, the namnNQuerylnputStyle
and the address of a variable of tyfiMStyles * . TheXIMStyles structure is shown iBxample 11-4

Example 11-4. The XIMStyles structure
typedef unsigned long XIMStyle;
typedef struct {
unsigned short count_styles;
XIMStyle *supported_styles;
} XIMStyles;

The call toXGetIMValues() will return a pointer to XIMStyles structure which contains a list of supported styles
and the number of styles in the list. The client is responsible for freeiddM&tyles structure when done with it.

EachXIMStyle in the list of supported styles is ansigned long in which various bit flags describing the style are
set. The valid flags and their meanings are described below:

XIMPreeditCallbacks
The client must provide pre—edit callback procedures so that the input method can cooperate \
the application to perform on—the—spot pre—editing.

XIMPreeditPosition
The client must provide the location of the insertion cursor so that the input method can do
over—the-spot pre—editing.

XIMPreeditArea
The client must provide geometry management of an area in which the input method can do
off-the—spot pre—editing.

XIMPreeditNothing
The input method can perform root window pre—editing with no geometry management provide
the client.

XIMPreeditNone
The input method does not do any pre—editing, or does not display any pre—edit data.

XIMStatusCallbacks
The client must provide status callback procedures so that the input method can request the
application to display status data when needed.

XIMStatusArea The client must provide geometry management of an area in which the input method can displ
status values.

XIMStatusNothing
The input method can display status information in the root window with no geometry managel
provided by the client.

XIMStatusNone The input method does not display any status information.

When examining theupported_styles list, you may assume that eaXtMStyle will have only one
XIMPreedit flag and on&IMStatus flag set.

The XIM spec places no restrictions on how many flags may be seanthStyle , but it does not assign any meaning to a style which has multig

XIMPreedit or XIMStatus flags.

Example 11-5in Section 11.5.2, "Creating and Destroying Input Contexts'shows how to query the supported styles
of an input method.

11.5 XIC Functions

An input context is to an input method almost as a Window is to a Display. Each independent internationalized tex
stream requires an IC, and the attributes of an IC define the behavior and appearance of the IM for that input strea
sections below describe how to choose an input style for an IC, how to create and destroy an IC, how to set and ge
attribute values of an IC, how to reset an IC, and how to set focus to an IC. The attributes of an IC are documente
Section 11.6, "Input Context Attributes."

11.5.1 Choosing an Interaction Style

The input or interaction style to be used by an input context must be specified when the input context is created. T
chosen must be one of those supported by the input method, and must also be supported by the client. The simpl¢
applications may choose to provide only minimal interaction with the input method, and may support only the
XIMPreeditNothing andXIMStatusNothing interaction styles, forcing the input method to display its
information in the root window. More complicated applications will probably support adBdBreeditArea and
XIMStatusArea styles, as well as the "do nothing" styles. Generally, the right choice of interaction style is the m¢
complicated (and therefore most user—friendly) style supported both by the application and the input method. An
application may also choose to provide a resource so that the user can specify a desired style. Note that the choic
Preedit interaction style must be made independently of the Status style.

Section 11.4.2, "Querying Input Method Values"lists the possible interaction styles, and explains how to query an it
method for supported styldsxample 11-5shows how to select Preedit and Status interactions styles and create an |
use those styles.

11.5.2 Creating and Destroying Input Contexts

An XIC is created with a call t§CreatelC() and destroyed with a call KDestroylC() . XCreatelC() takes an
XIM as its first argument followed byNULL-terminated variable-length argument list of attribute name/attribute valu
pairs. The IC is created in the locale of the IM, regardless of the current locale. The names of the IC attributes an
meanings are described@ection 11.6, "Input Context Attributes." Note that theXNInputStyle andXNFontSet
attributes must be specified when an input context is created, and depending on the inpiiSpd#l.ocation and

all of the callback attributes may also have to be specified at creation timXNThientWindow attribute need not be
specified when the IC is created, but must be specified before any input is done withEkenh@le 11-5shows how to
choose an interaction style and create an IC.

Example 11-5. Choosing an interaction style and creating an IC
#include <stdio.h>
#include <X11/Xlib.h>
#include <X11/Xlocale.h>
main(argc, argv)
int argc;
char *argv[l;
{
Display *dpy;
Window win;
XFontSet fontset;
XIM im;
XIC ic;
XIMStyles *im_supported_styles;
XIMStyle app_supported_styles;
XIMStyle style;
XIMStyle best_style;
XVaNestedList list;
char *program_name = argv[0];
int i

/* figure out which styles the IM can support */
XGetIMValues(im, XNQuerylnputStyle, &m_supported_styles, NULL);
[* set flags for the styles our application can support */
app_supported_styles = XIMPreeditNone | XIMPreeditNothing | XIMPreeditArea;
app_supported_styles |= XIMStatusNone | XIMStatusNothing | XIMStatusArea;
/*
* now look at each of the IM supported styles, and
* chose the "best" one that we can support.
*
best_style = 0;
for(i=0; i < im_supported_styles—>count_styles; i++) {
style = im_supported_styles—>supported_styles]i];
if ((style & app_supported_styles) == style) /* if we can handle it */
best_style = ChooseBetterStyle(style, best_style);
}
* if we couldn’t support any of them, print an error and exit */
if (best_style == 0) {
(void)fprintf(stderr, "%s: application and program do not share a,
program_name);

(void)fprintf(stderr, "%s: commonly supported interaction style.,
program_name);
exit(1);
}
XFree(im_supported_styles);
/*
* Now go create an IC using the style we chose.
* Also set the window and fontset attributes now.
*
list = XVaCreateNestedList(0, XNFontSet, fontset, NULL);
ic = XCreatelC(im, XNInputStyle, best_style,
XNClientWindow, win,
XNPreeditAttributes, list,
XNStatusAttributes, list,
NULL);
XFree(list);
if (ic == NULL) {
(void) fprintf(stderr, "Couldn’t create input context);
exit(1);
}

}
/*
* This function chooses the "more desirable" of two input styles. The
* style with the more complicated Preedit style is returned, and if the
* styles have the same Preedit styles, then the style with the more
* complicated Status style is returned. There is no "official" way to
* order interaction styles; this one seems reasonable, though.
* This is a long procedure for a simple heuristic.
*/
XIMStyle ChooseBetterStyle(stylel,style2)
XIMStyle stylel, style2;
{
XIMStyle s.t;
XIMStyle preedit = XIMPreeditArea | XIMPreeditCallbacks |
XIMPreeditPosition | XIMPreeditNothing | XIMPreeditNone;
XIMStyle status = XIMStatusArea | XIMStatusCallbacks |
XIMStatusNothing | XIMStatusNone;
if (stylel == 0) return style2;
if (style2 == 0) return stylel;
if ((stylel & (preedit | status)) == (style2 & (preedit | status)))
return stylel;
s = stylel & preedit;
t = style2 & preedit;
if (s!=1){
if (s | t | XIMPreeditCallbacks)
return (s == XIMPreeditCallbacks)?stylel:style2;
else if (s | t | XIMPreeditPosition)
return (s == XIMPreeditPosition)?stylel:style2;
else if (s | t | XIMPreeditArea)
return (s == XIMPreeditArea)?stylel:style2;
else if (s | t | XIMPreeditNothing)
return (s == XIMPreeditNothing)?stylel:style2;

else { /* if preedit flags are the same, compare status flags */
s = stylel & status;

t = style2 & status;
if (s | t | XIMStatusCallbacks)
return (s == XIMStatusCallbacks)?stylel:style2;
else if (s | t | XIMStatusArea)
return (s == XIMStatusArea)?stylel:style2;
else if (s | t | XIMStatusNothing)
return (s == XIMStatusNothing)?stylel:style2;

11.5.3 Querying and Modifying an XIC

Attributes of arXIC can be set with a call %¥SetlICValues() and can be queried with a callX&GetICValues()

Both functions take aKIC as their first argument, followed byNULL-terminated variable—length argument list of
attribute name/attribute value pairs. The names, types, and usage of the attributes are exBladtied ihl.6, "Input
Context Attributes.”" Note that some of the attributes are read—only, some must be specified when the IC is create
others must be specified once and may not be changed once specified.

Some attributes, such XNGeometryCallback andXNArea, have values that are pointer types. The spec does not say whether the va
pointed to by these attributes are copied. It appears that the Xsi implementation (the default) does make a copy of all these attribute values, wi
exception of theXNResourceName andXNResourceClass attributes, which are strings and not of fixed length.

The value arguments passed@etlICValues() = must be valid pointers to locations in which to store the requested
attribute valuesXGetlCValues() will allocate memory for the storage of some of these attributes, and this memo
must be freed by the client with a callXBree()

The R5 spec is self-contradictory about which attributes will have memory allocated for them. It says, "Each argument value (following a name
point to a location where the value is to be sto)(a@etICValueS() allocates memory to store the values, and client [sic] is responsible for
freeing each value by calIidéFree() " The first sentence indicates that the program provides memory for the attribute value. The second ind
that the program provides memory for a pointer to the attribute value. The Xsi implementation (the default) takes the first approach, and the Xir
implementation takes the second. So, for example, to query the valueXdtr@cusWindow attribute, you would pass the address of a
Window to XGetlCValues() if using the Xsi implementation, but the address ¥¥indow * if using the Ximp implementation. In the
second case, the returnddindow * value points to allocated memory which must be freed. When querying attribut¥\NikesourceName
and XNGeometryCallback , which have values that are pointer types, it is not clear what types should be passed in the query, nor is it ¢
whether the returned pointer points to a copy of the value which must be freed, or to the value itself which must not be freed. As a programmer
bet is to avoid the use ¥GetICValues() , except when necessary for &N FilterEvents andXNAreaNeeded attributes.

To query the values of Preedit and Status sub—attributes, create a nested list of name/value pairs, where the value
pointers to storage and pass this nested list as the valueXdfifreeditAttributes or XNStatusAttributes
attributes. You cannot query the value of all sub—attributes by paskigNestedList * as the value of
XNPreeditAttributes or XNStatusAttributes ——XGetlCValues() does not build and return a nested list «
sub—attributes

Both XSetICValues() andXGetICValues() return achar * which isNULL if no errors occurred, or points to the
name of the first attribute that could not be set or queried.

11.5.4 Resetting an Input Context

If text input is interrupted while pre—editing is in progress, the input context may be left in a non—initial internal state
reset the state of &AC, call XmbResetIC() orXwcResetIC . Both reset the IC to its initial state and discard any
pending input. Both functions may return the current pre—edit string, but it is implementation dependent how and v
they do this. The only difference between these functions is in the type of string they return. The returned string, if
should be freed by the client wikiree()

11.5.5 Setting Input Context Focus

When the focus window of an input context receives the application input focus, the application should call
XSetlICFocus() onthat IC. Us&XUnsetlCFocus() when the focus window of an IC loses focus, or simply call
XSetICFocus() on the IC of the new focus window. This will allow the input method to perform internal

housekeeping and display special graphics (such as a highlighted border) in the Pre—Edit and Status windows of tf
has the focus.

If you are using a single IC to handle input across several windows, and the input focus shifts from one of these wii
to another, then the ICX¥NFocusWindow attribute should be changed, you needn’t X8letICFocus() . Depending
upon your user interface, you may also want to reset the IC when focus changes like this.

11.5.6 Input Context Utility Functions
The following utility functions are sometimes useful when using input methods and input contexts:

XIMOFIC() Returns the IM associated with a given IC.

XDisplayOfIM()
Returns the Display associated with a given IM.

XLocaleOfIM() Returns the locale associated with a given IM. The returned string is owned by Xlib and shoul
be freed by the client. It will be freed by Xlib when the IM is closed.

The R5 spec does not state whether the client should free this string, nor when it will be freed by Xlib.

11.6 Input Context Attributes

The behavior of an input method for a particular stream of input is controlled by the attributes of the input context o
stream. There is an attribute, for example, that specifies the interaction style (which must be one of the styles supj
the IM), there are attributes that specify the pre—edit callbacks to be called by the input method when over-the-sp
interaction is being used, and there are attributes that specify the foreground and background pixels and colormap
IM to use when drawing in its Preedit area.

Some attributes are used for communication in the other direction. One is used by the input method to tell the cliet
types of X events it requires, and another is used by the input method to request a new size for its Preedit and Stal
Most attributes may be freely modified, but note that some must be set when the IC is created, others must be set
once, and others still are read—only and must never be set.

The attributes are listed below. Most attributes provide default values, but recall that some must be specified, eithe
the IC is created or at some later time before it is used.

11.6.1 XNInputStyle

TheXNInputStyle attribute specifies the interaction style to be used by the input method for this input context. It
type XIMStyle . It must be one of the supported styles queried from the input methaod®@étiMValues() . This
attribute must be specified when the IC is created. It may be queried but not changed.

11.6.2 XNClientWindow

The XNClientWindow attribute specifies the window in which the input method will display its Preedit and Status ¢
Itis of typeWindow. All geometry values for those areas are specified relative to this window. This attribute must t
specified (withXCreatelC() or XSetICValues()) before any input is done, and once set may not be changed.

11.6.3 XNFocusWindow

If a single IC is used to handle multiple input streams within a single client window (as in a multi-buffer text editor t
displays several paned editing windows and provides pre—editing in a message line at the bottom of the client winc

XNFocusWindow attribute (of typ@Vindow) is used to specify which sub—window currently has the focus. The inpu
method may select events on this window, send synthetic events to it, set or change properties on it, or grab the ke
within it. If not specified, this attribute will default to the valuex®fClientWindow . If this attribute is specified, it
should generally be a child of the client window. The valugNffocusWindow may be changed freely.

11.6.4 XNResourceName and XNResourceClass

The XNResourceName andXNResourceClass attributes are null-terminated strings which completely specify the
resource name and class used to obtain resources for the client window. If the input method allows per-IC custon
using X resources, those resources will be looked up using the name and class hierarchies specified by
XNResourceName andXNResourceClass . If your application is named "iedit" with class name "ledit," and the
client window is a widget named "itext" of class "IText" and it is within a top—level manager widget named "main" of
"Form," then th&XNResourceName attribute should be set to "iedit.main.itext," and XResourceClass attribute
should be set to "IEdit.Form.IText." If these attributes are not set, the input method will not be able to look up resou
values for the IC in its resource database. Both attributes may be set at any time, but because resource lookup is ¢
done only when an IC is created, they will only be useful if specifiéCteatelC() . The specification does not say
whether or not the values of these strings are copied. To be safe, the strings passed asiiResoofceName and
XNResourceClass should not be freed or modified until the IC is destroyed or new values are provided for those
attributes.

11.6.5 XNGeometryCallback

TheXNGeometryCallback attribute, of typeXIMCallback *, specifies a procedure which an input method may ce
to request a different size for it's Preedit or Status areas. Because the client is never obliged to meet IM geometry |
specifying this attribute is optional.

11.6.6 XNFilterEvents

The XNFilterEvents attribute is used by the input method to notify the client of the X events it needs to receive.
an event mask, a long integer of the format pass&edectinput() . The client must query this resource before ar
input is done and augment the event mask fokt€lientWindow with it. This attribute is read—only and should
never be set.

11.6.7 XNPreeditAttributes and XNStatusAttributes

Each of these attributes specifies a list of sub—attributes that control the position, behavior, and appearance of the
and Status areas of the IC. They have ifpaNestedList and should be created with a call to

XVaCreateNestedList() . Most of these attributes are used by the input method for both the Preedit and the St
areas. They are ignored, of course XtMiPreeditNone andXIMStatusNone interaction styles. All of these
attributes except the callbacks are ignored for interaction stjidBreeditCallbacks and

XIMStatusCallbacks . They are described individually below.

11.6.7.1 XNArea

The XNArea attribute is a pointer to akRectangle . If the interaction style XIMPreeditArea or

XIMStatusArea , then the rectangle defines the region of the client window in which pre—editing and status displa
take place. An input method may create sub—windows of the client window that conform to this geometry. If the p1
interaction style iXIMPreeditPosition instead oXIMPreeditArea |, then this attribute specifies a clipping regio
in the focus window of the IC to be used in conjunction withXN&potLocation attribute to implement
over-the-spot pre—editing. This attribute must be specified if any of the above interaction styles are in use. For al
pre—edit and status interaction styles, this attribute is ignored.

11.6.7.2 XNAreaNeeded
TheXNAreaNeeded attribute is also a pointer to AiiRectangle . Itis used for geometry negotiation between client

and input method for théIMPreeditArea andXIMStatusArea interaction styles, and is ignored for all other style
The client may provide a hint to the input method about the area it is likely to get by setting a non-zero width or he
this attribute (the x and y values are ignored). The client may query the input method’s preferred size for those are
reading the value of this attribute. A well-behaved input method will not request a size larger than any hints it has
received. Note that neither step is required——the client can always set any size it desiresihMfr¢heattribute. See
Section 11.7, "Negotiating Preedit and Status Area Geometriegdr more details on geometry negotiation.

11.6.7.3 XNSpotLocation

TheXNSpotLocation attribute is a pointer t¥Point . It is used when the Preedit interaction style is
XIMPreeditPosition and is ignored for all Status interaction styles and all other Preedit interaction styles. The
of this attribute should be set to the position (in the focus window) at which the next character would be drawn. Th
method will use this point and the clipping region specifiedNiAreaNeeded to implement over-the-spot pre—editing
in a sub—window of the focus window. Each time a newly—composed character is drawn or the text modified in an)
the value of this attribute should be changed to reflect the new value of the "spot.” When the interaction style is
XIMPreeditPosition , this attribute must be specified when the IC is created.

11.6.7.4 XNColormap

The XNColormap attribute specifies the colormap which the input method should use for any windows it creates its
is of typeColormap . If the colormap is unspecified, the input method will provide a default.

11.6.7.5 XNStdColormap

The XNStdColormap attribute provides an alternate method of specifying the colormap to be used by the input me
It is of typeAtom, and should be set to a value appropriate for a cxl@etStandardColormap() . If both this
attribute and th&XNColormap attribute are passed in a callX8etICValues() , it is implementation—dependent
which will take precedence.

11.6.7.6 XNForeground

The XNForeground attribute specifies the foreground pixel value to be used by the input method. It is of type
unsigned long

11.6.7.7 XNBackground

The XNBackground attribute specifies the background pixel value to be used by the input method. It is of type
unsigned long

11.6.7.8 XNBackgroundPixmap

The XNBackgroundPixmap attribute specifies a pixmap to be used as the background of the Preedit or Status wir
created by the input method. It is of typiemap .

11.6.7.9 XNFontSet

TheXNFontSet attribute specifies a fontset to be used by the input method for text drawing in the Preedit or Statu
window. It is of typeXFontSet . The locale of the specified fontset must match the locale of the input method. Thi:
attribute must be specified when the IC is created.

11.6.7.10 XNLineSpacing

TheXNLineSpacing attribute specifies the line spacitgbe used by the input method when displaying multi-line te
Itis of typeint .

The R5 spec simply says "line spacing" and does not specify whether the value should be a baseline-to—baseline spacing or just interline spac

baseline-to—baseline spacing was probably the intent, but it will be safest to leave this attribute unspecified and use the IM default.

11.6.7.11 XNCursor
The XNCursor attribute specifies the mouse cursor to be used in the Preedit or Status windows. It i€ofdgpe.

11.6.7.12 Preedit and Status Callbacks

There are seven callback attributes, four of which must be specifigtM&reeditCallbacks interaction style, and
three of which must be specified f§MStatusCallbacks interaction style. Each callback attribute is of type
XIMCallback * . This type, the callback prototypes, and requirements will be explaigstiion 11.8, "Geometry,
Preedit, and Status Callbacks." If the XIMPreeditCallbacks or XIMStatusCallbacks interaction styles are in
use, the appropriate callbacks must be specified when the IC is created. The callback attributes are the following:

. XNPreeditStartCallback , called when pre-editing starts. It gives the client the opportunity to provide
feedback to the user, to rearrange characters in the window to make room for pre—editing, etc.

. XNPreeditDoneCallback , called when a character is composed and pre—editing stops. It gives the client
opportunity to provide feedback to the user, close up any space opened for pre—editing, etc.

. XNPreeditDrawCallback , called when the input method wants the client to draw characters in the window

. XNPreeditCaretCallback , called when the input method wants the client to move the text-insertion curst

(which for some applications may have the shape of a caret).

. XNStatusStartCallback , called when the input context gets the focus. It gives the client the chance to
provide user feedback.

. XNStatusDoneCallback |, called when the input context loses focus (or is destroyed). It gives the client the
chance to provide user feedback.

. XNStatusDrawCallback |, called when the input method wants the client to draw text or a bitmap into the st
area.

11.7 Negotiating Preedit and Status Area Geometries

For theXIMPreeditArea andXIMStatusArea interaction styles, the input method needs an area of the applicati
window in which it can create a sub—window and perform its necessary pre—editing and display status information.
application is responsible for providing these areas to the input method (WKh&rea sub-attribute) and the input
method must accept whatever area it is given.

The simplest applications may simply force the input method to use some pre—defined area, but slightly more flexit
applications will want to query the input method for its desired size. To allow this, a protocol for geometry negotiati
between application and input method has been defined. The protocol usE#tkaNeeded sub-attribute of an input

context in two distinct ways: when the application sets this attribute with a non—zero width and/or height, the input 1
interprets these as hints about the size that will eventually be assigned to it by the client. When the application que
value of theXNAreaNeeded attribute, it is returned the input method’s preferred size which it may choose to honor
setting the size in th€NArea attribute.

An example best demonstrates the use of this protocol: Suppose an internationalized client wants to place the pre-
across the bottom of its application window. This means that the width of the area is constrained to be the width of
window, but the height of the area is not constrained. So the application specifies the wid¥kNArtb&Needed

attribute to be the width of the window and leaves the height of the attribute set to 0. Now the input method may u:
information to re-compute its desired size. If it would have liked a one line pre—edit area 500 pixels wide, for exarn
and has just received a hint that it will not get an area wider than 350 pixels, it might choose to request a pre—edit ¢
is two lines high. Now when the application queriestNé\reaNeeded attribute it will get the input method’s new
desired size. If an application has no constraints for the input method, it can omit the first step and simply read froi
XNAreaNeeded .

This negotiation protocol is not reserved for application startup; it may take place at any time. Note that if the applic

changes th&NFocusWindow attribute of an IC or thXNFontSet or XNLineSpacing sub-attributes of the pre—edit
or status areas, the input method will probably have a new desired size for those areas, and the application should
geometry negotiation process. When the application’s window is resized, the application will probably want to place
pre—edit and status areas at a new location, and may also have new constraints on their size. The application shot
size constraints iXNAreaNeeded even if those constraints have not changed since the last time geometry was
negotiated.

The R5 spec makes no statement about the duration of the validity of the application’s constraints.

Example 11-6shows a procedure that handles the geometry negotiation process. It was designed to be called fror
application’s event loop when the main window is resized.

Example 11-6. Negotiating Preedit and Status area geometries
#include <X11/Xlib.h>

/*

* This procedure sets the application’s size constraints and returns

* the IM’s preferred size for either the Preedit or Status areas,

* depending on the value of the name argument. The area argument is
* used to pass the constraints and to return the preferred size.

*/

void GetPreferredGeometry(ic, name, area)

XIC ic;

char *name; I* XNPreeditAttributes or XNStatusAttributes */
XRectangle *area; /* in: constraints; out: IM preferred size */

{

XVaNestedList list;
list = XVaCreateNestedList(0, XNAreaNeeded, area, NULL);
[* set the constraints */
XSetlCValues(ic, name, list, NULL);
/* query the preferred size */
XGetlCValues(ic, name, list, NULL);
XFree(list);
}
/*
* This procedure sets the geometry of either the Preedit or Status
* Areas, depending on the value of the name argument.

*/

void SetGeometry(ic, name, area)

XIC ic;

char *name; I* XNPreeditAttributes or XNStatusAttributes */
XRectangle *area; /* the actual area to set */

{

XVaNestedList list;
list = XVaCreateNestedList(0, XNArea, area, NULL);
XSetlCValues(ic, name, list, NULL);
XFree(list);
}
/*
* Called when the window is resized. If the interaction style
* uses the Preedit or Status areas, then their size needs to
* be re—negotiated. This procedure places both the Preedit and
* Status areas at the bottom of the window, and constrains the
* Preedit area to occupy no more than 4/5ths of the window width
* on the right hand side of the window, and constrains the Status
* area to occupy no more than 1/5th of the window on the left.
* |t does not constrain the height of these areas at all.
*/
void NegotiatelICGeometry(ic, event, style, preedit_area, status_area)
XIC ic;

XEvent *event;
XIMStyle style;
XRectangle *preedit_area, *status_area,;
{
if ((preedit_area '= NULL) && (style & XIMPreeditArea)) {
preedit_area—>width = event—>xconfigure.width*4/5;
preedit_area—>height = 0;
GetPreferredGeometry(ic, XNPreeditAttributes, preedit_area);
preedit_area—>x = event—>xconfigure.width — preedit_area—>width;
preedit_area—>y = event—>xconfigure.height — preedit_area—>height;
SetGeometry(ic, XNPreeditAttributes, preedit_area);
}
if ((status_area != NULL) && (style & XIMStatusArea)) {
status_area—>width = event—>xconfigure.width/5;
status_area—>height = 0;
GetPreferredGeometry(ic, XNStatusAttributes, status_area);
status_area—>x = 0;
status_area—>y = event—>xconfigure.height — status_area—>height;
SetGeometry(ic, XNStatusAttributes, status_area);
}
}

Finally, an application may choose to provide a callback procedure that will be called by the input method to reque:
size for its pre—edit or status areas. This callback may be triggered by changes to attributesboht&et as
described above, or may be triggered directly by the user’s interactions with the input method (an input method cot
provide "resize handles" on its pre—edit area, for example). If an application provides a geometry callback, it shoul
attempt to honor any resize requests made by the input method. (An input method might choose whether or not to
"resize handles" on its pre—edit area depending on the presence or absence of such a callback.) The prototype ge
callback is described iBection 11.8.1, "The Geometry Callback."

11.8 Geometry, Preedit, and Status Callbacks

An application interacting with an input method using XtElPreeditArea and/orXIMStatusArea styles may
optionally provide a callback to be called when the input method would like to renegotiate the size of its pre—edit or
areas. An application using théMPreeditCallbacks style must provide a suite of pre—edit callback routines that
allow the input method and application to cooperate and provide pre—editing that appears to be an integral part of t
application itself. Similarly, an application using XidMStatusCallbacks must provide a suite of callbacks for the
display of status information.

Each callback attribute is of typdMCallback , which is shown ifExample 11-7

Example 11-7. The XIMCallback structure
typedef void (*XIMProc)();
typedef struct {
XPointer client_data;
XIMProc callback;
} XIMCallback;

If you have used X Toolkit callbacks, you will be familiar with the use otliemt data field. This is untyped data
registered with the callback and passed to the callback every time it is invoked. When a single callback procedure
registered on several different callback attributesclieat_data can serve in awitch statment to determine how
the callback should behave. It is also often used to pass data to the callback (such as a window ID or a widget poi
which the callback would otherwise not have access to. The tyhierf data is XPointer , which is a new Xlib
generic pointer type, lik&tPointer

Most of the callback procedures have the prototype sholmample 11-8

Example 11-8. A prototype XIM callback procedure
void CallbackPrototype(ic, client_data, call_data)
XIC ic;
XPointer client_data;
XPointer call_data;

TheXIC passed to the callback procedure will be the input context that caused the callback to be invoked. The
client_data argument will be the untyped data registered with the callback as described above. It is up to the ce
to know the actual type of this data and cast it as appropriate before useallTthata argument is data passed by the
input method to the callback; it is the data required by the callback to perform whatever action the input method ne
done. Each callback passes a different type in this argument. Note that the Xlib header files do not actually define
CallbackPrototype , only the typeXIMProc shown in the previous example. Since the definition oKiMProc

type does not have a prototype, callback procedures may be written with any desired tyip=# foiata and
call_data

11.8.1 The Geometry Callback

The geometry callbackkKNGeometryCallback) is triggered when the input method would like to renegotiate the
geometry of its pre—edit or status areas. Itis not passed any dateailh ilata argument. Note that this callback doe
not indicate whether the input method wants renegotiation of the pre—edit area or the status area or both. If the ap
and the input method are interacting through bdMPreeditArea andXIMStatusArea styles, then the application
should renegotiate the geometry of both areas. The geometry negotiation process is deSzitiaohithl.7,

"Negotiating Preedit and Status Area Geometries."

11.8.2 The PreeditStartCallback and the PreeditEndCallback

The XNPreeditStartCallback andXNPreeditEndCallback are called when the input method begins and en
pre—editing. They give the application the opportunity to do any necessary internal setup or cleanup and provide g
feedback to the user that the application is entering or leaving pre—edit mode. Both callbacks aMljtdsaetheir
call_data valuesXNPreeditStartCallback will not be called twice for the same IC without an intervening ca
to XNPreeditEndCallback

The XNPreeditStartCallback has one additional requirement. It must returimén (and therefore does not satisf
the general callback prototype given above) to the input method which indicates the maximum number of bytes the
application is able to handle in the pre—edit string. If this callback returns a positive value, the input method should
expect the application to be able to successfully display pre—edit strings any longer than that value. If the callback
the value —1, it indicates that the application can handle pre—edit strings of any length.

11.8.3 The PreeditDrawCallback

This callback is called when the input method wants the application to insert, delete, or replace text in the pre—edit
It is also used by the input method to request that some characters or substrings be highlighted (to indicate a selec
of the pre—edit string, for example). The callback is expected to display the pre—edit text to the user and will have 1
maintain an internal pre—edit string. The pre—edit text will likely appear within the running text of the application, bt
cursor and character positions referred to in this callback are all relative to the beginning of the pre—edit string. Thi
XNPreeditDrawCallback is passedall_data of typeXIMPreeditDrawCallbackStruct , Which is shown

in Example 11-9

Example 11-9. The XIMPreeditDrawCallbackStruct
typedef unsigned long XIMFeedback;

#define XIMReverse 1L

#define XIMUnderline (1L<<1)

#define XIMHighlight (1L<<2)

#define XIMPrimary (IL<<3)

#define XIMSecondary (1L<<4)

#define XIMTertiary (1L<<5)

typedef struct _ XIMText {

unsigned short length;
XIMFeedback *feedback;
Bool encoding_is_wchar;
union {
char * multi_byte;
wchar_t * wide_char;
} string;

} XIMText;
typedef struct _XIMPreeditDrawCallbackStruct {

int caret;

int chg_first;
int chg_length;
XIMText text;

} XIMPreeditDrawCallbackStruct ;

The XNPreeditDrawCallback must do the following:

If chg_length is positive, then the application must delete the characters in the pre—edit string between
chg_first andchg_first + chg_length-1 inclusive.

The R5 spec says, "Characters starting from chg_first to chg_first+chg_length must be deleted.”

Note that manipulations of the pre—edit string are always done on the basis of character positions, so it will ge
be most useful to store the pre—edit string in wide—character format.

If thetext field is non—NULL, andext.string is non—NULL, the application must insert that string at the
position specified bghg_first . A position of 0 indicates that the string should be inserted before the first
character of the pre—edit string, a position of 1 indicates that the string should be inserted before the second
of the pre—edit string, and so ontdt.encoding_is_wchar is TRUEthen the string to be inserted is the
wide—character strintgxt.string.wide_char which istext.length characters long. FALSE, then the
string to be inserted is the multi-byte striegt.string.multi_byte , Which is alsdext.length

characters (not bytes) long. Since there is no way to request that the IM use either wide—character or multi-b
strings, your application will have to be prepared to handle either case. When passed a multi-byte string, it v
probably be easiest to convert it to a wide—character string and operate on it in that representation.

If there is a string to be inserted, aedt.feedback is notNULL thentext.feedback is an array of
XIMFeedback with text.length elements. Each character of the string to be inserted must be drawn with
"feedback style" indicated by the corresponding element désttdeedback array. If the array elementis 0
then no special highlighting of the character needs to be done. Otherwise the character must be highlighted
the following ways:

- XIMReverse means the character should be drawn with foreground and background colors reversed.
- XIMUnderline means that a line should be drawn along the character’s baseline.

- XIMHighlight means that the character should be drawn highlighted in some style other than the sty
used forXIMReverse andXIMUnderline

The R5 spec says nothing about %BVIHighlight style.

- XIMPrimary means that the character should be drawn in some application defined highlighting style
is not the same as the style useddftSecondary .

- XIMSecondary means that the character should be drawn in some application defined highlighting sty
which is not the same as the style usedidiPrimary .

- XIMTertiary means that the character should be drawn in some application defined highlighting style

If text.feedback is notNULL, buttext.string is NULL, then no string needs to be inserted, but the
characters betwearhng_first andchg_first + text.length-1 inclusive should be redrawn with the
highlight style indicated btext.feedback

After any insertions and deletions have been performed, the text insertion cursor (called the "caret" in the XIN
should be moved to the position specified indaeet field. If the position is 0, the cursor should be positioned ¢

that new text will be inserted before the first character of the pre—edit string. If it is 1, the cursor should be
positioned so that new text will be inserted before the second character of the pre—edit string, and so on.

11.8.4 The PreeditCaretCallback

This callback is called by the input method when it wants the application to move the current position of the text ins
cursor or to change the way the cursor is displayed. It is calledtalitidata of type
XIMPreeditCaretCallbackStruct which is shown irExample 11-10

Example 11-10. The XIMPreeditCaretCallbackStruct
typedef enum {
XIMForwardChar, XIMBackwardChar,
XIMForwardWord, XIMBackwardWord,
XIMCaretUp, XIMCaretDown,
XIMNextLine, XIMPreviousLine,
XIMLineStart, XIMLineEnd,
XIMAbsolutePosition,
XIMDontChange,
} XIMCaretDirection;
typedef enum {
XIMIslInvisible,
XIMIsPrimary,
XIMIsSecondary,
} XIMCaretStyle;
typedef struct _XIMPreeditCaretCallbackStruct {
int position;
XIMCaretDirection direction;
XIMCaretStyle style;
} XIMPreeditCaretCallbackStruct;

The XNPreeditCaretCallback is required to move the cursor as specified irdthection field, display it in the
style specified in thetyle field, and return the new character position of the cursor by setting the value of the
position field. The position field must be set by the callback because in some cases the input method will not be
compute it itself. This is the case when the cursor is moved down a line, for example——the new character position
cursor will depend on the number of characters in each line, which is a figure known to the application but not to th
method. Note that to correctly implement this callback, the application will have to remember the position of the in¢
cursor at all times, and this position will have to be updated by boXNReeeditDrawCallback and the
XNPreeditCaretCallback

The possible values of thtgrection field and their meanings are listed below. Note that in no case should the ins:
cursor be moved to a position before the beginning or after the end of the pre—edit string.

The R5 spec does not say what an application should do if a cursor motion request would take the cursor beyond the pre—edit text. You shoulc
leave the cursor where it is or move it to one end of the text. In either case simply return the new or unchanged position.

. XIMForwardChar means move the cursor forward one character.
. XIMBackwardChar means move the cursor backwards one character.

. XIMForwardWord means move the cursor forward one word. It is up to the application to decide what consi
a "word" in a pre—edit string. In many locales, a word will be delimited by characters forisdpelce returns
True .

. XIMBackwardWord means move the cursor backwards one word.

. XIMCaretUp means move the cursor up one line, keeping its position in the line constant if possible.

. XIMCaretDown means move the cursor down one line, keeping its position in the line constant if possible.
. XIMPreviousLine means move the cursor to the beginning of the previous line of pre—edit text.

. XIMNextLine means move the cursor to the beginning of the next line of pre—edit text.

. XIMLineStart means move the cursor to the beginning of the line it is currently on.
. XIMLineEnd means move the cursor to the end of the line it is currently on.

. XIMAbsolutePosition means move the cursor to the absolute character position specifieghositien
field of theXIMPreeditCallbacksStruct . If the position is 0, the cursor should be positioned so that new
text will be inserted before the first character of the pre—edit string. If itis 1, the cursor should be positioned ¢
new text will be inserted before the second character of the pre—edit string, and so on.

. XIMDontChange means that the cursor position should not be changed. The current position of the cursor r
still be returned in thposition field, however.

The XNPreeditCaretCallback can also be called to request that the insertion cursor become hidden or be drav
different style. Different cursor appearances may be used by the input method to indicate different pre—editing moc
insert versus overwrite mode, for example. The possible valuessif/the field and their meanings are as follows:

. XIMlsInvisible means that the insertion cursor should not be displayed.

. XIMIsPrimary means that the insertion cursor should be displayed in its primary or normal style. The partic
style used is up to the application.

. XIMIsSecondary means that the insertion cursor should be displayed in its secondary or special style. The
particular style used is up to the application.

Note that there is no provision for the handling of mouse clicks (for example, to move the position of the insertion ¢
the pre—edit text) in this interaction style. Since the input method does not know how the pre—edit text is displayed
cannot interpret mouse clicks over the text, and there is no specified way for the IM to request the application to co
pixel locations to character positions. Furthermore, the application cannot handle mouse clicks on the pre—edit tex
because it has no way of changing the internal insertion position of the IM. Note that some input methods will allov
mouse clicks and drags while pre—editing in XtkIPreeditPosition andXIMPreeditArea interaction styles; in
this case these styles may actually provide a more consistent user interface XitiPteeditCallbacks style.

11.8.5 The StatusStartCallback and the StatusDoneCallback

These callbacks are called when an IC gains focus or loses focus (possibly by being destroyed). They give the apj
the chance to set up or clean up any internal structures for handling status display, and allow the application to pro
graphical feedback of the new IC focus state to the user. Both are Nalidedll data and neither has any required
actions.

11.8.6 The StatusDrawCallback

The input method invokes thé\StatusDrawCallback when it wants the application to display a string or a bitmap
the status area. The callback procedure is pasdedlata of typeXIMStatusDrawCallbackStruct , Which is
shown inExample 11-11

Example 11-11. The XIMStatusDrawCallbackStruct
typedef enum {XIMTextType, XIMBitmapType} XIMStatusDataType;
typedef struct _XIMStatusDrawCallbackStruct {
XIMStatusDataType type;
union {
XIMText text;
Pixmap bitmap;
} data;
} XIMStatusDrawCallbackStruct ;

If thetype field isXIMTextType , then the callback must display the text describeddig.text in the status area of
the IC. TheXIMText type is also used by tbeéNPreeditDrawCallback , and is shown and explained$ection
11.8.3, "The PreeditDrawCallback.” The text may be in multi-byte or wide—character form, so the application must
able to handle either case. Recall thate¢ngth field of theXIMText structure gives the number of characters of tex
even when the text is in multi-byte form. The length in bytes of a multi—byte string is required for a call to
XmbDrawlmageString() , so when text is passed in multi-byte form, the application will have tstee to

determine its length before displaying it.

If thetype field isXIMBitmapType , then the callback must display the 1-bit d®epmap data.bitmap
The R5 spec does not say anything about the depth d?'mmap .

Notice that the callback does not return the width or height of the pixmap, so these must be obtained with a call to
XGetGeometry() before the pixmap is displayed.

The XIMStatusCallbacks interaction style does not allow for any communication between the application and tt
input method about the maximum size of the status area. Since it can always be passed data to display that is larg
the area it has allocated, ti&lStatusDrawCallback must be prepared either to clip or provide scrolling for the
strings and pixmaps it is passed, or to attempt to enlarge the status area. Resizing the status area requires the me
application window to be made larger or other windows to be rearranged or resizesiMBtatusCallbacks

interaction style can be useful for an application designed to be used with a single input method which calls the
XNStatusDrawCallback with well specified values. In general, however, when you don’t know what sort of data
application will be asked to display (or the meaning of that data), you won't be able to do anything beyond displayir
data in some rectangular region of your application, which amounts to the same thingldtagusArea interaction
style. So in these cases it may make more sense ¥XiM&tatusArea if the input method supports it.

11.9 Filtering Events

An input method needs to receive X events other than keystrokes. It must receive expose events when its Preedit
areas need refreshing, it needs mouse button events if it is to support full-featured editing of pre—edit text, and it ni
mouse motion events if it implements popup menus. The input method needs to get first crack at these events, bu
always be able to intercept them directly from the server, so the application is responsible for passing all events to
method before processing them itself. This is done with the fungdterEvent() . It should be called from the
event loop of all internationalized applications, generally right xiextEvent() . XFilterEvent() takes two
arguments, the event to filter, and the window to which the event is directed. If the application (or a toolkit used by
application) performs event redirection, this window may not be the same as the window in which the event occurre
the window argument islone, the window of the event will be used. An application cannot know in advance which
events the IM will need to filter; it must pass all event&RdterEvent() . If XFilterEvent() returnsTrue , it
filtered the event the application should dispatch the event no further.

Remember that an input method may be interested in different types of events than the application is. If the applic:
to pass events to the input method throXgliterEvent() , the application must have registered interest in receivin
those events witSelectinput() . TheXNFilterEvents input context attribute contains a mask of events that 1
input method is interested in receiving, and all clients should read this attribute and use it when selectirttkarrgries.
11-12shows code that does this and an event loop thaXsksrEvent()

Example 11-12. Selecting events for an IM and using XFilterEvent() in an event loop
long im_event_mask;

XGetlCValues(ic, XNFilterEvents, &m_event_mask, NULL);
XSelectinput(dpy, win, ExposureMask | KeyPressMask
| StructureNotifyMask | im_event_mask);

for(;;) {

XEvent e;

XNextEvent(dpy, &e);

if (XFilterEvent(&e, None)) continue;

switch (e.type) {

[* dispatch the event here */

}

The R5 X Toolkit Intrinsics have been modified to make appropriate UsEiltérEvent() in the function
XtDispatchEvent() called fromXtAppMainLoop()

11.10 Getting Composed Text

Prior to R5XLookupString() was used to convert the keycode returned in a KeyPress event into a KeySym and
further into a character string that could be passed to the X text drawing functions. Unfortunately, this function only
for the Latin—1 charset. To support internationalization in a limited way, there were altexolat@String functions

in the Xmu libraryXmuLookupLatin2() , XmuLookupJISX0201() , XmuLookupGreek() , etc. In R5, these
have been supersededXmbLookupString() andXwcLookupString() . These functions are identical except in
the type of string they return: tb@nbversion returns a multi-byte stringafar , andXwc version returns a
wide—character string afchar_t . In both cases the string will be encoded as appropriate for the locale of the IC.

There were bugs in the public R5 version of the Xsi implementatidtvotLookupString() . It is supposed to return as its value the number «
characters in the returned string, but appears, at least in some cases, to return the number of bytes instead.

Whenever KeyPress event is delivered to an application that is performing internationalized text input, the applice
should use that event in a callXmbLookupString() or XwcLookupString() . (Note thatkeyRelease events
should not be passed to these functions——they will result in undefined behavior.) The application should not expec
each call toKmb/XwcLookupString() will return a string. Depending on the complexity of the input method in us
user may type many keystrokes before any composed input is ready for the application. Neither should the applica
expect thakmb/XwcLookupString() will return a single character at a time——in some input methods a user may
a phrase, a sentence, or more before hitting the key that triggers the conversion from pre—edit to composed text.

XmbLookupString() andXwcLookupString() take as arguments the IC for which input is to be looked up (wh
is usually the IC with the focus), the X event that triggered the call, a buffer to return the multi-byte or wide—-charac
string in, a pointer to a location to return a keysym, and a pointer to a location to return a status value. The value r
by both functions is an integer which specifies the number of bytes in the returned multi-byte string or the number
wchar_t in the returned wide—character string. There are five status values that these functions return, each of wt
require separate processing:

. XLookupNone means that the input method does not have any composed input ready to pass to the applical
the application need not do any further processing on the current key event. When this status value is return
return value of the function will be 0.

. XLookupKeySym means that a keysym, but no string, has been returned. This likely means that the user ha
a special key of some sort (a function key, an arrow key, Delete, etc.). The application should handle the key
appropriate. Because no string is returned, the return value of the function is 0. Be careful to capitalize the c
XLookupKeySym correctly; Xlib also defines the functidtLookupKeysym()

. XLookupChars means that a string, but no keysym, has been returned. The multi-byte or wide—character s
encoded in the codeset of the locale of the IC and is placed in the buffer passed to the function. The returnv
the function is the length of the multi-byte string in bytes or the length of the wide—character string in wide
characters.

. XLookupBoth means that both a string and a keysym are returned. This may indicate that a single keystrok
passed through the input method without any pre—editing, as is common in European input methods, for exar
The return value of the function is the length of the string, as describ¥t dokupChars above.

. XBufferOverflow means that the string to be returned will not fit in the provided buffer. The return value ¢
function is the required size of the buffer (in bytes or wide characters), and nothing is returned in the string bt
The input string remains in the IC, waiting to be looked up. The application should allocate a buffer of the rec
size and look up the string, or should display an error message and flush the pending input with a call to
XmbResetIC() orXwcResetIC . If this return status is ignored, the large input string will remain pending an
block any further input on that IC.

Some input method architectures allow the input method to intercept events from the X server before the applicatic

sees them. If these input methods removE&Press events from the input stream, then the application will never b
triggered to calXmb/wcLookupString() . If this is the case, the input method will send a syntKety®®ress event

to the application when it has composed input ready for lookup. By convention, the keycode in this synthetic event
be 0. Note, though, that these are architectural details and do not affect the structure of an internationalized applic

Example 11-13shows code that us&svcLookupString() and handles each of the possible return status values.

Example 11-13. Looking up internationalized input
XEvent event;
int len;
int buf_len = 10;
wchar_t *buffer = (wchar_t *)malloc(buf_len * sizeof(wchar_t));
KeySym keysym;
Status status;
while(1) {
XNextEvent(dpy, &event);
if (XFilterEvent(&event, None))
continue;
switch (event.type) {
case Expose:
Redraw();
break;
case KeyPress:
len = XwcLookupString(ic, &event, buffer, buf_len,
&keysym, &status);
if (status == XBufferOverflow) {
buf len =len;
buffer = (wchar_t *)realloc(buffer, buf_len*sizeof(wchar_t));
len = XwcLookupString(ic, &event, buffer, buf_len,
&keysym, &status);
}

switch (status) {
case XLookupNone:
break;
case XLookupKeySym:
case XLookupBoth:
/* Handle backspacing */
if (keysym == XK_Delete) || (keysym == XK_BackSpace)) {
Backspace();
break;
}
if (status == XLookupKeySym) break;
case XLookupChars:
Insert(buffer, len);
break;

}

break;

11.11 XIM Programming Checklist

The following list provides useful guidelines when writing an Xlib or Xt application or Xt widget that uses the R5
internationalized input mechanisms. It is followed by an example Xlib program that performs simple internationaliz
input and implements most of the steps in the list.

Set the locale witlsetlocale . Use a locale name from a resource, or specify the empty Stripnglg an Xt
application do this from the special callback procedure registerecKt@#tl anguageProc()

Verify that X supports the locale witkSupportsLocale()
Set the locale modifiers (i.e., the name of the input method to use) from a resource or with the empty string.

If you want your input method to be customizable with resources, create a database or get a handle to an alr
created one. In an Xt application, ué®atabase()

Open a connection to the IM of the locale wiBpenIM() . Pass a resource database and the name and class -
IM should use for looking up its resources in that database. Verify that the IM is successfully opened. If you
writing a widget, you can assume that a vXiit!l will be passed as a resource, and skip this step.

Query the IM for its supported interaction styles. Choose one that your application can support based on the
user—specified resources, or upon some criteria for which will provide the best user interface for your applical
a widget, this should be in tl@tialize method.

Create arKFontSet for use by the IC. The base font name list fotfentSet should be obtained from a
resource. In an Xt application, you should use the con¥tBetfaultFontSet as the default value for this
resource. If you are writing a widget, you can assume that aXf@didtSet will be passed as a resource.

Create aWindow for use by the IC. If you are programming with Xt, create a widget. If you are writing your ow
widget, the window will be created for you by tlealize method.

Create an IC witiXCreatelC() , specifying the interaction style you choose, XtNEditWindow , and the
XNFontSet sub-attribute for both the Preedit and Status Areas. If you are usikgMPeeeditPosition

style, you must also specify tdlAreaNeeded attribute, and if you are usidyMPreeditCallbacks or
XIMStatusCallbacks styles, you must specify values for all the applicable callback attributes. You may als
specify any other attributes at this point. If you are writing a widget, create the IQnitithize method, but
specify the window in theealize method. In a widget, you should provide widget resources which control the
setting of IC attributes likXNLineSpacing andXNCursor .

Query the value of th¥NFilterEvents attribute of the IC and augment the event mask for your window with
those events. If you are writing an Xt program, gaAddEventHandler for the event mask with a no—op
procedure. If you are writing a widget, cdthddEventHandler() in the same way from thealize

method.

If you have selected tBdMPreeditArea or theXIMStatusArea interaction styles, negotiate a geometry for
either or both of those areas using i¢AreaNeeded attribute of the IC. Set the geometry you decide on in the
XNArea attribute. If you are writing a widget, begin the negotiation ininfimlize method, and set the
XNArea attribute when the window is created in thalize method. Renegotiate geometry whenever your
application window changes size.

If you have selected tdMPreeditPosition interaction style, set the initial location of your insertion cursor
in theXNSpotLocation attribute, and a region within which pre—editing is allowed inXNérea resource. If
you are writing a widget, do this in thesize method. In a widget, you may want to implement the Preedit anc
Status areas as sub-widgets.

For a simple application that does no focus management, set the focus to yourXSeti®Focus() . For more
complicated applications, you should set and unset IC focus when you tfegeisstn andFocusOut events, or

whenever your application—internal or toolkit focus changes. In an Xt program or widget, you can use an eve
handler or a translation and action to track focus changes.

UseXFilterEvent() in your event loop before dispatching an event. If it retlirne , discard the event and
wait for another. In Xt programs, this is handled for yoxXtyispatchEvent() in XtAppMainLoop()

WhenXFilterEvent() returns an unfiltereleyPress event, us&Xmb/wcLookupString() to convert it
to a KeySym or a string in the encoding of the locale. In Xt programs or widgets, use an event handler or a
translation and action to get these events.

Echo the newly input characters wKimb/wcDrawString() or one of the other R5 text drawing functions.

If you are using th&XIMPreeditPosition interaction style, update the values of ¥iSpotLocation and
XNArea attributes of the IC each time you move the insertion cursor.

If your application supports thélMPreeditArea or XIMStatusArea interaction styles, optionally write a

GeometryCallback procedure to handle requests from the IM to change the size of those areas. If you are

writing a composite widget, tt@eometryCallback and thegeometry_manager method may be able to
share code.

. If your application supports theélMPreeditCallbacks or XIMStatusCallbacks interaction styles, write
the required callback procedures to support those styles.

Example 11-14is the complete code of a program that performs simple internationalized text input. Many of the
examples in this chapter and the last are fragments of this program.

To run this program successfully, you must have an input method running. Because there are no input methods as part of the core R5 distribut

may be difficult. If your Xlib uses the Xsi implementation of the R5 internationalization features, you can use the input mettiod/im/Xsi In
order to run this program, | had to do the following:

. Build everything incontrib/im/Xsi

. Install everything ircontrib/im/Xsi This involved installing a number of files undesr/local/lib/wnn and adding a

new user "wnn" to théetc/passwdile.
. Start the "translation servecbntrib/im/Xsi/Wnn/jserver/jserver
. Start the "input managecontrib/im/Xsi/Xwnmo/xwnmo/xwnmdich was also installed iusr/bin/X11
. Set theXMODIFIERSenvironment variable toa@im=_XWNMO

. Set theLANGenvironment variable to something approprigteJP.ujis , for example.

With these steps accomplished, | was able to run the program and type Latin characters, but | was never able to figure out how to actually mak
input method to input Japanese. Since the Xsi input method is contributed software, it may have been updated since this program was written,

above list may no longer be correct.

Example 11-14. Performing internationalized text input: a complete program
/*

* This program demonstrates some of the R5 internationalized text

* input functions. It creates a very simple window, connects to an

* input method, and displays composed text obtained by calling

* XwcLookupString. It backspaces when it receives the Backspace or
* Delete keysyms.

*

* Note that this program contains a work—around for a bug

* in the Xsi implementation of XwcLookupString. If you are using

* the Ximp implementation, or if the bug has been fixed in your Xlib,
* you will need to undo the workaround. See the comment below, near
* the call to XwcLookupString.

*

* This program has not been tested with the Ximp implementation.

*/

#include <stdio.h>

#include <malloc.h>

#include <X11/Xlib.h>

#include <X11/keysym.h>

/*

* include <locale.h> or the non-standard X substitutes

* depending on the X_LOCALE compilation flag

*/

#include <X11/Xlocale.h>

/*

* This function chooses the "more desirable" of two input styles. The
* style with the more complicated Preedit style is returned, and if the
* styles have the same Preedit styles, then the style with the more

* complicated Status style is returned. There is no "official" way to

* order interaction styles. This one makes the most sense to me.

* This is a long procedure for a simple heuristic.
*/

XIMStyle ChooseBetterStyle(stylel,style2)
XIMStyle stylel, style2;

{
XIMStyle s.t;
XIMStyle preedit = XIMPreeditArea | XIMPreeditCallbacks |
XIMPreeditPosition | XIMPreeditNothing | XIMPreeditNone;
XIMStyle status = XIMStatusArea | XIMStatusCallbacks |
XIMStatusNothing | XIMStatusNone;
if (stylel == 0) return style2;
if (style2 == 0) return stylel;
if ((stylel & (preedit | status)) == (style2 & (preedit | status)))
return stylel;
s = stylel & preedit;
t = style2 & preedit;
if (s!=1){
if (s | t | XIMPreeditCallbacks)
return (s == XIMPreeditCallbacks)?stylel:style2;
else if (s | t | XIMPreeditPosition)
return (s == XIMPreeditPosition)?stylel:style2;
else if (s | t | XIMPreeditArea)
return (s == XIMPreeditArea)?stylel:style2;
else if (s | t | XIMPreeditNothing)
return (s == XIMPreeditNothing)?stylel:style2;
else { /* if preedit flags are the same, compare status flags */
s = stylel & status;
t = style2 & status;
if (s | t | XIMStatusCallbacks)
return (s == XIMStatusCallbacks)?stylel:style2;
else if (s | t | XIMStatusArea)
return (s == XIMStatusArea)?stylel:style2;
else if (s | t | XIMStatusNothing)
return (s == XIMStatusNothing)?stylel:style2;
}
}
void GetPreferredGeometry(ic, name, area)
XIC ic;
char *name; /* XNPreEditAttributes or XNStatusAttributes */
XRectangle *area; /* the constraints on the area */
{
XVaNestedList list;
list = XVaCreateNestedList(0, XNAreaNeeded, area, NULL);
[* set the constraints */
XSetlCValues(ic, name, list, NULL);
/* Now query the preferred size */
/* The Xsi input method, Xwnmo, seems to ignore the constraints, */
/* but we're not going to try to enforce them here. */
XGetlCValues(ic, name, list, NULL);
XFree(list);
}
void SetGeometry(ic, name, area)
XIC ic;
char *name; /* XNPreEditAttributes or XNStatusAttributes */
XRectangle *area; /* the actual area to set */
{

XVaNestedList list;

}

list = XVaCreateNestedList(0, XNArea, area, NULL);
XSetlCValues(ic, name, list, NULL);
XFree(list);

main(argc, argv)
int argc;
char *argv[];

{

Display *dpy;

int screen;

Window win;

GC gc;

XGCValues gcev;

XEvent event;

XFontSet fontset;

XIM im;

XIC ic;

XIMStyles *im_supported_styles;

XIMStyle app_supported_styles;

XIMStyle style;

XIMStyle best_style;

XVaNestedList list;

long im_event_mask;

XRectangle preedit_area,;

XRectangle status_area,;

char *program_name = argv|[0];

char **missing_charsets;

int num_missing_charsets = 0;

char *default_string;

wchar _t string[200];

int str_len = 0;

int i;

/*

* The error messages in this program are all in English.

* In a truly internationalized program, they would not

* be hardcoded; they would be looked up in a database of

* some sort.

*/

if (setlocale(LC_ALL, ") == NULL) {
(void) fprintf(stderr, "%s: cannot set locale.,program_name);
exit(1);

}

if ((dpy = XOpenDisplay(NULL)) == NULL) {
(void) fprintf(stderr, "%s: cannot open Display., program_name);
exit(1);

}

if (IXSupportsLocale()) {
(void) fprintf(stderr, "%s: X does not support locale %s.,

program_name, setlocale(LC_ALL, NULL));

exit(1);

}

if (XSetLocaleModifiers("") == NULL) {
(void) fprintf(stderr, "%s: Warning: cannot set locale modifiers.,

argv[0]);

}

/*

* Create the fontset.

*

fontset = XCreateFontSet(dpy,
"—adobe-helvetica—*—r—*—*—*-120—*—*—*—*—*_* \
—misc—fixed—*—r—*—*—*—130—*—*—*—*—*_*"
&missing_charsets, &num_missing_charsets,
&default_string);
/*
* if there are charsets for which no fonts can
* be found, print a warning message.
*
if (num_missing_charsets > 0) {
(void)fprintf(stderr, "%s: The following charsets are missing:,
program_name);
for(i=0; i < num_missing_charsets; i++)
(void)fprintf(stderr, "%s: %s, program_nhame,
missing_charsetsJi]);
XFreeStringList(missing_charsets);
(void)fprintf(stderr, "%s: The string %s will be used in place,
program_name, default_string);
(void)fprintf(stderr, "%s: of any characters from those sets.,
program_name);
}
screen = DefaultScreen(dpy);
win = XCreateSimpleWindow(dpy, RootWindow(dpy, screen), 0, 0, 400, 100,
2, WhitePixel(dpy,screen),BlackPixel(dpy,screen));
gc = XCreateGC(dpy,win,0,&gcv);
XSetForeground(dpy,gc,WhitePixel(dpy,screen));
XSetBackground(dpy,gc,BlackPixel(dpy,screen));
/* Connect to an input method. */
/* In this example, we don't pass a resource database */
if (im = XOpenIM(dpy, NULL, NULL, NULL)) == NULL) {
(void)fprintf(stderr, "Couldn’t open input method);
exit(1);
}
[* set flags for the styles our application can support */
app_supported_styles = XIMPreeditNone | XIMPreeditNothing | XIMPreeditArea,;
app_supported_styles |= XIMStatusNone | XIMStatusNothing | XIMStatusArea;
/* figure out which styles the IM can support */
XGetIMValues(im, XNQuerylnputStyle, &m_supported_styles, NULL);
/*
* now look at each of the IM supported styles, and
* chose the "best" one that we can support.
*
best_style = 0;
for(i=0; i <im_supported_styles—>count_styles; i++) {
style = im_supported_styles—>supported_styles]i];
if ((style & app_supported_styles) == style) /* if we can handle it */
best_style = ChooseBetterStyle(style, best_style);
}
/* if we couldn’t support any of them, print an error and exit */
if (best_style == 0) {
(void)fprintf(stderr, "%s: application and program do not share a,
argv[0]);
(void)fprintf(stderr, "%s: commonly supported interaction style.,
argv[0]);
exit(1);
}
XFree(im_supported_styles);
/*

* Now go create an IC using the style we chose.
* Also set the window and fontset attributes now.
*
list = XVaCreateNestedList(0,XNFontSet,fontset,NULL);
ic = XCreatelC(im,
XNInputStyle, best_style,
XNClientWindow, win,
XNPreeditAttributes, list,
XNStatusAttributes, list,

NULL);
XFree(list);
if (ic == NULL) {

(void) fprintf(stderr, "Couldn’t create input context);
exit(1);
}
XGetlCValues(ic, XNFilterEvents, &m_event_mask, NULL);
XSelectinput(dpy,win, ExposureMask | KeyPressMask
| StructureNotifyMask | im_event_mask);
XSetlCFocus(ic);
XMapWindow(dpy,win);
while(1) {
int buf_len = 10;
wchar_t *buffer = (wchar_t *)malloc(buf_len * sizeof(wchar_t));
int len;
KeySym keysym;
Status status;
Bool redraw = False;
XNextEvent(dpy, &event);
if (XFilterEvent(&event, None))
continue;
switch (event.type) {
case Expose:
[* draw the string at a hard—coded location */
if (event.xexpose.count == 0)
XwcDrawsString(dpy, win, fontset, gc, 10, 50, string, str_len);
break;
case KeyPress:
len = XwcLookupString(ic, &event, buffer, buf_len,
&keysym, &status);
/*
* Workaround: the Xsi implementation of XwcLookupString
* returns a length that is 4 times too big. If this bug
* does not exist in your version of Xlib, remove the
* following line, and the similar line below.

*/

len=len/4;

if (status == XBufferOverflow) {
buf_len = len;

buffer = (wchar_t *)realloc((char *)buffer,
buf_len * sizeof(wchar_t));
len = XwcLookupString(ic, &event, buffer, buf_len,
&keysym, &status);
/* Workaround */
len =len/ 4,
}
redraw = False;
switch (status) {
case XLookupNone:

break;
case XLookupKeySym:
case XLookupBoth:
/* Handle backspacing, and <Return> to exit */
if (keysym == XK_Delete) || (keysym == XK_BackSpace)) {
if (str_len > 0) str_len—;
redraw = True;
break;
}
if (keysym == XK_Return) exit(0);
if (status == XLookupKeySym) break;
case XLookupChars:
for(i=0; i < len; i++)
string[str_len++] = buffer]i];
redraw = True;
break;
}
[* do a very simple—minded redraw, if needed */
if (redraw) {
XClearWindow(dpy, win);
XwcDrawsString(dpy, win, fontset, gc, 10, 50, string, str_len);
}
break;
case ConfigureNotify:
/*
* When the window is resized, we should re—negotiate the
* geometry of the Preedit and Status area, if they are used
* in the interaction style.
*/
if (best_style & XIMPreeditArea) {
preedit_area.width = event.xconfigure.width*4/5;
preedit_area.height = 0;
GetPreferredGeometry(ic, XNPreeditAttributes, &preedit_area);
preedit_area.x = event.xconfigure.width — preedit_area.width;
preedit_area.y = event.xconfigure.height — preedit_area.height;
SetGeometry(ic, XNPreeditAttributes, &preedit_area);
}
if (best_style & XIMStatusArea) {
status_area.width = event.xconfigure.width/5;
status_area.height = 0;
GetPreferredGeometry(ic, XNStatusAttributes, &status_area);
status_area.x = 0;
status_area.y = event.xconfigure.height — status_area.height;
SetGeometry(ic, XNStatusAttributes, &status_area);
}

break;

Chapter 12

Interclient Communication

As a multi-window environment, X must support a mechanism for communication between applications. There are
properties, selections, and cut buffers, all of which are described in this chapter. The special case of communicatic

between an application and the window manager is also covered here. Internationalized interclient communication
described irBection 10.5, "Internationalized Interclient Communication." Standard conventions for additional aspect
of interclient communication are covered in Appendix L of Volume 2¢rB8rotocol Reference Manual

Communication is necessary to make sure that all applications running under X cooperate properly with the windov
manager and share the system resources politely. Communication also allows applications to interchange data. M
applications in an integrated computing environment should have the ability to transfer data to and accept data fror
applications.

Communication between clients takes place thrqargperties Sometimes properties are set directly by one applicatiol
and read by another. This is the case with most communication between the window manager and the clients.

There is also a simple but limited means of communication thrqugperties calledut buffers But the preferred and
most powerful method of general communication between clients is sallections Selections actually establish a dialo
between the two applications, not just a one—-way communication. Both cut buffers and selections are ways of usir
properties for communication.

Successful communication depends on conventions for the meanings of the data communicated through propertie:
selections. Theconventions in this area were established initially in Release 4, with the adoption as an X Consortiu
standard of théinter—Client Communication Conventions ManetCCM), which is reprinted in Appendix Linterclient
Communcation ConventionsfVolume Zero, X Protocol Reference Man(&sd of the second printing). The current
version of the ICCCM is version 1.

Several R3 routines are now obsolete because of new routines added to Xlib in R4. This edition describes only the
currently valid interfaces. The outdated routines formerly used by applicatiodSet®tandardProperties() ,
XSetWMHints() , XSetZoomHints() , XSetNormalHints() , XStoreName() andXSetlconName()

12.1 Properties and Atoms

Properties allow you to associate arbitrary information with windows, usually to make that data available to the win
manager or other applications. Properties are stored in the server.

Each property has a unique integer ID, called an atom. An atom is just a nickname for a property, so that arbitrary
property name strings do not have to be transferred back and forth between Xlib and the server. The atom is assic
the server and will remain defined in the server even after the client that defined it terminates. The atoms for the
predefined properties are constants defineddhXatom.h; all of them begin with the prefiXA_. This naming
convention avoids name clashes with user—defined symbols.

A property is uniquely identified by an atom and a window. Therefore, there may be one property on each window
identified by a given atom. In other words, there can X8 aVM_NAMgoperty on each and every window, even thouc
by convention this property is only set or read on the top-level windows of each application. A property on a windc
takes up space only once it is set.

Each property also has a name, which is an ASCII string. For the predefined properties, the name is never used ir
That is why we have chosen for this manual to refer to all predefined properties by their atoms. But for properties ¢
by convention between related clients (not predefined), the property name string is used so that the applications ce
determine the correct atom for the property. The first client tokéadernAtom() with the property name string as an
argument gets a new atom. Subsequent clients thatlogdirAtom() with the same string will get the same atom.
After each client has calleXinternAtom() , they use the atom rather than the string to refer to the property. They L
this process because for properties defined by clients, the actual number used for an atom may differ between invc
of the server.

Once created, an atom remains defined in the server even after the client that created it has exited. A server reme
atoms that were ever defined since the server started up. This means that one client can refer to an atom first inte
another client even if that other client has already exited.

Each property has a type, which itself is a property. There are several predefined properties for use as some of thi
often needed types.

The data associated with a property can be stored as an array ofj8abitties, 16-bit quantities, or 32-bit quantities
only. Properties can contain structures or raw data, but if one is to contain a structure of complex type, it must be ¢
into one of the three byte formats by the program before being sent to the server and decoded when read from the
The predefined property types have been carefully designed to match one of the data formats so that encoding anc
decoding are not necessary.

Properties remain set until the window to which they are attached is destroyed, which happens automatically when
client that created the window exits. However, properties set on the root window remain defined even after the clie
set them has exited, since the root window is never destroyed.

There are 68 predefined properties for window manager communication, selections, standard colormaps, and font
specifications. The properties used for window manager communication and selections are described in this chapt
standard colormap properties are describe@hapter 7, "Color,” and the font properties are describe€hapter 6,
"Drawing Graphics and Text."

Properties are set witkChangeProperty() and read witiKGetWindowProperty() . Whenever
XChangeProperty() is called, aPropertyNotify event is generated.

12.2 The Compound Text Encoding

An X Consortium standard defines a format for text properties that support multiple character sets, such as multi-li
text. Itis called the Compound Text Encoding. As of late 1992, the Compound Text Encoding specification is print
Volume Zero X Protocol Reference Manual

The format is based on I1SO standards for encoding and combining character sets. Compound Text is intended to
three main contexts: inter—client communication using selections; window properties (e.g., window manager hints);
resources (e.g., as defined in Xlib and the Xt Intrinsics). All of the standard routines for setting window manager hir
set text properties support the compound text encoding. If you are only concerned with your program operating in
on a system where the window manager also uses English, these routines are easy to use.

The target type for selections in the Compound Text encoding is COMPOUND_TEXT.

12.3 Communicating with the Window Manager

To permit window managers to perform their role of mediating the competing demands for screen space and colort
the clients being managed must adhere to certain conventions. These conventions specify things that clients must
things they should or can do if desired, and things that they must not do. The most basic thing clients are expectec
to set certain properties so that the window manager has information on which to base its decisions.

It is a fundamental principle of client-window manager communication that a general client should not care which\
manager is running or, indeed, if one is running at all. The choice of window manager is up to the user or perhaps
system administrator, not the client.

The fact that window managers need information about the clients they are managing and yet that window manage
and might not be running lead to the concept of the hirtiinfis a suggestion to the window manager about a preferer
of the application made by setting a property. Xlib makes this easy by providing routines that conveniently set the
properties. The window manager is encouraged to honor as many of the hints as possible, but it is not required to |
of them. Therefore, the application must not depend on its hints being honored; it must be capable of operating wt
of its hints are ignored or denied.

Applications that create their own colormap are the only ones that will not be able to run without a window manager if they honor the conventior
because the window manager is responsible for installing the colormap.

In general, the object of the X11 design is that clients should, as far as possible, do exactly what they would do in t
absence of a window manager, except for:

. Hinting to the window manager about the screen space and colormaps they would like to use.
. Cooperating with the window manager by accepting the resources they are allocated, even if not those reque

. Being prepared for hardware—-limited resource allocations to change at any time. The client can select event:
will announce these changes.

Note that these procedures are not required for the virtually unlimited X resources such as windows or cursors.
Clients create one or more windows that are children of the root window. All these windows are known as top-leve

windows. It is these windows that the window manager controls, and it is also these windows on which the applica
window manager hint properties.

12.3.1 Standard Properties for Window Manager

Once the client has created one or more top—level windows but before it maps them, it must place properties on th
windows to help the window manager manage them effectively. The following sections describe each property tha
or should be set and how to set it.

It is important to remember that the version 1 conventions are the accepted X Consortium standard and will contint
valid in R5 and later; there will be additions but not incompatible changes.

Some of the properties that a client sets for the window manager are mandatstgntlaed properties and some are
optional.XSetWMProperties() which was introduced and usedbiasicwinin Chapter 3, "Basic Window

Program,” sets all the required properties. The purposé€SH#tWMProperties() is to provide a simple interface for
the programmer who wants to code an application quickly. Other functions are provided to communicate more opt
information to the window manager.

In order to work well with most window managers, every program shoulX8atWMProperties() for each
top-level window. These provide the window manager with the following information:

. Name of the application for titlebar.

. Name string for the icon.

. Command and arguments used to invoke the program.

. Icon pixmap and mask or window.

. Preferred initial icon position.

. Size hints for window in normal state.

. Startup state (normal or iconified).

. Keyboard focus model used by the application.

. Window group; for applications with multiple top-level windows, this describes which window is the main win
for iconifying.
The window manager, not Xlib, chooses its own default response when any of these properties are not set. Also, t

only hints. A window manager determines what to do with this information and is allowed to ignore it. They will, of
course, be ignored if no window manager is running.

The following sections describe the properties set by the client that indicate its preferences to the window managet
12-1 shows all the predefined properties that clients can set and the section in this chapter where they are describ

Property Property Type C Type Description See
For window manager:
XA_WM_CLASS XA_STRING XClassHint Application class Section 1
and name for
resource
database
lookup.
XA_WM_HINTS XA_WM_HINTS XWMHints Additional hints Section 1

set by client for

XA_WM_ICON_NAME
XA_WM_NAME

XA_WM_NORMAL_HINTS

XA_WM_TRANSIENT_FO
R_HINT

XA_WM_ZOOM_HINTS

For session manager:
WM_CLIENT_MACHINE

XA_WM_COMMAND

"TEXT"
"TEXT"

XA WM_SIZE_
HINTS

XA_STRING

XA_WM_SIZE_
HINTS

"TEXT"

"TEXT"

XTextProper
ty
XTextProper
ty
XSizeHints

char *

XSizeHints
XTextProper

ty

XTextProper
ty

Table 12-1 The Window Manager Hints Property Atoms

use by window
manager.
Name to be
used in icon.
Application
name.

Size hints for
window in
normal state (not
iconified or
zoomed).

Tells window
manager which
window is the
real main
window with
which a
temporary
window is
associated.
Size hints for
zoomed window.

The name of
machine running
the client, as
seen from the
machine running
the server.
Command and
arguments,
separated by
ASCII 0’s, used
to invoke
application.

Section 1

Sectionl:

Sectionl:

Section 1

Section 1

Sectionl:

Section 1

In addition to the functions mentioned above that set all of the standard properties, Xlib also provides separate funi
setting and getting each property. These are referenced in the sections below describing each property. See the 1
pages involume Two, Xlib Reference Manufar full details on each function. Applications set these properties and n
read them, and the window manager gets them but never sets them. Therefore, if you are writing an application, y
only use the routines that set these properties.

12.3.1.1 Application Name - XA_WM_NAME
TheXA_WM_NAMgoperty is a string that the client wishes displayed in association with the window (for example,

window titlebar).

Window managers are expected to make an effort to display this information; simply igharidégvi_ NAME not
acceptable window manager behavior. Clients can assume that at least the first part of this string is visible to the L
unless the user has made an explicit decision to make it invisible by placing the headline off-screen or covering it |
windows. ButXA_WM_NAMighould not be used for application—critical information nor to announce changes of

application state that require timely user response. The expected uses are:

. To permit the user to identify one of a number of instances of the same client.

. To provide the user with noncritical state information.

Even window managers that support headline bars will place some limit on the length of string that can be visible; |

here is important.

XSetWMName() andXGetWMName()set and get th¥A_WM_NAM#toperty. These interfaces support the use of the
Compound Text Encoding.

12.3.1.2 Icon Name — XA_WM_ICON_NAME

TheXA_WM_ICON_NAMEoperty is a string that the client wishes displayed in association with its icon window wh¢
the client is iconified (for example, an icon label). In other respects, it is simKa t&/M_NAMHE-ewer characters will
normally be visible irKA_WM_ICON_NAMBanXA_WM_NAMIEor obvious geometric reasons.

If an icon pixmap has been specified in the standard propert}es WM_HINTSit may be displayed in the icon in
addition to or instead of the icon nan¥&etWMIconName() andXGetWMIlconName() set thexA WM_NAME

property.

12.3.1.3Window Size Hints — XA_ WM_NORMAL_HINTS

An application must tell the window manager its geometry preferences for each of its top—level windows before ma
them.

The pop-up menu is the only type of top-level window that does not need tXKavéV/M_NORMAL_HINE& for it. Instead, the
override_redirect window attribute should be setTgue .

These hints specify not only the preferred initial size (and sometimes position) of the window but also the preferred
increments of sizes and aspect ratios the window manager should respect when allowing the user to resize the apj
(The aspect ratio is the ratio of the width of the application to its height.)

XSetWMProperties() normally sets th’A_ WM_NORMAL_HINT#Boperty for a window in normal state.
XSetWMNormalHints() is also available if for some reasg8etWMProperties() is not suitable.

TheXA_WM_NORMAL_HINTBoperty is arXSizeHints structure, shown in Example 12-1.

Example 12-1. The XSizeHints structure

typedef struct {
long flags; /* Marks defined members in
* structure */
intx,y; /* Obsolete */
int width, height; /* Obsolete */

int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

struct {
int x; /* Numerator */
inty; [* Denominator */

} min_aspect, max_aspect;
int base_width, base_height;
int win_gravity;

} XSizeHints;

. Thex, y, width , andheight members describe a desired position and size for the window. The coordinate
system fo andy is the root window, irrespective of any reparenting that may have occurred. These fields ar
obsolete, because the window manager will use the initial size and position of the window when mapped to g
information. (The window managegdirectsthe application’s mapping request to itself, so that the window man:
can inspect the position and size of the window set by the application, and perhaps change them, before maj
window.)

. Themin_width andmin_height members specify the minimum size that the window can be for the applica
to be useful. Most window managers will not allow the user to resize the application smaller than this size. T
base_width andbase_height fields if set are used insteadrafn_width andmin_height . If they are not
set,min_width andmin_height are used.

Themax_width andmax_height members specify the maximum useful size.

Thewidth_inc andheight inc members define an arithmetic progression of sizes, from the minimum size
the maximum size, into which the window prefers to be resized. For examaplaprefers size increments
matching the dimensions of the font being used.

The following algorithm should be used by the window manager to calculate the displayed size of the top—lev
window. i andj are nonnegative integer loop variables within the window manager that would be incremente
until a size that matches the window manager’s window management policy is reached.

width = base_width + (i * width_inc)

height = base_height + (j * height_inc)

(Whenbase_width andbase_height are not setnin_width andmin_height are used instead of
base_width andbase_height .) Window managers will use andj instead ofvidth andheight in

reporting window sizes to users. Similarly, applications should interpret the command line or user default gec
usingwidth_inc andheight_inc pixels instead of single pixels as the uniterm for example, interprets size
specifications in terms of multiples of the font dimensions, not in pixels. A deteatbtwindow has 80 columns
and 24 rows of characters. To createt@nmwindow with more rows, you can use the command:

spike% xterm —geometry 80x40

Themin_aspect andmax_aspect members specify the desired range of ratios of width to height for the
window and are each expressed as a ratio of trely members ofin_aspect andmax_aspect . (The ratio
x/y inmin_aspect ormax_aspect isthe minimum or maximum value feidth / height J)

Thebase_width andbase_height fields if set are used insteadrafn_width andmin_height . If they
are not setmin_width andmin_height are used.

Thewin_gravity field controls how the window’s initial position will be interpreted by the window manager.
By default, this hint ilNorthWestGravity , which means that the position of the window when mapped by the
application is used by the window manager as the position of the northwest corner (top—left) of the window. T
other values for this field a@enterGravity , EastGravity , NorthEastGravity , NorthGravity
SouthEastGravity , SouthGravity , SouthWestGravity , andWestGravity . If the hint is set to
CenterGravity , the window manager will place the center of the window where the origin of the window w:
when the application mapped it.

Theflags member 0fXSizeHints indicates whichmembers in the structure contain important information.
The constants in Table 12-2 can be combined with bitwise OR tiaget . TheUSPosition andUSSize flags
indicate that the user specified the desired values, Whitssition andPSize indicate that the program
determined the values. This distinction is important since it supports the power structure——the user overrides
window manager, and the window manager overrides the program in decisions about window layout. The wi
manager can override the program’s choice of window location or geometryRiosition or PSize
respectively, are set, but the user’s choices should override the window manager’'s choldSRb&tion or
USSize are set.

Flag Description

USPosition User-specified x, y

USSize User-specified width, height
PPosition Program-specified position

PSize Program-specified size

PMinSize Program—specified minimum size
PMaxSize Program—specified maximum size
PResizelnc Program-specified resize increments
PAspect Program—specified min and max aspect ratios
PBaseSize Program-specified base size
PWinGravity Program-specified window gravity
PAlIHints Program-specified all hints

Table 12-2 The XSizeHints Flags

XSetWMSizeHints() is only useful if an application and a window manager agree on a private protocol that defi
new type of size hint atom beyond the one defined by the version 1 conventions or if a new type of size hint is adds
later conventions.

XAllocSizeHints() allocates aiXSizeHints structure and zeros all the fields. This function should be used sc
that new fields can be added in later releases while maintaining binary compatibility of applications written with ear

releases. In other words, using this function avoids compiling in the size of this structure, which may change. You
only a pointer to this structure and then set it by cafiAjocSizeHints() . XAllocSizeHints() is used in the

example program in Chapter 3.

XGetWMNormalHints() is normally used by the window manager to read the hints.

12.3.1.4 Additional Window Manager Hints — XA_WM_HINTS

The hints stored in th€eA_WM_HINT $roperty provide an assortment of information to the window manager. Setting
this property is required according to the ICCCM. Normally this is done by cxBegWMProperties() . The
XA_WM_HINT$roperty includes:

. Whether the program sets the keyboard focus window independently or only when assigned by the window n
. Whether the program desires to begin life as a window or as an icon.

. A window to be used by the window manager as an icon, or a pixmap and mask to be used by the window m
to draw on an icon window it creates.

. The initial position of the icon.

This property is normally set by the client wksetWMProperties() . You should use the neAllocWMHints()
function to allocate aXWMHints structure, then set its fields, and then X&8etWMProperties() . An example
doing this is shown in Chapter 3. TK&VMHints structure is shown in Example 12-2.

Example 12-2. The XWMHints structure

typedef struct {
long flags; /* Marks defined members in structure */
Bool input; /* Does application need window

* manager for keyboard input */
int initial_state; /* See below */
Pixmap icon_pixmap; /* Pixmap to be used as icon */
Window icon_window; /* Window to be used as icon */
inticon_x, icon_y; /* Initial position of icon */
Pixmap icon_mask; [* Pixmap to be used as mask
* for icon_pixmap */
XID window_group; /* ID of related window group */
[* This structure may be extended in the future */
} XWMHints;

The following sections describe each membeX\WWMHints and how it should be set.

12.3.1.4.1Flags Field

The client must set thtags field to indicate which members of t\&/MHints structure are to be read by the window
manager. This is done by combining the symbols shown in Table 12-3 using bitwi§e OR (

Member Flag Bit
Input InputHint 0
initial_state StateHint 1
icon_pixmap IconPixmapHint 2
icon_window IconWindowHint 3
icon_x, icon_y IconPositionHint 4
icon_mask IconMaskHint 5
window_group WindowGroupHint 6
All of the above AllHints 0-6

Table 12-3 Flags for Window Manager Hints

12.3.1.4.2Input Field and the Keyboard Focus
Theinput member oXWMHints is used to communicate to the window manager the keyboard focus model used |

application.

To remind you, the keyboard focus is the window to which keyboard events go, sometimes ignoring the pointer position. When the pointer is ot
keyboard focus window, all keyboard events are delivered to that window. When the pointer is inside the keyboard focus window or any of its
descendants, keyboard events are delivered to the window containing the pointer.

For the input hint to be read by the window managerdnibetHint constant must be specified in ttegs field of
XWMHints.

There are four input models:

. No Input The client never expects keyboard input. An example wouktbld or another output—only client.

. Passive Input The client expects keyboard input but never explicitly sets the keyboard focus. An example wc
a simple client with no subwindows, which will accept inpuPointerRoot mode, or when the window manage
sets the keyboard focus to its top—level window (in click—to—type mode).

. Locally Active Input The client expects keyboard input and explicitly sets the keyboard focus but only does sc
one of its windows already has the focus.
An example of a Locally Active style client would be a client with subwindows defining various data entry
members. Such an application might use Next and Prev keys to move the keyboard focus between the mem
once its top—level window has acquired the focus in pointer—following mode or when the window manager se
keyboard focus to its top—level window (in click—-to—type mode).

. Globally Active Input The client expects keyboard input and explicitly sets the keyboard focus even when the
is set to a window the client does not own. An example would be a client with a scrollbar that wants to allow
to scroll the window without disturbing the keyboard focus even if it is in some other window. The client wants
acquire the keyboard focus when the user clicks in the scrolled region, but not when the user clicks in the scr
itself, and then set the focus back to its original window. Thus, the client wants to prevent the window manac
setting the keyboard focus to any of its windows.

Clients using the Globally Active and No Input models should séhthg flag toFalse . Clients using the Passive
and Locally Active models must set timput flag toTrue .

Note:

If your application requires keyboard input and you neglect to satpgheé flag toTrue , you application will
not get keyboard events under some window managers, sabbnas

Under version 1 conventions, clients that use the Locally Activ@lobally Active focus modelsustparticipate in one
of the WM_PROTOCOLS called WM_TAKE_FOCUS, as describeSidction 12.3.3.2, "Window Manager Protocols
- WM_PROTOCOLS."

12.3.1.4.3Initial State Field

Theinitial_state member ofXWMHints indicates to the window manager whether the application prefers to st
off in iconified or normal staténitial_state specifies the state the client prefers to be in at the time the top-leve
window is mapped. The window manager does not reread this property so it is not useful for changing state after a
has been mapped. How to request a change of state is desceatiom 12.3.6.1, "Changing Application State.The
initial_state flags are shown in Table 12-4.

Flag Description
IconicState Client wants to be iconified.
NormalState Client wants top—level normal window visible.

Table 12-4 Initial State Hint Flags

When setting thanitial_state member oXWMHints, you must OR th&tateHint constant set into thiéags
member oiXWMHints to indicate that the field is to be set.

Even though there is have no flag for an inactive state, a window manager might implement a concept of inactive s
which an infrequently used client’'s window would be represented as a string in a menu. But this state is invisible tc
client, which would see itself merely as beinddanicState

12.3.1.4.41con Hints Fields

Under X, icons are by convention managed by the window manager, except that the client is allowed to provide a \
of pixmap patterns, names, and an icon window among which the window manager may pick and choose. The fot
members oXWMHints shown in Example 12-3 provide this information to the window manager.

Example 12-3. The icon hints elements of the XWMHints structure
typedef struct {

Pixmap icon_pixmap; /* Pixmap for icon */

Pixmap icon_mask; /* Pixmap to be used as mask for
* jcon_pixmap */

Window icon_window; /* Window to be used as icon */

inticon_x, icon_y; /* Initial position of icon */

} XWMHints;
icon_pixmap is the pattern to be used to distinguish the icon from other clients. This pixmap should be:

. One of the sizes specified in tkd_WM_ICON_SIZEproperty on the root, as describedsiection 12.3.4.1,
"XA_WM_ICON_SIZE."

. One bit deep. The window manager will select, through the resource database, suitable background (for the
and foreground (for the 1 bits) colors. These resources can, of course, specify different colors for the icons o
different clients.

Theicon_mask is a one—bit—deep pixmap that determines which pixétom pixmap are drawn on the icon
window. This allows for icons that appear to be nonrectangular. Some window managers (includinge the icon
pixmap as a background tile for the icon window, a method which does not allow for the use of a mask.

icon_window is a window created but not mapped by the client. Clients that need to know their icon’s ID or want
draw more than a simple two—color bitmap on the icon should set this hint. For exdnfpésdxmhchange their icon
pixmap when mail arrives, and they need to know their icon’s ID to do this. Therefore, they must supply an icon wir

Theicon_window hint should not be used unless needed. When it is not specified, the window manager creates
window itself.

You do not know which of the hints the window manager will honor. With current window managers, you can be
confident that ifcon_window is set, the window it names will be visible. If noticibn_pixmap is set, the pixmap it
names is visible. Otherwise, the window{a WM _ICON_NAMiEring is visible.

The conventions specify that the window manager must use the specified icon window. Therefore the application ¢
events from that icon window if desired.

An application that sets aoon_window is responsible for redrawing the window in cas&xjfjose events. One way
to set the icon design to be displayed is to set the background pixmap attribute of the icon window. The advantage
approach is that there is no need to haBaigose events for the icon, because the background is automatically redra
by the server. The disadvantage is that there is no way to apply a mask to generate a nonrectangular icon.

The icon window:

. Must be arinputOutput child of the root window.

. Should be one of the sizes specified inXtde WM_ICON_SIZEproperty on the root (describedSection 12.3.4.1,
"XA_WM_ICON_SIZE").

. Must use the default visual and default colormap for the screen in question.
. Should not be mapped, unmapped, or configured by the client.
. Should not have theverride_redirect window attribute set tdrue (should be left as the default).

The client must not:

. SelectResizeRedirectMask on the icon.

. Depend on being able to receive input events via their icon windows, although most window managers will al
some subset of key and button events through.

. Manipulate the borders of their icon windows.
To summarize the client procedures regarding icons:

. UseXSetWMlIconName() to set astring inXA_WM_ICON_NAMRII clients should do this, since it provides a
fallback for window managers whose ideas about icons differ widely from those of the client.

. Set a pixmap into thigon_pixmap member of th&XA_WM_HINTS$roperty and possibly another into the
icon_mask member. The window manager is expected to display the pixmap masked by the mask. The pi
should be one of the sizes found in X#e WM_ICON_SIZBproperty on the root. Window managers will normall
clip or tile pixmaps which do not matetA_WM_ICON_SIZE

Or:

. Set a window into thecon_window member of th&XA WM_HINT$roperty. The window manager is expectec
to use that window instead of creating its own and to map that window whenever the cliécdngciitate . In
general, the size of the icon window should be one of those specifidd WM_ICON_SIZEon the root, if that
property exists. Window managers may resize icon windows. If the client supplies an icon window, it is respc
for redrawing it when necessary.

12.3.1.4.5Window Group Field

Thewindow_group member ofXWMHints lets the client specify that it has multiple top—level windows which shoul
be iconified together or managed by the window manager as a group. For example, group leaders may have the fi
decorations and other group members a restricted set.

Applications with only one top-level window need not set this hint.

One of the top-level windows is known as the group leader.wifdow_group member of the hints for each of the
other top-level windows should be set to the window ID of the group leader.

The group leader may be a window which exists only for that purpose and may never be mappedowtsgroup
member should contain its own ID. The properties of the window group leader are those for the group as a whole |
example, the icon to be shown when the entire group is iconified). Every other top-level window may also have its
hints applicable only to itself.

12.3.1.4.6 Transient Window Field

All temporary subwindows of the root, such as pop—up menus and dialog boxes, should use
XSetTransientForHint() to set theXA_ WM_TRANSIENT_FQOftoperty to the ID of the top-level window of the
application that is creating the temporary window. This allows the window manager to process the temporary wind¢
accordingly (perhaps by decorating it differently than if it were a separate application). In particular, window mana
will present newly mapped transient windows without requiring any user interaction, even if mapping top—level winc
normally does require interaction.

It is important not to confus¢éA_WM_TRANSIENT _FORith theoverride_redirect window attribute. The
override_redirect attribute specifies that the window manager does not get the chance to intercept the mappi
request and thus no chance at all to decorate the window. This should be done only on the most temporary of win
such as menus, or on windows that the programmer wants to be mapped without window manager intervention, su
automated demonstration program¥® WM_TRANSIENT _FOsétould be used when other windows are allowed to be
active while the transient window is visible, such as when the pointer is not grabbed while the window is popped ug
other windows must be frozen, useerride_redirect and grab the pointer while the window is mapped.

Temporary windows that are popped up frequently should also ssvbeunder window attribute so that windows
beneath the window may not need to redraw themselves quite so often.

To summarize, clients wishing to pop up a window should do one of three things:

. They can create and map another normal top-level window, which will get decorated and managed as a sepi
client by the window manager. See the discussion of window grogection 12.3.1.4.5, "Window Group
Field."

. If the window will be visible for a relatively short time and deserves a somewhat lighter treatment, they can se
XA_WM_TRANSIENT_FOftoperty. They can expect less decoration but should set all the normal window
manager properties on the window. An example of an appropriate case would be a dialog box.

. If the window will be visible for a very short time and should not be decorated at all, the client can set the
override_redirect window attribute. In general, this should be done only if the pointer is grabbed while 1
window is mapped. The window manager will never interfere with these windows, which should be used with
caution. An example of an appropriate use is a pop—up menu.

12.3.1.5 Application Class Name and Instance Name - XA_WM_CLASS

TheXA_WM_CLASSroperty is a string containing two null-separafeslds,res_class andres_name .
res_class is meant to be used by the window manager to look up resources applicable to this application in the 1
database. The window manager usss hame for the titlebar of the window.

The application should normally specifys_class as the application name with an initial capital.
If theres_name field isNULL, then the following is used:

1. If "-name NAME" is given on the command line, NAME is used as the instance name.
2. Otherwise, if the environment variable RESOURCE_NAME is set, its value will be used as the instance name.

3. Otherwiseargv[0] stripped of any directory names is used as the instance name.

Note that WM_CLASS strings, being null-terminated, differ from the general conventions that text properties are
null-separated. This inconsistency is necessary for backwards compatibility.

An application should look up its own resources in the resource databas&@sitefault() or with the resource
manager routines describeéa Chapter 13, "Managing User Preferences."If the user defaults are not found under
res_name , the application should uses_class

The XA_WM_CLASSroperty should only be written once and must be present when the window is mapped; windov
managers will ignore changes to it while the window is mapped.

TheXA_WM_CLASBroperty contains a structure of ty§€lassHint . Example 12-4 shows th&ClassHint
structure.

Example 12-4. The XClassHint structure
typedef struct {

char *res_name;

char *res_class;
} XClassHint;

The XAllocClassHint() function should be used to allocate and zeroX@kassHint structure. An example of
doing this is presented in Chapter 3.

XA_WM_CLASEan be set by the client wiXSetClassHint() and read by the window manager with
XGetClassHint()

12.3.2 Standard Properties for Session Manager

A session manager is in charge of starting and stopping applications in a controlled manner, so that a session mad
several running applications can be halted and restarted in its original state. This is useful, for example, when the
wants to log out without having to start from scratch when logging back in.

Note that session managers are rare or nonexistent at the present time. Nonetheless, these conventions should b
because it is only a matter of time before session managers become available. And the session manager does not
necessarily need to be a separate client from the window manager. A window manager may have session—-manac
capabilities.

There are two properties that need setting for the benefit of session managers, WM_COMMAND and
WM_CLIENT_MACHINE. These supply the command and arguments needed to invoke an application in its currel
and the machine on which it should be run. Together they supply enough information to restart the application. Tt
described in the following sections.

12.3.2.1 Application Command and Arguments

TheXA_WM_COMMANRNIperty stores the shell command and arguments used to invoke the application, separated
NULL characters.

Applications us&XSetCommand() function to set the commanproperty. Window managers usé€GetCommand() to
read it.

Clients should ensure, by resetting this property as often as necessary, that it always reflects a command that will |
them in their current state.

12.3.2.2 Client Machine

To restart a client, the session manager needs to know not only the command and arguments but also the machine
the client was running. The application sets the WM_CLIENT_MACHINE property to contain this information, usin
XSetWMClientMachine()

This property should be set to a string forming the name of the machine running the client as seen from the machir
running the server.

12.3.3 Optional Properties for Window and Session Manager

The client will need to set one or more of the following properties if it uses multiple colormaps, if it takes the keyboz
focus, if it has data that must be saved before the session manager Kkills it, or if it has multiple top—level windows ai
would like to survive when the user deletes one of them.

12.3.3.1 Using Created Colormaps — WM_COLORMAP_WINDOWS

An application should never install its own colormap. The window manager needs certain information from the app!
to be able to install colormaps at the appropriate times. An application that uses colormaps other than the default |
two things to make sure that the window manager knows which colormaps to install for each window:

. Set thecolormap window attribute of each window that is to use a colormap other than the default.

. Set the WM_COLORMAP_WINDOWS property on the application’s top—level window to tell the window man
which windows use colormaps different from the top—level window’s colormap. In other words, you do not ne
set WM_COLORMAP_WINDOWS unless your application uses more than one colormap.

The top-level window is always assumed to need its colormstalled. Applications set the
WM_COLORMAP_WINDOWS property witkSetWMColormapWindows() , and the window manager reads it with

XGetWMColormapWindows() .

12.3.3.2 Window Manager Protocols - WM_PROTOCOLS
Setting the WM_PROTOCOLS property is optional. It is for applications that can benefit from being notified by the
window manager or session manager of certain conditions.

The WM_PROTOCOLS property contains a list of atoms, each identifying a communication protocol between the
application and the window manager in which the application wants to participate. Atoms can identify both standar

protocols and private protocols specific to individual window managers. All the protocols in which a client can volul
to take part involve the window manager sending the cli@ieatMessage event. Thenessage type field of the
event will be the atom for WM_PROTOCOLS, and tla¢a field will contain the atom for one of the protocols listed in
Table 12-5

Protocol Purpose

WM_TAKE_FOCUS Assignment of keyboard focus.
WM_SAVE_YOURSELF Save client state warning.
WM_DELETE_WINDOW Request to delete top—level window.

More to come...
Table 12-5 Current Standard WM_PROTOCOLS

Note that none of the above properties are represented by predefined atoms. Therefore, you will need to call
XinternAtom() once for each one that you intend to use.

An application sets the WM_PROTOCOLS property ustisgptWMProtocols() , and the window or session manage!l
reads it withXGetWMProtocols()

12.3.3.2.1WM_TAKE_FOCUS

Applications that use the Locally Active and Globally Active focus models should specify that they want to participa
this protocol. Under both these focus models, the application explicitly sets the keyboard focus to one of its window
application that does not set the keyboard focus to any of its windows does not need to participate in this protocol.

To applications that specify WM_TAKE_FOCUS, the window manager may sehertiMessage event with the
atom corresponding to WM_TAKE_FOCUS in theata[0] field. If the application wants the keyboard focus, it
should respond by callingSetinputFocus() with itswindow argument set to the window of theirs that last had thi
keyboard focus or to their default input window and withtiime® argument set to the timestamp in the message. The
revert to argument should be setRevertToParent

A client could receive WM_TAKE_FOCUS when opening from an icon or when the user has clicked outside the toj
window in an area that indicates to the window manager that it should assign the focus (for example, clicking in the
headline bar can be used to assign the focus).

The goal of WM_TAKE_FOCUS is to support window managers that want to assign the keyboard focus to a top-le
window in such a way that the top-level window can either assign it to one of its subwindows or decline the offer of
focus. A clock, for example, or a text editor with no currently open frames might not want to take focus even thoug
window manager generally believes that clients should take the keyboard focus after being deiconified or raised.

Clients that calXSetlnputFocus() must set théime argument to the timestamp of the event that caused them to
make the attempt. Note that this cannot Beeusin event, since they do not have timestamps, and that clients may
acquire the focus without a correspondifrggerNotify . Clients must not useurrentTime in thetime field.

Clients using the Globally Active model can only ¥SetinputFocus() to acquire the input focus when they do not
already have it on receipt of one of the following evemsattonPress , ButtonRelease , passive—grabbed
KeyPress , and passive—grabbdétyRelease .

In general, clients should avoid using passive—grabbed key events for this purpose except when they are unavoide
for example, a selection tool that establishes a passive grab on the keys that cut, copy, or paste).

Clients that set the input focus should setréwert to argument of theXSetInputFocus() request to the parent ol
the window that is to be the new focus window. This determines the behavior of the input focus if the window the fi
has been set to becomes not viewable. All other settings lead to problems, as described in Apjmadikent
Communcation ConventionsfVVolume Zero, X Protocol Reference Man(&s of the second printing).

Clients should not give up the input focus of their own volition. They should ignore input that they receive instead.

12.3.3.2.2WM_SAVE_YOURSELF
This protocol is for applications that would like to be notified before the window or session manager terminates thel

that they can save their state and place themselves in a state from which they can be restarted. Such termination,
application’s perspective, would otherwise bypass all the application’s internal safety measures (such as when an «
reminds you to save before exiting).

Applications that express interest in this protocol may receieatMessage event the atom for
WM_SAVE_YOURSELF in itdata[0] field.

Clients receiving WM_SAVE_YOURSELF should place themselves in a state from which they can be restarted ant
updateXA_WM_COMMAMY callingXSetCommand()) to be a command that will restart them in this state. The
session manager will be waiting foPaopertyNotify event orXA_WM_COMMARDa confirmation that the client
has saved its state, so thk& WM_COMMABtwuld be updated (perhaps with a zero—-length append) even if its conte
are correct. No interactions with the user are permitted during this process.

After receiving the WM_SAVE_YOURSELF message through the event, saving its state, and updating

XA _WM_COMMANIER client should not change its state (in the sense of doing anything that would require a chang
XA _WM_COMMANIDtil it receives a mouse or keyboard event. Once it does so, it can assume that the danger is ¢
The session manager will ensure that these events do not reach clients until the danger is over or until the clients t
killed.

Clients with multiple top—level windows should ensure that only one of their top—level windows has a nonzero-lenc
XA _WM_COMMANDperty. They should also respond to a WM_SAVE_YOURSELF message by (in this order):

1. Updating the nonzero lengdA WM_COMMANRNIDperty if necessary.

2. Updating thextA_ WM_COMMANRNI@perty on the window for which they received the WM_SAVE_YOURSELF
message if it was not updated in step 1.

12.3.3.2.3WM_DELETE_WINDOW

This protocol prevents the possibility of an application with multiple top—level windows being terminated unexpecte
the session manager. It should be selected by applications whose server connection must survive the deletion of s
their top-level windows. Clients which choose not to include WM_DELETE_WINDOW in the WM_PROTOCOLS
property will be disconnected from the server if the user asks for one of the client’s top—level windows to be deletet

Once an application has expressed interest in this protocol, if one of the top—level windows is deleted, the applicati
receive LlientMessage event whose&ata[0] field is the atom for WM_DELETE_WINDOW.

Clients receiving a WM_DELETE_WINDOW message should behave as if the user selected "delete window" from
(hypothetical) menu. They should perform any confirmation dialogue with the user, and if they decide to complete
deletion, either:

. Change the window’s state to Withdrawn (as describ&eation 12.3.6.1, "Changing Application Statg'and
release all associated state (backing store, for example), or

. Destroy the window.
If the user aborts the deletion during the confirmation dialogue, the client should continue as if it never received the
ClientMessage event that began the dialogue.

If the client aborts a destroy and the user then attempts to delete the window again, the window manager should si
WM_DELETE_WINDOW protocol again. Window managers should noti3estroyWindow() on a window that
has WM_DELETE_WINDOW in its WM_PROTOCOLS property.

Note that the WM_SAVE_YOURSELF and WM_DELETE_WINDOW protocols are orthogonal to each other and m
selected independently.

12.3.4 Properties Set by the Window Manager

The properties described above are those which the client is responsible for maintaining on its top—level windows.
section describes what the client can do with the properties that the window manager sets to give information to ths
There are currently two such properti¥s. WM_ICON_SIZEstores information about the sizes of icons that the windc

manager prefers. The application should use this information to create an icon pixmap or window of one of the rigl

The other property, WM_STATE, stores the current state (normal, iconic, or withdrawn) of the application. This st
for communication between the window manager and session manager but may also be used by some application

12.3.4.1 XA_WM_ICON_SIZE

The window manager may set tké WM_ICON_SIZEproperty on the root window to specify the icon sizes it allows.
Clients should read this property usX@etlconSizes() and provide an icon windowr pixmap of an appropriate
size as part of theWMHints described irBection 12.3.1.4.4, "Icon Hints Fields."This property is aiXlconSize
structure shown in Example 12-5.

Example 12-5. The XlconSize structure
typedef struct {

int min_width, min_height;

int max_width, max_height;

int width_inc, height_inc;
} XlconSize;

Thewidth_inc andheight_inc members define an arithmetic progression of sizes, from the minimum size to th
maximum size, representing the supported icon siX&etlconSizes() actually returns a list of these structures, in
case the window manager needs more than one to specify all of its accepted icon sizes.

Some commercial window managers set this property. Clients should be prepared to create an icon pixmap to fit tl
of each of the standard window managers and can even use the hint to determine which window manager is in ope¢

Window managers us€SeticonSize to set this property for clients.

XAlloclconSize() function should be used to allocate and zerodleenSize structure.

12.3.4.2WM_STATE

According to the ICCCM adopted as of Release 4, the window manager sets this property on top-level windows. 1
contents of this property is for communication between window managers and session managers. However, the e
of the property set on a window may be used to identify the top-level windows of other applications, for application
need this information.

Xlib currently provides no routines for reading or writing this property, but of course, you can use
XChangeProperty() or XGetWindowProperty()

This property does not have a predefined atom—-to read or write this property you will neeXateailAtom() to
get the atom for this property.

12.3.5 Text Properties
There are functions to set and read text properties that support encodings suitable for non—Western languages.

You will need to convert strings inTextProperty structures before you can cAlbetWMProperties()
XGetWMClientMachine() , XGetWMIconName() , XGetWMName() XSetWMClientMachine()
XSetWMiconName() , or XSetWMName().

These routines use ti&extProperty structure, which contains enough information to read and write the property
any format (8—bit, 16-bit, or 32—bit). Th€TextProperty structure is shown in Example 12-6.

Example 12-6. The XTextProperty structure

typedef struct {
unsigned char *value; /* Property data */
Atom encoding; /* Type of property */

int format; /*8, 16, or 32 */

unsigned long nitems; /* Number of items in value */
} XTextProperty;

You need to set the fields in two copies of this structure before cAlBetyWMProperties() , in order to set the
window name and icon name properties, as was ddpasicwinin Chapter 3, "Basic Window Program.” There are
two ways to do this: one is to set the fields directly one at a time, and the other is to use
XStringListToTextProperty() . The latter is easier and better, because it does not require hardcoding the fc
or encoding. See Example 3-9 for a demonstration of how to do this.

Four more routines are provided to manipulateXdiextProperty structure:

XTextPropertyToStringList()
Creates a list of strings from &TextProperty structure. This is used internally by
XGetCommand() —-it is useful for reading properties composed of multiple strings. This is rar
used in normal application code.

XFreeStringList()
Frees memory allocated B§T extPropertyToStringList()

XSetTextProperty()
Convenience routine foChangeProperty() that sets a property according to the informatior
in anXTextProperty structure.

XGetTextProperty()

Convenience routine foGetWindowProperty() that reads a property into an
XTextProperty structure. This helps becaus&etWindowProperty() is complicated.

12.3.6 Constraints on Client Actions

The window manager is allowed to change the border width, color, or pattern of an application’s top—level window’
border (usually to indicate which window has the keyboard focus), so this window mudhpet@utput window.
This also means that the application should not try to use the border to indicate any application state.

The client may receive notification that its window has been reparented, moved, resized, raised, or lowered or that
border width has been changed by sele@itngctureNotifyMask on its top—level window. It should not respond t
these events by trying to change any of these characteristics, however.

12.3.6.1 Changing Application State

Some applications may need to tell the window manager that they wish to be iconified, deiconified, or taken comple
the screen. There are right and wrong ways to do this.

An application can caiKIconifyWindow() to have one of its top-level windows iconified. This function sends a
ClientMessage event to the window manager, telling it to iconify this application. There is no equivalent routine
have the window manager return the application to normal state.

It is also possible to tell the window manager to unmap both the top—level window and its icon. This is done by cal
XWithdrawWindow() . This is useful because the window manager rereads all the standard properties when the
returns from withdrawn to normal state.

Remember that resetting a property with a complex structure st¢Aa%WM_HINTSr XA WM_NORMAL_HINT&lefines all members in
that property. You must reset all fields, even those which you are not changing since the last time you set the property.

There is no routine to tell the window manager to change a withdrawn application back into normal state. The tech
under version 1 conventions is for client to seftitfiteal state field of theXWMHints structure to
NormalState |, then callXSetWMHints() to reset this property, and then map the top-level window.

To change from withdrawn state to iconic state, the application should follow the same procedure but set the
initial_state field to IconicState

To change from iconic state to normal state, the client needs only to map the window—-it need not reset the propel

If a client selectStructureNotifyMask on the top-level window, it will receive asnmapNotify event when it
moves to iconic state andMapNotify when it moves to normal state.

Clients can also sele¥isibilityChangeMask on their top—level or icon windows. They will then receive a
VisibilityNotify event (with thestate field set toVisibilityFullyObscured) when the window
concerned becomes completely obscured even though mapped (and thus perhaps a waste of time to update) and
VisibilityNotify event (withstate field not set tovisibilityFullyObscured) when it becomes even
partly viewable.

12.3.6.2 Reconfiguring the Top-level Window

Clients can resize, reposition, and rest#o&ir top—level windows usingReconfigureWMWindow() . This routine is
the same aXConfigureWindow() , except that it takes care of an error condition possible when running under a
reparenting window manageKReconfigureWMWindow() lets you specify a sibling window relative to which your
top-level window should be stacked, and this will work even if the window manager has reparented your top-level
window so that what once was a sibling is no longer a sibling.

Even when the client is not attempting to change the stacking order, the entire reconfigure request is sent by the st
the window manager for approval, and the window manager has the opportunity to honor, modify, or deny the requ
The client finds out the window manager’s decision throdghfigureNotify events.

Most applications do not need to specify or even suggest the position of their top—level windows. However, when (
s0, the position the client specifies should be relative to the root window regardless of reparenting.

Client requests to reconfigure the top—level window are interpreted by the window manager in the same manner as
initial window geometry mapped from withdrawn state. There is no guarantee that the window manager will allocat
requested size or location, and clients must be prepared to dealwgize and location.

The window manager has several options in deciding how to respond to a request by the application to reconfigure
top-level window:

. Not changing the size or location of the window at all, a client will receive a syn@wtftgureNotify event
describing the (unchanged) state of the window. The (X,y) coordinates will be in the root coordinate system,
adjusted for the border width the client requested, irrespective of any reparenting that has taken place. The
border_width will be the border width the client requested. The client will not receive a real
ConfigureNotify , since no change has actually taken place.

. Moving the window without resizing it, a client will receive a synth€mnfigureNotify event following the
move describing the new state of the window, whose (X,y) coordinates will be in the root coordinate system a
for the border width the client requested. Dloeder_width will be the border width the client requested. The
client may not receive a re@onfigureNotify event describing this change, since the window manager may
have reparented the top—level window. If it does receive a real event, the synthetic event will follow the real ¢

. Resizing the window (whether or not it is moved), a client which has sefgttedureNotifyMask will
receive a&ConfigureNotify event. Note that the coordinates in this event are relative to the parent, which r
not be the root if the window has been reparented, and will reflect the actual border width of the window, whic
window manager may have changetiTranslateCoordinates() can be used to convert the coordinates if
required.

The general rule is that coordinates in @ahfigureNotify events are in the parent’s space, whereas in synthetic
events, they are in the root space.

Clients should be aware that their borders may not be visible. Most window managers use reparenting techniques
decorate client’s top—level windows with titles, controls, and other details. Ones that do are likely to override the cli
attempts to set the border width and set it to zero. Clients should, therefore, not depend on the top—level window’s
being visible nor use it to display any critical information. Other window managers will allow the top—level windows
borders to be visible.

Clients should ignore thabove field of all ConfigureNotify events that they receive on their top—level windows,
since they cannot be guaranteed to contain useful information.

12.4 Selections

Selections are the primary mechanism X11 defines for clients that want to exchange information with other clients.
selection transfers arbitrary information between two clients. You can think of a selection as a piece of text or grag
that is highlighted in one application and can be pasted into another, though the information transferred can be alrr
anything. Clients are strongly encouraged to use this mechanism so that there is a uniform procedure in use by all
applications.

The user may want to transfer information from an application and, at other times, to the application. Many applica
need to be able to assume either role. In particular, clients should not display text in a permanent window without
the user to select it and convert it into a string, and any application that requires the user to type extensively shoulc
the user to paste in text from other applications.

Selections communicate betweencamerclient and aequestorclient. The owner has the data representing the value
a selection, and the requestor wants it. The selection mechanism provides a way to notify other clients when useft
placed in a property and to allow the owner of the data to convert it to a type asked for by the requestor.

Note that in the X11 environmeratll data transferred between clients must go via the server (unless they are running
the same host, but that is a special case). An X11 client can neither assume that another client can open the same
communicate directly through IPC channels. The other client may be talking to the server via a completely differen
networking mechanism (for example, one client might be DECnet and the other TCP/IP). Thus, passing indirect re
to data such as file names, hostnames, port numbers, and so on is permitted only if both clients specifically agree.

12.4.1 The Selection Mechanism

Let's look how a typical selection transaction occurs and then go into all the details of how to make it happen. Fror
user’s point of view, it works like this:

1. The user highlights a selection of text or graphics in one application. For examdegnirselections are highlighted
with the foreground and background colors reversed.

2. The user moves the pointer into another application and presses the key or button that indicates that the select
should be pasted. The keys or buttons used for this purpose in all applications probably should be the ones us
xterm since most users use the cutting and pasting featuteroffrequently.

The desired result is that the text or graphics should appear in the application in which it was pasted. Now how do
applications actually make this happen?

The application in which the text or graphics is being selected must first of all figure out what information is being s
and be able to convert it into a format that can be transferred to other applications. If the selection is text (usually t
selection is a string) and the selected area is highlighted, by having the user drag the pointer over the area, then th
application has to become the owner of a selection atom.

There are two built-in selection atom¥A PRIMARYandXA_ SECONDARVYUnless the client foresees needing two
simultaneous selections, it should o6& PRIMARY It callsXSetSelectionOwner() , specifying the selection atom
any window that it created (this window is used by other applications to identify the owner), and the time. The time
should be from the event that triggered the bid to own the selectio@rmentTime) because of race conditions that
can otherwise occur. If the cliemioes not already own the selection atom, then this call will generate a
SelectionClear event for the old owner, telling it to unhighlight the old selection.

Each client that wants to be able to have a selection pasted into it must set aside a key or button combination to in
that the user wishes to paste in the current selection. In response to the event that occurs when that key or button
combination is pressed, the client cadlSonvertSelection() . This call specifies which selection the application
wants KA_PRIMARYuntil other conventions are established), the property to place the data in, the window on whic
set this property, and the time. These arguments are quite clear. R@daheertSelection() call also specifies a
target type that the application wants the data in. You need to understand what happens after the
XConvertSelection() call to understand the purpose of the target type property.

The server places all the arguments ofXG®nvertSelection() call into anXSelectionRequestEvent and
sends the event to the selection owner. The owner then tries to convert the selection data into the format specifiec
target type property. If the selection owner knows how to convert the data into the requested type, it puts the data
property specified in the event and returns the atom of this propertypnaperty member of &electionNotify

event. If the selection owner cannot convert the selection into the requested type, iNeteras theproperty

member in th&electionNotify event. The owner sends tldslectionNotify event using{SendEvent()

When the requestor receives BelectionNotify event, it either reads the property if it is set, repeats the request
a different target type if the owner returriédne, or gives up on pasting data from that selection owner. It could be th
the user is trying to do something like paste graphics into a text—only application.

Now you should understand the selection mechanism in general, so let's look at a more tangible example of how it
place.

12.4.2 An Example of Selection

Let's say a text editor is the owner of the seleckén PRIMARY The user is editing a C program and debugging the
same C program in another window. The user would like to select a line in the source code and instruct the debug
stop at that same line without having to type in the line number. Perhaps the debugger would have a button labele
at," which, when pressed, would tell the debugger to request a value for the primary selection. The text editor wou
the user to select text on a line and would be able to convert that selection into a string if it were pasted into anothe
editor or into a line number if it were pasted into the debugger. Which type the text editor would choose would dep
the target type of the selection request.

Assuming the text editor already uses the selection mechanism to transfer text to other applications, adding the lin
capability should be easy. It would simply need to look for a new target type that indicated to it to figure out what li
number the selected text is on. It might choose the first line, if more than one line were selected, or simply display
message telling the user to select a single line.

The debugger application would then make the call shown in Example 12-7.

Example 12-7. Setting the primary selection to a line number

Display display;

Atom target;

Window debugger_window;

Time time;

Bool only_if_exists;

Atom data_prop;

[* We create atom for data to be put into */

data_prop = XinternAtom(display, "STOP_LINE_NUM",
only_if_exists = False);

[* Target type atom must have been created by owner */

target_type = XinternAtom(display, "LINE_NUMBER",
only_if_exists = True);

if (target_type == None) {

fprintf(stderr, "%s: selection owner did not create \
LINE_NUMBER atom", argv[0]);
return(False);

}

XConvertSelection(display, XA _PRIMARY, target_type,
data_prop, debugger_window, time = triggering_event_time)

[* Wait for a SelectionNotify event and, if the property

* member is the same as data_prop, the conversion went fine;

* if the property member is None, the conversion failed */

The server sends all of the above information $ekectionRequest event to the text editor client (which had
previously made itself the owner of the selection WiletSelectionOwner()).

The text editor stores the data in the property specified i8dheetionRequest event ordebugger_window , then

sends &electionNotify event (using{SendEvent()) to the requesting application. Upon receiving this event,
the debugger reads this property and uses its value to place a break point in the C program.

Now that you have seen a more practical application of selections, we’ll move on to a more precise description of €
in the selection transfer process.

12.4.3 Acquiring Selection Ownership

When the user decides to select something in an application, the application needs to become the selection owner
the selection owner means that when any other application requests the value of the selection with
XConvertSelection() , the owner gets the resultiXgelectionRequest event. The transfer of selection
ownership also makes sure that only one application at a time is attempting to set the properties. The previous ap|
to call XSetSelectionOwner() , if it was another application, receiveSealectionClear event, which indicates
to it that it should clear any area it has highlighted.

Note that if the time in th¥SetSelectionOwner() request is in the future relative to the server’s current time or if
is in the past relative to the last time the selection concerned changed haK>BeectionOwner() request

appears to the client to succeed, but ownershiptiactually transferred. To ensure that ownership has been transferr
client must perform the sequence shown in Example 12-8.

Example 12-8. Code to ensure transfer of selection ownership
XSetSelectionOwner (display, selection_atom, owner, time);
if (XGetSelectionOwner(display, selection_atom) != owner) {

/* We didn’t get the selection */

}

If XGetSelectionOwner() returns a window ID rather thadone, then the selection ownership was successfully
transferred.

12.4.4 Responsibilities of the Selection Owner

When a requestor wants the value of a selection, the owner recSeksBonRequest event. Example 12-9 shows
the XSelectionRequestEvent structure.

Example 12-9. The XSelectionRequestEvent structure

typedef struct {
int type;
unsigned long serial; /* # of last request processed by
* server */
Bool send_event; [* True if this came from SendEvent

* request */
Display *display; /* Display the event was read from */
Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;
} XSelectionRequestEvent;

Theowner and theselection members will be the values specified in X&etSelectionOwner() request, and
therefore, the selection owner is interested in them only if it owns more than one selection.

The owner should convert the selection into the type specified bgrtiet member and set the property specified by
theproperty member of th&electionRequest event. Current conventions hold that all properties used to reply
SelectionRequest events should be placed on the requestor window. If the data comprising the selection cann
stored on the requestor window (for example, because the server cannot provide sufficient memory), the owner mt
the selection request as above.

The owner should also send the request®elactionNotify event using{SendEvent() with anevent_mask of
0. The members of th&electionNotify event should be set to the same values received in the
SelectionRequest event, except that if the selection could not be converted to the requested tppep iy
member should be setlpne. Example 12-10 shows théSelectionEvent structure which is used for

SelectionNotify events.

Example 12-10. The XSelectionEvent structure

typedef struct {
int type;
unsigned long serial; /* # of last request processed by
* server */
Bool send_event; /* True if this came from SendEvent

* request */
Display *display; /* Display the event was read from */
Window requestor;
Atom selection;
Atom target;
Atom property; /* Atom or None */
Time time;
} XSelectionEvent;

Theselection ,target , andproperty members should be set to the values received iBalextionRequest
event. Setting thproperty = member tdNone indicates that the conversion requested could not be made.

The data stored in the property must eventually be deleted. According to the current conventions, selection reques
responsible for deleting the converted properties whose names they rec@@ecitionNotify events. Owners are
responsible for deleting all other properties involved in communicating selections.

A selection owner may need confirmation that the data comprising the selection has actually been transferred. The
express interest iRropertyNotify events for the requestor window and wait until the property in the
SelectionNotify event has been deleted before assuming that the selection data has been transferred.

12.4.5 Giving Up Selection Ownership

When some other client becomes the owner of a particular selection, the previou