OpenGL ® on Silicon Graphics ® Systems

About This Guide
What This Guide Contains
What You Should Know Before Reading This Guide
Background Reading
OpenGL and Associated Tools and Libraries
X Window System: Xlib, X Toolkit, and OSF/Motif
Other Sources
Conventions Used in This Guide
Typographical Conventions
Function Naming Conventions
Changes in this Version of the Manual

Chapter 1
OpenGL on Silicon Graphics Systems

Using OpenGL With the X Window System
GLX Extension to the X Window System
Libraries, Tools, Toolkits, and Widget Sets
Note to IRIS GL Users
Extensions to OpenGL
Debugging and Performance Optimization
Debugging Your Program
Tuning Your OpenGL Application
Maximizing Performance With IRIS Performer
Location of Example Source Code

Chapter 2
OpenGL and X: Getting Started

Background and Terminology
X Window System on Silicon Graphics Systems
X Window System Concepts
Libraries, Toolkits, and Tools
Widgets and the Xt Library
Other Toolkits and Tools
Integrating Your OpenGL Program With IRIS IM
Simple Motif Example Program
Looking at the Example Program
Integrating OpenGL Programs With X0 Summary
Compiling With OpenGL and Related Libraries
Link Lines for Individual Libraries

Link Lines for Groups of Libraries

Chapter 3
OpenGL and X: Examples

Using Widgets
About OpenGL Drawing—Area Widgets
Drawing—Area Widget Setup and Creation
Input Handling With Widgets and Xt
Creating Colormaps
Widget Troubleshooting

Using Xlib
Simple Xlib Example Program
Creating a Colormap and a Window
Xlib Event Handling

Using Fonts and Strings

Chapter 4
OpenGL and X: Advanced Topics

Using Animations
Swapping Buffers
Controlling an Animation With Workprocs
Controlling an Animation With Timeouts
Using Overlays
Introduction to Overlays
Creating Overlays
Overlay Troubleshooting
Rubber Banding
Using Popup Menus With the GLwMDrawingArea Widget
Using Visuals
Some Background on Visuals
Running OpenGL Applications Using a Single Visual
Using Colormaps
Background Information About Colormaps
Choosing Which Colormap to Use
Colormap Example
Stereo Rendering
Stereo Rendering Background Information
Stereo Rendering
Using Pixmaps
Creating and Using Pixmaps
Direct and Indirect Rendering

Performance Considerations for X and OpenGL
Portability

Chapter 5
Introduction to OpenGL Extensions

Determining Extension Availability
How to Check for OpenGL Extension Availability
Example Program: Checking for Extension Availability
Checking for GLX Extension Availability

Finding Information About Extensions
Reference Pages
Example Programs
Extension Specifications

Chapter 6
Resource Control Extensions

EXT_import_context] The Import Context Extension
Importing a Context
Retrieving Display and Context Information
New Functions
EXT_make_current_readl] The Make Current Read Extension
Read and Write Drawables
Possible Match Errors
Retrieving the Current Drawable’s Name
New Functions
EXT_visual_infod The Visual Info Extension
Using the Visual Info Extension
Using Transparent Pixels
EXT_visual_ratingl] The Visual Rating Extension
Using the Visual Rating Extension
SGIX_dm_pbufferd The Digital Media Pbuffer Extension
Creating a Digital Media Pbuffer
Compatibility Conditions
OpenGL Rendering to DMbuffers
DMbuffers as OpenGL Textures
New Function
SGIX_fbconfigd The Framebuffer Configuration Extension
Why Use the Framebuffer Configuration Extension?
GLXFBConfigSGIX Constructs
How an FBConfig Is Selected

New Functions
SGIX_pbufferd The Pixel Buffer Extension
About GLXPbuffers
Creating a PBuffer
Rendering to a GLXPbuffer
Directing the Buffer Clobber Event
New Functions

Chapter 7
Texturing Extensions

EXT_texture3D[] The 3D Texture Extension
Why Use the 3D Texture Extension?
Using 3D Textures
3D Texture Example Program
New Functions
SGI_texture color_tableld The Texture Color Table Extension
Why Use a Texture Color Table?
Using Texture Color Tables
Texture Color Table and Internal Formats
Using Texture Color Table On Different Platforms
SGIS_detail_textured The Detail Texture Extension
Using the Detail Texture Extension
Detail Texture Example Program
New Functions
SGIS filter4_parameters] The Filter4 Parameters Extension
Using the Filter4 Parameters Extension
SGIS_point_line_texgend The Point or Line Texture Generation Extension
Why Use Point or Line Texture Generation
SGIS_sharpen_texturel] The Sharpen Texture Extension
About the Sharpen Texture Extension
Sharpen Texture Example Program
New Functions
SGIS_texture4D0 The 4D Texture Extension
SGIS_texture_edge/border_clampl Texture Clamp Extensions
Texture Clamping Background Information
Why Use the Texture Clamp Extensions?
Using the Texture Clamp Extensions
SGIS texture_filter4J The Texture Filter4 Extensions
Using the Texture Filter4 Extension

New Functions
SGIS texture lodd The Texture LOD Extension
Specifying a Minimum or Maximum Level of Detail
Specifying Image Array Availability
SGIS_texture_select] The Texture Select Extension
Why Use the Texture Select Extension?
Using the Texture Select Extension
SGIX_clipmapl] The Clipmap Extension
Clipmap Overview
Using Clipmaps From OpenGL
Clipmap Background Information
Virtual Clipmaps
SGIX texture_add_envl] The Texture Environment Add Extension

SGIX texture_lod_biasl] The Texture LOD Bias Extension
Background: Texture Maps and LODs
Why Use the LOD Bias Extension?
Using the Texture LOD Bias Extension
SGIX texture_scale bias[] The Texture Scale Bias Extension
SGIX texture_multi_bufferl] The Texture Multibuffer Extension
How to use the Texture Multibuffer Extension

Chapter 8
Rendering Extensions

Blending Extensions
Constant Color Blending Extension
Minmax Blending Extension
Blend Subtract Extension
SGIS_fog_function The Fog Function Extension
FogFunc Example Program
New Function
SGIS_fog_offsetl] The Fog Offset Extension
SGIS_multisample The Multisample Extension
Introduction to Multisampling
Using the Multisample Extension
Using Advanced Multisampling Options
How Multisampling Affects Different Primitives
New Functions
SGIS_point_parameters] The Point Parameters Extension
Using the Point Parameters Extension

Point Parameters Example Code

Point Parameters Background Information

New Procedures and Functions
SGIX_reference_planel] The Reference Plane Extension

Why Use the Reference Plane Extension?

Using the Reference Plane Extension

New Function

SGIX_shadow, SGIX_depth_texture, and SGIX_shadow_ambient] The Shadow
Extensions

Shadow Extension Overview
Creating the Shadow Map
Rendering the Application From the Normal Viewpoint
Using the Shadow Ambient Extension
SGIX_sprite[d The Sprite Extension
Available Sprite Modes
Using the Sprite Extension
New Function

Chapter 9
Imaging Extensions

Introduction to Imaging Extensions
Where Extensions Are in the Imaging Pipeline
Pixel Transfer Paths
Merging the Geometry and Pixel Pipeline
Pixel Pipeline Conversion to Fragments
Functions Affected by Imaging Extensions
EXT_abgrld The ABGR Extension

EXT_convolution The Convolution Extension
Performing Convolution
Retrieving Convolution State Parameters
Separable and General Convolution Filters
New Functions

EXT_histogram[] The Histogram and Minmax Extensions
Using the Histogram Extension
Using the Minmax Part of the Histogram Extension
Using Proxy Histograms
New Functions

EXT_packed_pixels] The Packed Pixels Extension
Why Use the Packed Pixels Extension?

Using Packed Pixels
Pixel Type Descriptions
SGI_color_matrix[d The Color Matrix Extension
SGI_color_tableld The Color Table Extension
Why Use the Color Table Extension?
Specifying a Color Table
Using Framebuffer Image Data for Color Tables
Lookup Tables in the Image Pipeline
New Functions
SGIX_interlace The Interlace Extension
Using the Interlace Extension
SGIX_pixel_texturel The Pixel Texture Extension
Platform Issues
New Functions

Chapter 10
Video Extensions

SGI_swap_controll] The Swap Control Extension
New Functions

SGI_video_syncl] The Video Synchronization Extension
Using the Video Sync Extension
New Functions

SGIX_swap_barrierd The Swap Barrier Extension
Why Use the Swap Barrier Extension?
Using the Swap Barrier Extension
New Functions

SGIX_swap_group The Swap Group Extension
Why Use the Swap Group Extension?
Swap Group Details
New Function

SGIX _video resizel The Video Resize Extension
Controlling When the Video Resize Update Occurs
Using the Video Resize Extension
Example
New Functions

SGIX video sourceld The Video Source Extension
New Functions

Chapter 11
Miscellaneous OpenGL Extensions

GLU_EXT_NURBS _tessellator(] The NURBS Tessellator Extension

Using the NURBS Tessellator Extension

Callbacks Defined by the Extension
GLU_EXT_object_spacell The Object Space Tess Extension
SGIX_list_priorityd The List Priority Extension

Using the List Priority Extension

New Functions
SGIX_instrumentsl] The Instruments Extension

About SGIX_instruments

Using the Extension

Instruments Example Pseudo Code

New Functions

Chapter 12
OpenGL Tools

ogldebugl] the OpenGL Debugger
ogldebug Overview
Getting Started With ogldebug
Interacting With ogldebug
Creating a Trace File to Discover OpenGL Problems
Using a Configuration File
Using Menus to Interact With ogldebug

glcO the OpenGL Character Renderer

glst] The OpenGL Stream Ultility
OpenGL Stream Utility Overview
glscat Utility

glxInfoll The gIx Information Utility

Chapter 13
Tuning Graphics Applications: Fundamentals

Debugging and Tuning Your Program
General Tips for Debugging Graphics Programs
Specific Problems and Troubleshooting

About Pipeline Tuning
Three—Stage Model of the Graphics Pipeline
Isolating Bottlenecks in Your Application: Overview
Factors Influencing Performance

Taking Timing Measurements
Benchmarking Basics
Achieving Accurate Timing Measurements

Achieving Accurate Benchmarking Results
Tuning Animation

How Frame Rate Determines Animation Speed

Optimizing Frame Rate Performance

Chapter 14
Tuning the Pipeline

CPU Tuning: Basics
CPU Tuning: Display Lists
CPU Tuning: Immediate Mode Drawing
Optimizing the Data Organization
Optimizing Database Rendering Code
Optimizing Cache and Memory Use
Memory Organization
Minimizing Paging
CPU Tuning: Advanced Techniques
Tuning the Geometry Subsystem
Using Peak Performance Primitives for Drawing
Using Vertex Arrays
Using Display Lists as Appropriate
Storing Data Efficiently
Minimizing State Changes
Optimizing Transformations
Optimizing Lighting Performance
Choosing Modes Wisely
Advanced Transform-Limited Tuning Techniques
Tuning the Raster Subsystem
Using Backface/Frontface Removal
Minimizing Per—Pixel Calculations
Using Clear Operations
Optimizing Texture Mapping
Tuning the Imaging Pipeline
Chapter 15
Tuning Graphics Applications: Examples
Drawing Pixels Fast
Tuning Example
Testing for CPU Limitation
Testing for Fill Limitation
Working on a Geometry—-Limited Program
Testing Again for Fill Limitation

Chapter 16
System-Specific Tuning

Introduction to System-Specific Tuning
Optimizing Performance on Low—End Graphics Systems
Choosing Features for Optimum Performance
Using the Pipeline Effectively
Using Geometry Operations Effectively
Using Per—Fragment Operations Effectively
Low—-End Specific Extensions
Optimizing Performance on O2[] Systems
Optimizing Geometry Operations
Using Per—Fragment Operations Effectively
Extensions Supported by O2 Systems
Optimizing Performance on Mid—Range Systems
General Performance Tips
Optimizing Geometry Operations on Mid—Range Systems
Optimizing Per—Fragment Operations on Mid—Range Systems
Optimizing Performance on Indigo2 IMPACT and OCTANE Systems
General Tips for Performance Improvement
Achieving Peak Geometry Performance
Using Textures
Using Images
Accelerating Color Space Conversion
Using Display Lists Effectively
Offscreen Rendering Capabilities
Optimizing Performance on RealityEngine Systems
Optimizing Geometry Performance
Optimizing Rasterization
Optimizing Use of the Vertex Arrays
Optimizing Multisampling and Transparency
Optimizing the Imaging Pipeline
Optimizing Performance on InfiniteReality Systems
Managing Textures on InfiniteReality Systems
Offscreen Rendering and Framebuffer Management
Optimizing State Changes
Miscellaneous Performance Hints

Appendix A
OpenGL and IRIS GL

Some IRIS GL Functionality and OpenGL Equivalents

Appendix B
Benchmarks

Appendix C
Benchmarking Libraries: libpdb and libisfast
Libraries for Benchmarking
Using libpdb
Example for pdbRead
Example for pdbMeasureRate()
Example for pdbWriteRate()
Using libisfast
Appendix D
Extensions on Different Silicon Graphics Systems

OpenGL ®on Silicon Graphics ® Systems

OpenGL ® on Silicon Graphics ® Systems — About This Guide - 1

About This Guide

OpenGL on Silicon Graphics Systeexplains how to use the OpenGL graphics library on Silicon
Graphics systems. The guide expands or0penGL Programming Guid&vhich describes
implementation—independent aspects of OpenGL. It discusses these major topics:

Integrating OpenGL programs with the X Window System
Using OpenGL extensions
Debugging OpenGL programs

Achieving maximum performance

What This Guide Contains

This guide consists of 14 chapters and 3 appendixes:

Chapter 1, "OpenGL on Silicon Graphics Systenrgybduces the major issues involved in
using OpenGL on Silicon Graphics systems.

Chapter 2, "OpenGL and X: Getting Startefil;St provides background information for working
with OpenGL and the X Window System. You then learn how to display some OpenGL code il
an X window with the help of a simple example program.

Chapter 3, "OpenGL and X: Examplefitst presents two example programs that illustrate how
to create a window using IRIS IM or Xlib. It then explains how to integrate text with your
OpenGL program.

Chapter 4, "OpenGL and X: Advanced Topid'lps you refine your programs. It discusses
how to use overlays and popups. It also provides information about pixmaps, visuals and
colormaps, and animation.

Chapter 5, "Introduction to OpenGL Extensiorexplains what OpenGL extensions are and
how to check for OpenGL and GLX extension availability.

Chapter 6, "Resource Control Extensiomstusses extensions that facilitate management of
buffers and similar resources. Most of these extensions are GLX extensions.

Chapter 7, "Texturing ExtensionexXplains how to use the texturing extensions, providing
example code as appropriate.

Chapter 8, "Rendering Extensionsxplains how to use extensions that allow you to customize
the system’s behavior during the rendering portion of the graphics pipeline. This includes
blending extensions; the sprite, point parameters, reference plane, multisample, and shadow
extensions; and the fog function and fog offset extensions.

Chapter 9, "Imaging ExtensiongXplains how to use extensions for color conversion (abgr,
color table, color matrix), the convolution extension, the histogram/minmax extension, and the
packed pixel extension.

Chapter 10, "Video Extensiongliscusses extensions that can be used to enhance OpenGL
video capabilities.

OpenGL ® on Silicon Graphics ® Systems — About This Guide - 1

Chapter 11, "Miscellaneous OpenGL Extensioagglains how to use the instruments and list
priority extensions as well as two extensions to GLU.

Chapter 12, "OpenGL Toolsgkplains how to use the OpenGL debugger (ogldebug) and
discusses the glc OpenGL character renderer and (briefly) the gls OpenGL Streaming codec.

Chapter 13, "Tuning Graphics Applications: Fundamentatayts with a list of general

debugging hints. It then discusses basic principles of tuning graphics applications: pipeline
tuning, tuning animations, optimizing cache and memory use, and benchmarking. You need tr
information as a background for the chapters that follow.

Chapter 14, "Tuning the PipelineeXplains how to tune the different parts of the graphics
pipeline for an OpenGL program. Example code fragments illustrate how to write your progran
for optimum performance.

Chapter 15, "Tuning Graphics Applications: Examplesgvides a detailed discussion of the
tuning process for a small example program. It also provides a code fragment that’s helpful fol
drawing pixels fast.

Chapter 16, "System-Specific Tuningrbvides information on tuning some specific Silicon
Graphics systems: low—end systems, Indigo2 IMPACT systems, and RealityEngine systems. |
this revision, it also includes information on O2 and InfiniteReality systems.

Appendix A, "OpenGL and IRIS GLHelps you port your IRIS GL program to OpenGL by
providing a table that contrasts IRIS GL functions and equivalent OpenGL functionality
(including extensions).

Appendix B, "Benchmarks]ists a sample benchmarking program.

Appendix C, "Benchmarking Libraries: libpdb and libisfasliscusses two libraries you can use
for benchmarking drawing operations and maintaining a database of the results.

Appendix D, "Extensions on Different Silicon Graphics Systeitist, all extensions currently
supported on InfiniteReality, Impact, OCTANE, and O2 systems.

Note that although this guide contains information useful to developers porting from IRIS GL to
OpenGL, the primary source of information for porting is@penGL Porting Guideavailable from
Silicon Graphics (and via the IRIS Insight viewer or the TechPubs library home page online).

What You Should Know Before Reading This Guide

To work successfully with this guide, you should be comfortable programming in ANSI C or C++.
You should have a fairly good grasp of graphics programming concepts (terms such as "texture mi
and "homogeneous coordinates" aren’t explained in this guide), and you should be familiar with the
OpenGL graphics library. Some familiarity with the X Window System, and with programming for
Silicon Graphics platforms in general, is also helpful. If you're a newcomer to any of these topics, ¢
the references listed und#ackground Reading."

Background Reading

The following books provide background and complementary information for this guide.

OpenGL ® on Silicon Graphics ® Systems — About This Guide - 2

Bibliographical information or the Silicon Graphics document number is provided. Books available
in hardcopy and by using the IRIS InSight online viewer are markedvith
OpenGL and Associated Tools and Libraries

Kilgard, Mark J.OpenGL Programming for the X Window Systkfanlo Park, CA:
Addison-Wesley Developer’s Press. 1996. ISBN 0-201-48369-9.

Woo, Mason, Jackie Neider and Tom DadpenGL Programming Guidd@he Official Guide
to Learning OpenGL, Version 1.Reading, MA: Addison Wesley Longman Inc. 1997. ISBN
0-201-46138«D.

OpenGL Architecture Review Board; Renate Kempf and Chris Frazier, e@peaGL
Reference Manualhe Official Reference Document for OpenGL, VersionReading, MA:
Addison Wesley Longman Inc. 1996. ISBN 0-201-46140-4.

OpenGL Porting Guidé007-1797-030Q))

IRIS IM Programming Guidé07-1472-020)

X Window System: Xlib, X Toolkit, and OSF/Motif

O'Reilly X Window System Series, Volumes 1, 2, 4, 5, and 6 (referred to in the text as
"O’Reilly" with a volume number):

- Nye, Adrian.Volume One: Xlib Programming Manua&@ebastopol, CA: O'Reilly
& Associates, 199X])

- Volume Two. Xlib Reference Manu&kbastopol, CA: O'Reilly & Associates.

— Nye, Adrian, and Tim O’ReillyVolume Four. X Toolkit Intrinsics Programming Manual
Sebastopol, CA: O'Reilly & Associates, 199D.

- Flanagan, David (edYolume FiveX Toolkit Intrinsics Reference Manu&ebastopol, CA:
O'Reilly & Associates, 1990.

— Heller, Dan.Volume Six. Motif Programming Manu&ebastopol, CA: O'Reilly
& Associates.

Young, DougApplication Programming with Xt: Motif Version
Kimball, Paul EThe X Toolkit CookboolEnglewood Cliffs, NJ: Prentice Hall, 1995.

Open Software Foundatio®SF/Motif Programmer’s Guide, Revision 1Ehglewood Cliffs,
NJ: Prentice Hall, 1993I)

Open Software Foundatio®SF/Motif Programmer’s Reference, Revision E2glewood
Cliffs, NJ: Prentice Hall, 1993I)

Open Software Foundatio®SF/Motif User's Guide, Revision 1.2nglewood Cliffs, NJ:
Prentice Hall, 1993.

Open Software Foundatio®SF/Motif Style GuideEnglewood Cliffs, NJ: Prentice Ha(l)

OpenGL ® on Silicon Graphics ® Systems — About This Guide — 3

Other Sources
Kane, GerryMIPS RISC ArchitectureEnglewood Cliffs, NJ: Prentice Hall. 1989.

MIPS Compiling and Performance Tuning Guid@7-2479-00()

Conventions Used in This Guide

This section explains the typographical and function—naming conventions used in this guide.

Typographical Conventions

This guide uses the following typographical conventions:

Italics Filenames, IRIX command names, function parameters, and book titles.
Fixed—width Code examples and system output.
Bold Function names, with parentheses following the narfoe example

glPolygonMode()arguments to command line options.

Note: Names of reference pages, such as glPolygonMode, are not functions. Reference page nan
appear in default font in hardcopy and in red text online. If you click the red text, the reference pag
will launch automatically.

Function Naming Conventions

This guide refers to a group of similarly named OpenGL functions by a single name, using an aste
to indicate all the functions whose names start the same way. For inglatartex*()refers to all
functions whose names begin with "glVerteglVertex2s() glVertex3dv()glVertex4fv()and so on.

Naming conventions for X-related functions can be confusing, because they depend largely on
capitalization to differentiate between groups of functions. For systems on which both OpenGL anc
IRIS GL are available, the issue is further complicated by the similarity in function names. Here'’s a
quick guide to old and new function names:

GLX*() IRIS GL mixed—model support
GIx*() IRIS GL support for IRIS IM
gIx*() OpenGL support for X

GLw*() OpenGL support for IRIS IM

Note that the (OpenGIgIX*() routines are collectively referred to as "GLX"; that term was
previously used to refer to the (IRIS GGLX*() routines. Note, too, th&LXgetconfig(Xan IRIS
GL mixed—-model routine) is not the same functiogld&etConfig(Xa GLX routine). On systems
with both IRIS GL and OpenGL, the command

IRIS% man glxgetconfig

displays both reference pages, one following the other.

Changes in this Version of the Manual

This first revision of the manual contains the following changes:

OpenGL ® on Silicon Graphics ® Systems — About This Guide - 4

Extensions removed The manual has been updated for OpenGL 1.1. The functionality of some
extensions was integrated into OpenGL 1.1 and the extensions have therefore been removed:

Texturing extensions Texture objects, subtexture, copy texture.
Imaging extensions Blend logic op
Miscellaneous extensions Polygon offset, vertex array

Extensions added The extension chapters have been reorganized as a finer—grained
presentation. A number of extensions have been added:

Resource extensions DMPbuffer extension

Texturing extensions Texture filter4, filter4 parameters, texture LOD Bias, texture
multibuffer, clipmap, texture select, texture add environment

Rendering extensions Sprite, point parameters, reference plane, fog function, fog
offset, shadow

Imaging extensions Pixel texture

Video extensions Swap barrier, swap group, video resize

Tools The chapter discussing ogldebug, the OpenGL Debugger, has been updated to reflect
ogldebug 1.1. In addition, a section on glc, the OpenGL character renderer, and gls, the Open
streaming utility, have been added to the chapter.

Performance: The performance chapters have been updated to include some additional
information, most notably on InfiniteReality and O2 systems.

OpenGL ® on Silicon Graphics ® Systems — Chapter 1, OpenGL on Silicon Graphics Systems - 5

Chapter 1
OpenGL on Silicon Graphics Systems

Silicon Graphics systems allow you to write OpenGL applications that are portable and run well

across the Silicon Graphics workstation product line. This chapter introduces the basic issues you
need to know about if you want to write an OpenGL application for Silicon Graphics systems. The
chapter contains the following topics, which are all discussed in more detail elsewhere in this guide

"Using OpenGL With the X Window System"
"Extensions to OpenGL"
"Debugging and Performance Optimization™

"Location of Example Source Code"

Using OpenGL With the X Window System

OpenGL is a window-system—-independent graphics library. The platform’s window system
determines where and how the OpenGL application is displayed and how events (user input or oth
interruptions) are handled. Currently, OpenGL is available for the X Window System, for OS/2, for
Windows NT, and for Windows95. If you intend your application to run under several window
systems, the application’s OpenGL calls can remain unchanged, but window system calls are
different for each window system.

Note: If you plan to run an application under different window systems, isolate the windowing code
to minimize the number of files that must be special for each system.

All Silicon Graphics systems use the X Window System. Applications on a Silicon Graphics systen
rely on Xlib calls to manipulate windows and obtain input. An X-based window manager (usually
4Dwm) handles iconification, window borders, and overlapping windows. The Indigo Magic desktof
environment is based on X, as is the Silicon Graphics widget set, IRIS IM. IRIS IM is the Silicon
Graphics port of OSF/Motif.

A full introduction to X is beyond the scope of this guide; for detailed information about X, see the
sources listed iBackground Reading"”
GLX Extension to the X Window System

The OpenGL extension to the X Window System (GLX) provides a means of creating an OpenGL
context and associating it with a drawable window on a computer that uses the X Window System.
GLX is provided by Silicon Graphics and other vendors as an adjunct to OpenGL.

For additional information on using GLX, s&LX Extension to X' More detailed information is in
Appendix D, "OpenGL Extensions to the X Window System" ofQpenGL Programming Guide.
Theglxintro reference page also provides a good introduction to the topic.

Libraries, Tools, Toolkits, and Widget Sets

When you prepare a program to run with the X Window System, you can choose the level of
complexity and control that suits you best, depending on how much time you have and how much
control you need.

OpenGL ® on Silicon Graphics ® Systems — Chapter 1, OpenGL on Silicon Graphics Systems - 1

This section discusses different tools and libraries for working with OpenGL in an X Window
System environment. It starts with easy-to-use toolkits and libraries with less control and discusse¢
the Xlib library\xd70 which is more primitive but offers more controlast. Most application
developers usually write at a higher level than Xlib, but you may find it helpful to understand the
basic facts about the lower levels of the X Window System that are discussed in this guide.

Note that the different tools are not mutually exclusive: You may design most of the interface with
one of the higher—level tools, then use Xlib to fine—tune a specific aspect or add something that is
otherwise unavailabl&igure 1-1llustrates the layering:

IRIS ViewKit and Open Inventor are layered on top of IRIS IM, which is on top of Xlib.
GLX links Xlib and OpenGL.

Open Inventor uses GLX and OpenGL.

Figure 1-1 How X, OpenGL, and Toolkits Are Layered

Note: If you write an application using IRIS Viewkit, Openinventor, or RapidApp, the graphical
user interface will be visually consistent with the Indigo Magic desktop.
RapidApp

RapidApp is a graphical tool, available from Silicon Graphics, that allows developers to interactivel
design the user-interface portion of their application. It generates C++ code utilizing IRIS ViewKit
(see"IRIS ViewKit") for each user—interface component as well as the overall application framewot

OpenGL ® on Silicon Graphics ® Systems — Chapter 1, OpenGL on Silicon Graphics Systems — 2

As with all applications based on ViewKit, IRIS IM (Motif) widgets are the basic building blocks for
the user interface. RapidApp is not includedrigure 1-because it generates ViewKit and IRIS IM
code and is therefore dependent on them in a way different from the rest of the hierarchy.

To speed the development cycle, RapidApp is integrated with a number of the Developer Magic
tools. This allows developers to quickly design, compile, and test object-oriented applications.

RapidApp also provides easy access to widgets and components specific to Silicon Graphics. For
instance, you can add an OpenGL widget to a program without having to know much about the
underlying details of integrating OpenGL and X.

For more information, see tli@eveloper Magic: RapidApp User’s Gujddso available online
through IRIS InSight.

Open Inventor

The Open Inventor library uses an object-oriented approach to make the creation of interactive 3C
graphics applications as easy as possible by letting you use its high—level rendering primitives in a
scene graph. It is a useful tool for bypassing the complexity of X and widget sets, as well as many
the complex details of OpenGL.

Open Inventor provides prepackaged tools for viewing, manipulating, and animating 3D objects. It
also provides widgets for easy interaction with X and Xt, and a full event—handling system.

In most cases, you use Open Inventor, not the lower—level OpenGL library, for rendering from Ope
Inventor. However, the Open Inventor library provides several widgets for use with X and OpenGL
(in subclasses of the SoXtGLWidget class) that you can use if OpenGL rendering is desired. For
instance, the SoXtRenderArea widget and its viewer subclasses can all perform OpenGL renderini
SoXtGLWidget is, in turn, a subclass of SoXtComponent, the general Open Inventor class for
widgets that perform 3D editing.

Components provide functions to show and hide the associated widgets, set various parameters (¢
as title and size of the windows), and use callbacks to send data to the calling application. The vie'
components based on SoXtRenderArea handle many subsidiary tasks related to viewing 3D objec
Other components handle anything from editing materials and lights in a 3D scene, to copying and
pasting 3D objects.

Note that if you are using liblnventorXt, you need only link with libInventorXt (it automatically
"exports" all of the routines in libinventor, so you never need te-liseentorXt-linventor, you
need only-linventorXt).

For detailed information on Open Inventor, 3&e Inventor Mentor: Programming Object-Oriented
3D Graphics with Open InventdrRelease Zpublished by Addison—Wesley and available online
through IRIS InSight.

IRIS ViewKit

The IRIS ViewKit library is a C++ application framework designed to simplify the task of
developing applications based on the IRIS IM widget set. The ViewKit framework promotes
consistency by providing a common architecture for applications and improves programmer
productivity by providing high-level, and in many cases automatic, support for commonly needed
operations.

OpenGL ® on Silicon Graphics ® Systems — Chapter 1, OpenGL on Silicon Graphics Systems — 3

When you use Viewkit in conjunction with OpenGL, it provides drawing areas that OpenGL can
render to.

For more information, see thRIS ViewKit Programmer’s Guigavailable online through IRIS
InSight.

IRIS IM Widget Set

The IRIS IM widget set is an implementation of OSF/Motif provided by Silicon Graphics. You are
strongly encouraged to use IRIS IM when writing software for Silicon Graphics systems. IRIS IM
integrates your application with the desktop’s interface. If you use it, your application conforms to ¢
consistent look and feel for Silicon Graphics applications. See the sources liadkground
Reading'for further details.

Xlib Library

The X library, Xlib, provides function calls at a lower level than most application developers want tc
use. Note that while Xlib offers the greatest amount of control, it also requires that you attend to
many details you could otherwise ignore. If you do decide to use Xlib, you are responsible for
maintaining the Silicon Graphics user interface standards.

Note to IRIS GL Users

An application that uses both IRIS GL and X is called a mixed—model program. If you prepared yol
IRIS GL application to run as a mixed—model program, porting to OpenGL becomes much easier.
porting information, see th@penGL Porting Guide

Many IRIS GL programs use the built—in windowing interface provided by IRIS GL. In contrast,
OpenGL relies on X for all its windowing functionality. If your application uses IRIS GL functions
such asvinopen() your windowing code needs to be rewritten for X. SecdtpenGL Porting Guide
for more information.

Note that the term "mixed—-model program" is no longer relevant when you work with OpenGL,
because all OpenGL programs use the native window system for display and event handling. (The
OpenGL API, unlike IRIS GL, has no windowing calls).

Extensions to OpenGL

The OpenGL standard is designed to be as portable as possible and also to be expandable with
extensions. Extensions may provide new functionality, such as several video extensions, or extenc
existing functionality, such as blending extensions.

An extension’s functions and tokens use a suffix that indicates the availability of that extension:

EXT is used for extensions reviewed and approved by more than one OpenGL vendor.

SGl is used for extensions found across the Silicon Graphics product line, although the suppo
for all products may not appear in the same release.

SGIS is used for extensions found only on a subset of Silicon Graphics platforms.

SGIX is used for experimental extensions: In future releases, the API for these extensions ma
change, or they may not be supported at all.

OpenGL ® on Silicon Graphics ® Systems — Chapter 1, OpenGL on Silicon Graphics Systems - 4

Theglintro reference page provides a useful introduction to extensions; many extensions are also
discussed in detail in the following chapters in this guide:

Chapter 5, "Introduction to OpenGL Extensions"
Chapter 7, "Texturing Extensions"

Chapter 9, "Imaging Extensions"

Chapter 11, "Miscellaneous OpenGL Extensions"
Chapter 6, "Resource Control Extensions"

Note that both the X Window System and OpenGL support extensions. GLX is an X extension to
support OpenGL. Keep in mind that OpenGL (and GLX) extensions are different from X extension:

Debugging and Performance Optimization

If you want a fast application, think about performance from the start. While making sure the
program runs reliably and bug free is important, it is also essential that you think about performanc
early on. Applications designed and written without performance considerations can almost never
suitably tuned.

If you want high performance, read the performance chapters in this guide (Chapter 13 through
Chapter 16) before you start writing the application.

Debugging Your Program

Silicon Graphics provides a variety of debugging tools for use with OpenGL programs:

Theogldebugool helps you find OpenGL programming errors and discover OpenGL
programming style that may slow down your application. You can set breakpoints, step throug
your program, and collect a variety of information.

For general-purpose debugging, you can use standard UNIX debugging toolsdéxch as

Also available (for general-purpose debugging) are the CASE tools. For more information on -
CASE tools, se®roDev WorkShop and MegaDev OvervendCASEVision/Workshop User’s
Guide.

Tuning Your OpenGL Application

The process of tuning graphics applications differs from that of tuning other kinds of applications.
This guide provides platform-independent information about tuning your OpenGL application in
these chapters:

Chapter 13, "Tuning Graphics Applications: Fundamentals"
Chapter 14, "Tuning the Pipeline"

Chapter 15, "Tuning Graphics Applications: Examples"

In addition, there are tuning issues for particular hardware platforms. They are discu@saptar

OpenGL ® on Silicon Graphics ® Systems — Chapter 1, OpenGL on Silicon Graphics Systems - 5

16, "System-Specific Tuning."

Maximizing Performance With IRIS Performer

The IRIS Performer application development environment from Silicon Graphics automatically
optimizes graphical applications on the full range of Silicon Graphics systems without changes or
recompilation. Performance features supported by IRIS Performer include data structures to use tt
CPU, cache, and memory system architecture efficiently; tuned rendering loops to convert the sys!
CPU into an optimized data management engine; and state management control to minimize
overhead.

Location of Example Source Code

All complete example programs (though not the short code fragments) are available in
lusr/share/src/OpenGlf you have thevgl dev.sw.samplesibsystem installed.

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started - 6

Chapter 2
OpenGL and X: Getting Started

This chapter first presents background information that you will find useful when working with
OpenGL and the X Window System. It then helps you get started right away by discussing a simpl
example program that displays OpenGL code in an X window. Topics include:

"Background and Terminology"
“Libraries, Toolkits, and Tools"
"Integrating Your OpenGL Program With IRIS IM"
"Integrating OpenGL Programs WithkXSummary"

"Compiling With OpenGL and Related Libraries"

Background and Terminology

To effectively integrate your OpenGL program with the X Window System, you need to understanc
some basic concepts, discussed in these sections:

"X Window System on Silicon Graphics Systems"

"X Window System Concepts"

Note: If you are unfamiliar with the X Window System, you are urged to learn about it using some
of the material listed undéBackground Reading"

X Window System on Silicon Graphics Systems

The X Window System is the only window system provided for Silicon Graphics systems running
IRIX 4.0 or later.

X is a network—transparent window system: An application need not be running on the same syste
on which you view its display. In the X client/server model, you can run programs on the local
workstation or remotely on other workstations connected by a network. The X server handles input
and output and informs client applications when various events occur. A special client, the window
manager, places windows on the screen, handles icons, and manages titles and other window
decorations.

When you run an OpenGL program in an X environment, window manipulation and event handling
are performed by X functions. Rendering can be done with both X and OpenGL. In general, X is fo
the user interface and OpenGL is used for rendering 3D scenes or for imaging.

Silicon Graphics X Server

The X server provided by Silicon Graphics includes some enhancements that not all servers have:
Support for visuals with different colormaps, overlay windows, the Display PostScript extension, th
Shape extension, the X input extension, the Shared Memory extension, the SGI video control
extension, and simultaneous displays on multiple graphics monitors. Specifically for working with
OpenGL programs, Silicon Graphics offers the GLX extension discussed in the next section.

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started - 1

To see what extensions to the X Window System are available on your current system, execute
xdpyinfoand check the extensions named below the "number of extensions" line.

GLX Extension to X

The GLX extension, which integrates OpenGL and X, is used by X servers that support OpenGL.
GLX is both an API and an X extension protocol for supporting OpenGL. GLX routines provide
basic interaction between X and OpenGL. Use them, for example, to create a rendering context ar
bind it to a window.

Compiling With the GLX Extension

To compile a program that uses the GLX extension, include the GLX header file
(/usrfinclude/GL/glIx.ln which includes relevant X header files and the standard OpenGL header file
If desired, include also the GLU utility library header filesf/include/GL/glu..

Table 2-Yrovides an overview of the headers and libraries you need to include.

Table 2-1 Headers and Link Lines for OpenGL and Associated Libraries

Library Header Link Line

OpenGL GL/gl.h -IGL

GLU GL/glu.h -IGLU

GLX GL/glx.h -IGL (includes GLX and OpenGL)
X11 X11/xlib.h -I1X11

X Window System Concepts

To help you understand how to use your OpenGL program inside the X Window System
environment, this section discusses some concepts you will encounter throughout this guide. You
learn about

"GLX and Overloaded Visuals"

"GLX Drawable$] Windows and Pixmaps"
"Rendering Contexts"

"Resources As Server Data"

"X Window Colormaps"

GLX and Overloaded Visuals

A standard X visual specifies how the server should map a given pixel value to a color to be
displayed on the screen. Different windows on the screen can have different visuals.

Currently, GLX allows RGB rendering to TrueColor and DirectColor visuals and color index
rendering to StaticColor or PseudoColor visuals. Bd#e 4—for information about the visuals and
their supported OpenGL rendering modes. The framebuffer configuration extension allows additior
combinations. Se&GIX_fbconfigd The Framebuffer Configuration Extension”

GLX overloads X visuals to include both the standard X definition of a visual and OpenGL specific
information about the configuration of the framebuffer and ancillary buffers that might be associate

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started - 2

with a drawable. Only those overloaded visuals support both OpenGL and X reddstiXg
therefore requires that an X server support a high minimum baseline of OpenGL functionality.

When you need visual information,
usexdpyinfoto find out about all the X visuals your system supports
useglxinfo orfindvis to find visuals that can be used with OpenGL

Thefindvis command can actually look for available visuals with certain attributes. See the
xdpyinfo, glxinfo, andfindvis reference pages for more information.

Not all X visuals support OpenGL rendering, but all X servers capable of OpenGL rendering have i
least two OpenGL capable visuals. The exact number and type vary among different hardware
systems. A Silicon Graphics system typically supports many more than the two required Open GL
capable visuals. An RGBA visual is required for any hardware system that supports OpenGL; a co
index visual is required only if the hardware requires color index. To determine the OpenGL
configuration of a visual, you must use a GLX function.

Visuals are discussed in some detallising Visuals: Table 4-1llustrates which X visuals support
which type of OpenGL rendering and whether the colormaps for those visuals are writable or not.

GLX Drawables 00 Windows and Pixmaps

As a rule, a drawable is something X can draw into, either a window or a pixmap (an exception is
pbuffers, which are GLX drawables but cannot be used for X rendering). A GLX drawable is
something both OpenGL can draw into, either an OpenGL capable window or a GLX pixmap. (A
GLX pixmap is a handle to an X pixmap that is allocated in a special waliggee 4-3 Different
ways of creating a GLX drawable are discusséetDimwing—Area Widget Setup and Creatjon"
"Creating a Colormap and a Windovdnd"Using Pixmaps"

Another kind of GLX drawable is the pixel buffer (or pbuffer), which permits hardware—accelerated
off-screen rendering. S&GIX_pbuffer] The Pixel Buffer Extension"

Rendering Contexts

A rendering context (GLXContext) is an OpenGL data structure that contains the current OpenGL
rendering state; an instance of an OpenGL state machine. (For more information, see the section
"OpenGL as a State Machine" in Chapter 1, "Introduction to OpenGL," @pkeeGL Programming
Guide) Think of a context as a complete description of how to draw what the drawing commands
specify.

At most one rendering context can be bound to at most one window or pixmap in a given thread. If
context is bound, it is considered the current context.

OpenGL routines don't specify a drawable or rendering context as parameters. Instead, they
implicitly affect the current bound drawable using the current rendering context of the calling threar
Resources As Server Data

Resources, in X, are data structures maintained by the server rather than by client programs.
Colormaps (as well as windows, pixmaps, and fonts) are implemented as resources.

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started - 3

Rather than keeping information about a window in the client program and sending an entire windc
data structure from client to server, for instance, window data is stored in the server and given a
unique integer ID called an XID. To manipulate or query the window data, the client sends the
window’s ID number; the server can then perform any requested operation on that window. This
reduces network traffic.

Because pixmaps and windows are resources, they are part of the X server and can be shared by
different processes (or threads). OpenGL contexts are also resources. In standard OpenGL, they ¢
be shared by threads in the same process but not by separate processes because the API doesn’t
support this. (Sharing by different processes is possible if the import context extension is supporte
See"SGIX_fbconfigd The Framebuffer Configuration Extension”

Note: The term "resource" can, in other X-related contexts, refer to items handled by the Resourc
Manager, items that users can customize for their own use. Don’t confuse the two meanings of the
word.

X Window Colormaps

A colormap maps pixel values from the framebuffer to intensities on screen. Each pixel value inde:
into the colormap to produce intensities of red, green, and blue for display. Depending on hardwar
limitations, one or more colormaps may be installed at one time, such that windows associated wit
those maps display with the correct colors. If there is only one colormap, two windows that load
colormaps with different values look correct only when they have their particular colormap is
installed. The X window manager takes care of colormap installation and tries to make sure that th
X client with input focus has its colormaps installed. On all systems, the colormap is a limited
resource.

Every X window needs a colormap. If you are using the OpenGL drawing area-widget to render in
RGB mode into a TrueColor visual, you may not need to worry about the colormap. In other cases
you may need to assign one. For additional information;4sieg Colormaps!'Colormaps are also
discussed in detail in O’Reilly, Volume One.

Libraries, Toolkits, and Tools

This section first discusses programming with widgets and with the Xt (X Toolkit) library, then
briefly mentions some other toolkits that facilitate integrating OpenGL with the X Window System.

Widgets and the Xt Library

A widget is a piece of a user interface. Under IRIS IM, buttons, menus, scroll bars, and drawing
windows are all widgets.

It usually makes sense to use one of the standard widget sets. A widget set provides a collection ¢
user interface elements. A widget set may contain, for example, a simple window with scrollbars, &
simple dialog with buttons, and so on. A standard widget set allows you to easily provide a comma
look and feel for your applications. The two most common widget sets are OSF/Motif and the Athe
widget set from MIT.

Silicon Graphics strongly encourages using IRIS IM, the Silicon Graphics port of OSF/Motif, for
conformance with Silicon Graphics user interface style and integration with the Indigo Magic
desktop. If you use IRIS IM, your application follows the same conventions as other applications ol

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started - 4

the desktop and becomes easier to learn and to use.

The examples in this guide use IRIS IM. Using IRIS IM makes it easier to deal with difficult issues
such as text management and cut and paste. IRIS IM makes writing complex applications with ma
user interface components relatively simple. This simplicity doesn’t come for free; an application tr
has minimal user interactions incurs a performance penalty over the same application written in XI
For an introduction to Xlib, sé&lib Library".

Xt Library

Widgets are built using Xt, the X Toolkit Intrinsics, a library of routines for creating and using
widgets. Xt is a "meta" toolkit used to build toolkits like Motif or IRIS IM; you can, in effect, use it
to extend the existing widgets in your widget sets. Xt uses a callback—driven programming model.
provides tools for common tasks like input handling and animation and frees you from having to
handle a lot of the details of Xlib programming.

Note that in most (but not all) cases, using Xlib is necessary only for colormap manipulation, fonts,
and 2D rendering. Otherwise, Xt and IRIS IM are enough, though you may pay a certain performai
penalty for using widgets instead of programming directly in Xlib.

For More Information About Xt

Standard Xt is discussed in detail in O'Reilly, Volume Four. Standard Motif widgets are discussed
more detail in O’Reilly, Volume Six. SéBackground Readingfor full bibliographic information

and for pointers to additional documents about Motif and IRIS IM. The recently published book on
OpenGL and X (Kilgard 1996) is particularly helpful for OpenGL developers.

Other Toolkits and Tools

Silicon Graphics makes several other tools and toolkits available that can greatly facilitate designir
your IRIS IM interface. Se&RapidApp’, "Open Inventor;'and"IRIS ViewKit" for more
information.

Integrating Your OpenGL Program With IRIS IM

To help you get started, this section presents the simplest possible example program that illustrate
how to integrate an OpenGL program with IRIS IM. The program itself is followed by a brief
explanation of the steps involved and a more detailed exploration of the steps to follow during
integration and setup of your own program.

Window creation and event handling, either using Motif widgets or using the Xlib library directly, ar
discussed itChapter 3, "OpenGL and X: Examples."
Simple Motif Example Program

The program irExample 2—{motif/simplest.cperforms setup, creates a window using a drawing
area widget, connects the window with a rendering context, and performs some simple OpenGL
rendering (se€igure 2-1

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started - 5

Figure 2-1 Display From simplest.c Example Program

Example 2-1 Simple IRIS IM Program

/*

* simplest — simple single buffered RGBA motif program.
*/

#include <stdlib.h>

#include <stdio.h>

#include <Xm/Frame.h>

#include <X11/GLw/GLwMDrawA.h>

#include <X11/keysym.h>

#include <X11/Xutil.h>

#include <GL/glx.h>

staticint attribs[] = { GLX_RGBA, None};

static String fallbackResources[] = {
"*useSchemes: all", "*sgimode:True",
"*glxwidget*width: 300", "*glxwidget*height: 300",
"*frame*shadowType: SHADOW _IN",
NULL};

[*Clear the window and draw 3 rectangles*/

void

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started - 6

draw_scene(void) {
glClearColor(0.5, 0.5, 0.5, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
glColor3f(1.0,0.0,0.0);
glRectf(-.5,-.5,.5,.5);
glColor3f(0.0,1.0,0.0);
glRectf(-.4,-.4,.4,.4);
glColor3f(0.0,0.0,1.0);
glRectf(-.3,-.3,.3,.3);
glFlush();

[*Process input events*/

static void
input(Widget w, XtPointer client_data, XtPointer call) {
char buffer[31];
KeySym keysym;
XEvent *event = ((GLwDrawingAreaCallbackStruct *) call)->event;

switch(event—>type) {
case KeyRelease:
XLookupString(&event—>xkey, buffer, 30, &keysym, NULL);
switch(keysym) {
case XK_Escape :
exit(EXIT_SUCCESS);
break;
default: break;

}

break;

[*Process window resize events*/

* calling gIXWaitX makes sure that all x operations like *

* XConfigureWindow to resize the window happen befor the *
* OpenGL glViewport call.*/

static void
resize(Widget w, XtPointer client_data, XtPointer call) {
GLwDrawingAreaCallbackStruct *call_data;
call_data = (GLwDrawingAreaCallbackStruct *) call;
gIXWaitX();
glViewport(0, 0, call_data—>width, call_data—>height);
}

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started - 7

[*Process window expose events*/

static void
expose(Widget w, XtPointer client_data, XtPointer call) {
draw_scene();

main(int argc, char *argv[]) {
Display *dpy;
XtAppContext app;
XVisuallnfo *visinfo;
GLXContext glxcontext;
Widget toplevel, frame, glxwidget;

toplevel = XtOpenApplication(&app, "simplest”, NULL, 0, &argc,
argv,fallbackResources, applicationShellwidgetClass,
NULL, 0);

dpy = XtDisplay(toplevel);

frame = XmCreateFrame(toplevel, "frame", NULL, 0);
XtManageChild(frame);

[* specify visual directly */
if (I(visinfo = gIXChooseVisual(dpy, DefaultScreen(dpy), attribs

))
XtAppError(app, "no suitable RGB visual®);

glxwidget = XtVaCreateManagedWidget("glxwidget",
glwMDrawingAreaWidgetClass, frame, GLwNvisuallnfo,
visinfo, NULL);

XtAddCallback(glxwidget, GLwNexposeCallback, expose, NULL);

XtAddCallback(glxwidget, GLwNresizeCallback, resize, NULL);

XtAddCallback(glxwidget, GLwNinputCallback, input, NULL);

XtRealizeWidget(toplevel);

glxcontext = gIXCreateContext(dpy, visinfo, 0, GL_TRUE);
GLwDrawingAreaMakeCurrent(glxwidget, glxcontext);

XtAppMainLoop(app);

Looking at the Example Program

As the example program illustrates, integrating OpenGL drawing routines with a simple IRIS IM
program involves only a few steps. Except for window creation and event handling, these steps art

actually independent of whether the program uses Xt and Motif or Xlib.

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started - 8

The rest of this chapter looks at each step. Each step is discussed in one section:
"Opening the X Display"
"Selecting a Visual"
"Creating a Rendering Context"

"Creating the Window{discussed with program examples@Drawing—Area Widget Setup and
Creation"and"Creating a Colormap and a Window"

"Binding the Context to the Window"
"Mapping the Window"

Note that event handling, which is different depending on whether you use Xlib or Motif, is discuss
in "Input Handling With Widgets and X&ind, for Xlib programmind;Xlib Event Handling"

Opening the X Display

Before making any GLX (or OpenGL) calls, a program must open a display (required) and should
find out whether the X server supports GLX (optional).

To open a display, us€OpenDisplay(Jf you are programming with Xlib, oftOpenApplication()f
you are working with widgets as Example 2—-hbove XtOpenApplication(actually opens the
display and performs some additional setup:

initializing Xt

opening an X server connection

creating an X context (not a GLX context) for the application
creating an application shell widget

processing command-line options

registering fallback resources

It is recommend (but not required) that you find out whether the X server supports GLX by calling
gIXQueryExtension()

Bool gIXQueryExtension (Display *dpy, int *errorBase int *eventBase

In most cases, NULL is appropriate for betinorBaseandeventBaseSee thaglXQueryExtension
reference page for more information.

Note: This call is not required (and therefore not pannaoftif/simplest.y; because
glIXChooseVisual($imply fails if GLX is not supported. It is included here because it is
recommended for the sake of portability.

If gIXQueryExtension(@ucceeds, usgXQueryVersion(}o find out which version of GLX is being
used; an older version of the extension may not be able to do everything your version can do.The
following pseudo—code demonstrates checking for the version number:

gIXQueryVersion(dpy, &major, &minor);
if ((major == 1) && (minor == 0)){

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started - 9

[*assume GLX 1.0, avoid GLX 1.1 functionality*/

}
else{
/*can use GLX 1.1 functionality*/
}
}
Currently, GLX 1.0 and GLX 1.1 are supported as follows:
GLX 1.0 IRIX 5.1, 5.2, and 6.0.1
GLX 1.1 IRIX5.3,6.1, 6.2, and 6.3
GLX 1.2 IRIX 6.4

GLX 1.1 supports a few additional functions and provides a mechanism for using extensions. See
glxintro reference page.

Selecting a Visual

A visual determines how pixel values are mapped to the screen. The display mode of your OpenG
program (RGBA or color index) determines which X visuals are suitable. To find a visual with the
attributes you want, cafjiXChooseVisual()vith the desired parameters. Here is the function

prototype:

XVisuallnfo* gIXChooseVisual(Display * dpy, int screen int * attribList)

The first two parameters specify the display and screen. The display was earlier opened with
XtOpenApplication(pr XOpenDisplay() Typically, you specify the default screen that is
returned by th®efaultScreen(jnacro.

The third parameter is a list of the attributes you want your visual to have, specified as an arra
of integers with the special value None as the final element in the array. Attributes specify, for
example

— whether to use RGBA or color-index mode (depending on whether GLX_RGBA is True ot
False)

— whether to use double-buffering or not (depending on the value of
GLX_DOUBLEBUFFER)

- how deep the depth buffer should be (depending on the value of GLX_DEPTH_SIZE)
In Example 2-&bove, the only attribute specified is an RGB display:
staticint attribs[] = { GLX_RGBA, None};

The visual returned bglXChooseVisual(s always a visual that supports OpenGL. It is guaranteed

to have Boolean attributes matching those specified, and integer attributes with values at least as
large as those specified. For detailed information, segl¥@hooseVisuateference page.

Note: Be aware that Xlib provides these three different but related visual data types.
glXChooseVisual(ctually returns an XVisuallnfo*, which is a different entity form a visual* or a
visual ID. XCreateWindow()on the other hand, requires a visual*, not an XVisuallnfo*.

The framebuffer capabilities and other attributes of a window are determined statically by the visue

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started — 10

used to create it. For example, to change a window from single—buffer to double-buffer, you have
switch to a different window created with a different visual.

Note: In general, ask for 1 bit of red, green, and blue to get maximum color resolution. Zero match
to the smallest available color resolution.

Instead of callinggiIXChooseVisual()you can also choose a visual as follows:

Ask the X server for a list of all visuals usiX@etVisuallnfo(and then calyIXGetConfig()to
guery the attributes of the visuals. Be sure to use a visual for which the attribute GLX_USE_G
is True.

If you have decided to use IRIS IM, cXiCreateManagedWidget(provide
GLwDrawingAreaWidget as the parent, and let the widget choose the visual for you.

There is also an experimental extension that allows you to create and choose a gIXFBConfig
construct, which packages GLX drawable information, for use instead of a visual. See
"SGIX_fbconfigd The Framebuffer Configuration Extension"

Creating a Rendering Context

Creating a rendering context is the application’s responsibility. Even if you choose to use IRIS IM,
the widget does no context management. Before you can draw anything, you must therefore creat
rendering context for OpenGL usigiéXCreateContext(which has the following function

prototype:

GLXContext gIXCreateContext(Display * dpy, XVisuallnfo * Vis,
GLXContext shareList Bool direct)

Here’s how you use the arguments:

dpy The display you have already opened.

vis The visual you have chosen wigiXChooseVisual()

sharedList A context to share display lists with, or NULL to not share display lists.
direct Lets you specify direct or indirect rendering. For best performance, always

request direct rendering. The OpenGL implementation automatically switches to
indirect rendering when direct rendering is not possible (for example, when
rendering remotely). Sé®irect and Indirect Rendering"

Creating the Window

After picking a visual and creating a context, you need to create a drawable (window or pixmap) th
uses the chosen visual. How you create the drawable depends on whether you use Xlib or Motif c:
and is discussed, with program example$Dirawing—Area Widget Setup and Creatiant

"Creating a Colormap and a Window"

Binding the Context to the Window

If you are working with Xlib, bind the context to the window by callijfgMakeCurrent(Example
3-2is a complete Xlib program and illustrates how the function is used.

If you are working with widgets and have an OpenGL context and a window, bind them together w

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started — 11

GLwDrawingAreaMakeCurrent(JLhis IRIS IM function is a front end giXMakeCurrent() it
allows you to bind the context to the window without having to know the drawable ID and display.

If GLwDrawingAreaMakeCurrent($ successful, subsequent OpenGL calls use the new context to
draw on the given drawable. The call fails if the context and the drawable are mismatched; that is,
they were created with different visuals.

Note: Don’'t make OpenGL calls until the context and window have been bound (made current).
For each thread of execution, at most one context can be bound to at most one window or pixmap

Note: "EXT_make_current_redadl The Make Current Read Extensicalfows you to attach separate
read and write drawables to a GLX context.

Mapping the Window

A window can become visible only if it is mapped and all its parent windows are mapped. Note tha
mapping the window is not directly related to binding it to an OpenGL rendering context, but both
need to happen if you want to display an OpenGL application.

Mapping the window or realizing the widget is not synchronous with the call that performs the
action. When a window is mapped, the window manager makes it visible if no other actions are
specified to happen before. For example, some window managers display just an outline of the
window instead of the window itself, letting the user position the window. When the user clicks, the
window becomes visible.

If a window is mapped but is not yet visible, you may already set OpenGL state; for example, you
may load textures or set colors, but rendering to the window is discarded (this includes rendering t
back buffer if you are doing double-buffering). You need to get an Exposél évasing Xlib(or

the expose callback before the window is guaranteed to be visible on the screen. The init callback
doesn’t guarantee that the window is visible, only that it exists.

How you map the window on the screen depends on whether you have chosen to create an X wini
from scratch or use a widget:

To map a window created with Xlib functions, céNMapWindow()

To map the window created as a widget, XifeealizeWidget@ndXtCreateManagedChild()
which perform some additional setup as well. For more information, sé¢RkealizeWidget
andXtCreateManagedChilceference pages.

Integrating OpenGL Programs With X [Summary

Table 2-Zummarizes the steps that are needed to integrate an OpenGL program with the X Wind«
System. Note that the GLX functions are usually shared, while other functions differ for IRIS IM or

Xlib.

Table 2-2 Integrating OpenGL and X

Step Using IRIS IM Using Xlib

"Opening the X Display” XtOpenApplication XOpenDisplay
Making sure GLX is supported gIXQueryExtension gIXQueryExtension
(optional) gIXQueryVersion glXQueryVers

ion

OpenGL ® on Silicon Graphics ® Systems — Chapter 2, OpenGL and X: Getting Started — 12

"Selecting a Visual" gIXChooseVisual gIXChooseVisual

"Creating a Rendering Context" glXCreateContext glXCreateContext
"Creating the Window/(seeChapter 3, XtVaCreateManagedWidget, with XCreateColormap
"OpenGL and X: Exampley" glwMDrawingAreaWidgetClass XCreateWind

ow
"Binding the Context to the Window" GLwDrawingAreaMakeCurrent glXMakeCurrent
"Mapping the Window" XtRealizeWidget XMapWindow

Additional example programs are provideddhapter 3, "OpenGL and X: Examples."

Compiling With OpenGL and Related Libraries

This section lists compiler options for individual libraries, then lists groups or libraries typically usec
together.

Link Lines for Individual Libraries

This sections lists link lines and the libraries that will be linked in.

-IGL OpenGL and GLX routines.

-IX11 Xlib, X client library for X11 protocol generation.

—IXext X Extension library, provides infrastructure for X client side libraries (like
OpenGL).

-IGLU OpenGL utility library.

=IXmu Miscellaneous utilities library (includes colormap utilities).

—IXt X toolkit library, infrastructure for widgets.

—=IXm Motif widget set library.

-GLw OpenGL widgets, Motif and core OpenGL drawing area widgets.

=IXi X input extension library for using extra input devices.

-limage RGB file image reading and writing routines.

-Im Math library. Needed if your OpenGL program uses trigonometric or other

special math routines.

Link Lines for Groups of Libraries

To use minimal OpenGL or additional libraries, use the following link lines:

Minimal OpenGL —-IGL —IXext —-IX11
With GLU -IGLU

With Xmu =IXmu

With Motif and OpenGL widget =-IGLw —IXm —IXt

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 13

Chapter 3
OpenGL and X: Examples

Some aspects of integrating your OpenGL program with the X Window System depend on whethe
you choose IRIS IM widgets or Xlib. This chapter’'s main focus is to help you with those aspects by
looking at example programs:

"Using Widgets'illustrates how to create a window using IRIS IM drawing—area widgets and
how to handle input and other events using callbacks.

"Using Xlib" illustrates how to create a colormap and a window for OpenGL drawing. It also
provides a brief discussion of event handling with Xlib.

This chapter also briefly discusses fofitdsing Fonts and Stringdboks at a simple example of
using fonts with thglXUseFont()function.

Note: All integration aspects that are not dependent on your choice of Xlib or Motif are discussed i
"Integrating Your OpenGL Program With IRIS INt Chapter 2, "OpenGL and X: Getting Started."

Using Widgets

This section explains how to use IRIS IM widgets for creating windows, handling input, and
performing other activities that the OpenGL part of a program doesn’t deal with. The section
discusses the following topics:

"About OpenGL Drawing—Area Widgets"
"Drawing—Area Widget Setup and Creation"
"Input Handling With Widgets and Xt"

"Widget Troubleshooting"

About OpenGL Drawing—Area Widgets

Using an OpenGL drawing—area widget facilitates rendering OpenGL into an X window. The widge
provides an environment for OpenGL rendering, including a visual and a colormap
provides a set of callback routines for redrawing, resizing, input, and initializatiohJ&ag

Drawing—Area Widget CallbacRs"

OpenGL provides two drawing—area widgets: GLwMDrawingBAneete the M in the naméfor use
with IRIS IM (or with OSF/Motif), and GLwDrawingArea for use with any other widget sets. Both
drawing—area widgets provide two convenience functions:

GLwMDrawingAreaMakeCurrent@nd GLwDrawingAreaMakeCurrent()

GLwMDrawingAreaSwapBuffers@hdGLwDrawingAreaSwapBuffers()

The functions allow you to supply a widget instead of the display and window required by the
corresponding GLX functiorgiXMakeCurrent(JandglXSwapBuffers()

Because the two widgets are nearly identical, and because IRIS IM is available on all Silicon

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples - 1

Graphics systems, this chapter uses only the IRIS IM version, even though most of the informatior
also applies to the general version. Here are some of the distinguishing characteristics of
GLwMDrawingArea:

GLwMDrawingArea understands IRIS IM keyboard traversal (moving around widgets with
keyboard keys rather than a mouse), although keyboard traversal is turned off by default.

GLwMDrawingArea is a subclass of the IRIS IM XmPrimitive widget, not a direct subclass of
the Xt Core widget. It therefore has various defaults such as background and foreground colot
GLwMDrawingArea isnot derived from the standard Motif drawing—area widget class. (See
O’Reilly Volume One or the reference pages for Core and for XmPrimitive for more
information.)

Note that the default background colors provided by the widget are used during X rendering, n
during OpenGL rendering, so it is not advisable to rely on default background rendering from
the widget. Even when the background colors are not used didétHgtValues(ran be used to
guery them to allow the graphics to blend in better with the program.

GLwMDrawingArea has an IRIS IM style creation functi@l,wCreateMDrawingAreaf)you

can also create the widget directly through Xt.

For information specific to GLwDrawingArea, see the reference page.

Drawing—Area Widget Setup and Creation

Most of the steps for writing a program that uses a GLwMDrawingArea widget are already discuss
in "Integrating Your OpenGL Program With IRIS IMThis section explains how to initialize IRIS

IM and how to create the drawing—area widget, using code fragments fromtitigmplest.c

example programBExample 21 You learn about

"Setting Up Fallback Resources"

"Creating the Widgets"

"Choosing the Visual for the Drawing—Area Widget"
"Creating Multiple Widgets With Identical Characteristics"

"Using Drawing—Area Widget Callbacks"

Setting Up Fallback Resources

This section briefly explains how to work with resources in the context of an OpenGL program. In

Xt, resources provide widget properties, allowing you to customize how your widgets will look. Not
that the term "resource" used here refers to window properties stored by a resource manager in a
resource database, not to the data structures for windows, pixmaps, and context discussed earlier

Fallback resources inside a program are used when a widget is created and the application canno
open the class resource file when it cxli®penApplication(Jo open the connection to the X server.
(In the code fragment below, the first two resources are specific to Silicon Graphics and give the
application a Silicon Graphics look and feel.)

static String fallbackResources[] = {

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples - 2

"*useSchemes: all","*sgimode:True",
"*gIxwidget*width: 300",
"*gIxwidget*height: 300",
"*frame*shadowType: SHADOW_IN",
NULL},

Note: Applications should ship with resource files installed in a resource directory (in
lusr/lib/X11/app—defaultsif you do install such a file automatically with your application, there is no
need to duplicate the resources in your program.

Creating the Widgets

Widgets always exist in a hierarchy, with each widget contributing to what is visible on screen. The
is always a top—level widget and almost always a container widget (for example, form or frame). In
addition, you may decide to add buttons or scroll bars, which are also part of the IRIS IM widget se
Creating your drawing surface therefore consists of two steps:

1. Create parent widgets, namely the top—level widget and a container widt#simplest.c,
Example 2-1uses a Form container widget and a Frame widget to draw the 3D box:

toplevel = XtOpenApplication(&app, "simplest”, NULL, O, &argc, ar
av,

fallbackResources, applicationShellWidgetClass, NULL,
0);

form = XmCreateForm(toplevel, "form", args, n);
XtManageChild(form);

frame = XmCreateFrame (form, "frame", args, n);

For more information, see the reference pages for XmForm and XmFrame.
2. Create the GLwMDrawingArea widget itself in either of two ways:

Call GLwCreateMDrawingArea()You can specify each attribute as an individual resource
or pass in an XVisuallnfo pointer obtained wglixChooseVisual()This is discussed in
more detail in the next sectiofChoosing the Visual for the Drawing—Area Widget."

n=0
XSetArg(args[n] GLwNvisualinfo, (XtArgVal)visinfo);
n++;

glw = GLwCreateMDrawingArea(frame, "glwidget", args, n);

As an alternative, calktVaCreateManagedWidge#hd pass it a pointer to the visual you
have chosen. In that case, use glwMDrawingAreaWidgetClass as the parent and
GLwNvisuallnfo to specify the pointer. Here’s an example frootif/simplest.c:

glxwidget = XtVaCreateManagedWidget
("glxwidget", glwMDrawingAreaWidgetClass, frame,
GLwNvisuallnfo, visinfo, NULL);

Note: Creating the widget doesn’t actually create the window. An application must wait until after it

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 3

has realized the widget before performing any OpenGL operations to the window, or use the ginit
callback to indicate when the window has been created.

Note that unlike most other Motif user interface widgets, the OpenGL widget explicitly sets the
visual. Once a visual is set and the widget is realized, the visual can no longer be changed.

Choosing the Visual for the Drawing—Area Widget

There are three ways of configuring the GLwMDrawingArea widget when calling the widget creatic
function, all done through resources:

Pass in separate resources for each attribute (for example GLwNrgba, GLwNdoublebuffer).

Pass in an attribute list of the type usedybyChooseVisual(using the GLwNattribList
resource.

Select the visual yourself, usigtXChooseVisual()and pass in the returned XVisuallnfo* as
the GLwNuvisuallnfo resource.

If you wish to provide error handling, callXChooseVisual()as all the example programs do
(although for the sake of brevity, none of the examples actually provides error handling). If you
provide the resources and let the widget choose the visual, the widget just prints an error message
quits. Note that a certain visual may be supported on one system but not on another, so appropria
error handling is critical to a robust program.

The advantage of using a list of resources is that you can override them veiiptiaefaultile.

Creating Multiple Widgets With Identical Characteristics

Most applications have one context per widget, though sharing is possible. If you want to use
multiple widgets with the same configuration, you must use the same visual for each widget.
Windows with different visuals cannot share contexts. To share contexts:

1. Extract the GLwNvisuallnfo resource from the first widget you create.

2. Use that visual in the creation of subsequent widgets.

Using Drawing—Area Widget Callbacks

The GLwMDrawingArea widget provides callbacks for redrawing, resizing, input, and initialization,
as well as the standard XmNdestroyCallback provided by all widgets.

Each callback must first be defined and then added to the widget. In some cases, this is quite simg
as, for example, the resize callback fromatif/simplest.c

static void

resize(Widget w, XtPointer client_data, XtPointer call) {
GLwDrawingAreaCallbackStruct *call_data;
call_data = (GLwDrawingAreaCallbackStruct *) call;
gIXWaitX();

glViewport(0, 0, call_data—>width, call_data—>height);
}

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples - 4

Note: The X and OpenGL command streams are asynchronous, meaning that the order in which
OpenGL and X commands complete is not strictly defined. In a few cases, it is important to explicit
synchronize X and OpenGL command completion. For example, if an X call is used to resize a
window within a widget program, cajlXWaitX() before callingglViewport()to ensure that the

window resize operation is complete.

Other cases are slightly more complex, such as the input callbackotiffsimplest.cwhich exits
when the user presses the Esc key:

static void

input(Widget w, XtPointer client_data, XtPointer call) {

char buffer[31];

KeySym keysym;

XEvent *event = ((GLwDrawingAreaCallbackStruct *)call) —>event;

switch(event—>type) {
case KeyRelease:
XLookupString(&event—>xkey, buffer, 30, &keysym, NULL);
switch(keysym) {

case XK_Escape :
exit(EXIT_SUCCESS);
break;

default: break;

}

break;

}

}

To add callbacks to a widget, usAddCallback()for example:

XtAddCallback(glxwidget, GLwNexposeCallback, expose, NULL);
XtAddCallback(glxwidget, GLwNresizeCallback, resize, NULL);
XtAddCallback(glxwidget, GLwNinputCallback, input, NULL);

Each callback must ensure that the thread is made current with the correct context to the window
associated with the widget generating the callback. You can do this by calling either
GLwMDrawingAreaMakeCurrent@Qr giXMakeCurrent()

If you are using only one GLwMDrawingArea, you can call a routine to make the widget "current"
just once, after initializing the widget. However, if you are using more than one GLwMDrawingArez
or rendering context, you need to make the correct context and the window current for each callba
(see"Binding the Context to the Windoyw"

The following callbacks are available:

GLwNginitCallback Specifies the callbacks to be called when the widget is first realized. You
can use this callback to perform OpenGL initialization, such as creating a context, because no
OpenGL operations can be done before the widget is realized. Callback reason is
GLWCR_GINIT.

Use of this callback is not necessary. Anything done in this callback can also be done after the
widget hierarchy has been realized. You can use the callback to keep all the OpenGL code

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples - 5

together, keeping the initialization in the same file as the widget creation rather than with widg
realization.

Note: If you create a GLwDrawingArea widget as a child of an already realized widget, it is no
possible to add the ginit callback before the widget is realized because the widget is immediat
realized at creation. In that case, you should initialize immediately after creating the widget.

GLwNexposeCallbaclSpecifies the callbacks to be called when the widget receives an Expose
event. The callback reason is GLWCR_EXPOSE. The callback structure also includes
information about the Expose event. Usually the application should redraw the scene wheneve
this callback is called.

Note: An application should not perform any OpenGL drawing until it receives an expose
callback, although it may set the OpenGL state; for example, it may create display lists and so
on.

GLwNinputCallback Specifies the callbacks to be called when the widget receives a keyboard
mouse event. The callback structure includes information about the input event. Callback reas
is GLWCR_INPUT.

The input callback is a programming convenience; it provides a convenient way to catch all
input events. You can often create a more modular program, however, by providing specific
actions and translations in the application rather than using a single catchall callbdbkpBee
Handling With Widgets and Xtfor more information.

GLwNresizeCallbackSpecifies the callbacks to be called when the GLwDrawingArea is
resized. The callback reason is GLWCR_RESIZE. Normally, programs resize the OpenGL
viewport and possibly reload the OpenGL projection matrix (se®fenGL Programming
Guidd. An expose callback follows. Avoid performing rendering inside the resize callback.

Input Handling With Widgets and Xt

This section explains how to perform input handling with widgets and Xt. It covers:
"Background Information"
"Using the Input Callback"

"Using Actions and Translations"

Background Information

Motif programs are callback driven. They differ in that respect from IRIS GL programs, which
implement their own event loops to process events. To handle input with a widget, you can either t
the input callback built into the widget or use actions and translations (Xt—provided mechanisms th
map keyboard input into user—provided routines). Both approaches have advantages:

Input callbacks are usually simpler to write, and they are more unified; all input is handled by ¢
single routine that can maintain a private state 'dsing the Input Callback'

The actions—and-translations method is more modular, because translations have one functic
each action. Also, with translations the system does the keyboard parsing so your program
doesn’t have to do it. Finally, translations allow the user to customize the application’s key

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples - 6

bindings. SeéUsing Actions and Translations"

Note: To allow smooth porting to other systems, as well as for easier integration of X and OpenGL
always separate event handling from the rest of your program.

Using the Input Callback

By default, the input callback is called with every key press and release, with every mouse button
press and release, and whenever the mouse is moved while a mouse button is pressed. You can
change this by providing a different translation table, although the default setting should be suitabls
for most applications.

For example, to have the input callback called on all pointer motions, not just on mouse button
presses, add the following to thpp—defaultfile:

*widgetname.translations : \
<KeyDown>: glwinput() \n\
<KeyUp>: glwinput() \n\
<BtnDown>: glwinput() \n\
<BtnUp>: glwinput() \n\
<BtnMotion>: glwinput() \n\
<PtrMoved>: glwinput()

The callback is passed an X event. It interprets the X events and performs the appropriate action.
your application’s responsibility to interpret the evefdr example, to convert an X keycode into a
key symball and to decide what to do with it.

Example 3-is from motif/mouse.ca double—buffered RGBA program that uses mouse motion
events.

Example 3-1 Motif Program That Handles Mouse Events

static void
input(Widget w, XtPointer client_data, XtPointer call) {
char buffer[31];
KeySym keysym;
XEvent *event = ((GLwDrawingAreaCallbackStruct *) call)->event;
static mstate, omx, omy, mx, my;

switch(event—>type) {
case KeyRelease:
XLookupString(&event—>xkey, buffer, 30, &keysym, NULL);
switch(keysym) {
case XK_Escape:
exit(EXIT_SUCCESS);
break;
default: break;
}
break;
case ButtonPress:

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples - 7

if (event—>xbutton.button == Button2) {
mstate |= 2;
mx = event—>xbutton.x;
my = event—>xbutton.y;

} else if (event—>xbutton.button == Button1) {
mstate |= 1;
mx = event—>xbutton.x;
my = event—>xbutton.y;

}

break;

case ButtonRelease:
if (event—>xbutton.button == Button2)

mstate &= ~2;

else if (event—>xbutton.button == Button1)
mstate &= ~1,;

break;

case MotionNotify:
if (mstate) {
omx = mx;
omy = my;
mx = event—>xbutton.x;
my = event—>xbutton.y;
update_view(mstate, omx,mx,omy,my);

}

break;

Using Actions and Translations

Actions and translations provide a mechanism for binding a key or mouse event to a function call.
For example, you can set things up so that

when you press the Esc key, the exit routjni() is called
when you press the left mouse button, rotation occurs

when you press f, the program zooms in

The translations need to be combined with an action task that maps string names like quit() to real
function pointers. Below is an example of a translation table:

program*glwidget*translations: ~ #override \n

<Btn1Down>: start_rotate() \n\
<BtnlUp>: stop_rotate() \n\
<BtnlMotion>: rotate() \n\
<Key>f: zoom_in() \n\
<Key>b: zoom_out() \n\

<KeyUp>osfCancel: quit()

When you press the left mouse button,dtaet_rotate()action is called; when it is released, the

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 8

stop_rotate(action is called.

The last entry is a little cryptic. It actually says that when the user presses the Egdtkeyg,called.
However, OSF has implemented virtual bindings, which allow the same programs to work on
computers with different keyboards that may be missing various keys. If a key has a virtual binding
the virtual binding name must be specified in the translation. Thus, the example above specifies
osfCancel rather than Esc. To use the above translation in a program that is not based on IRIS IM
OSF/Motif, replace KeyUp+osfCancel with KeyUp+Esc.

The translation is only half of what it takes to set up this binding. Although the translation table
above contains what look like function names, they are really action names. Your program must al
create an action table to bind the action names to actual functions in the program.

For more information on actions and translations, see O’R¥illygolkit Intrinsics Programming
Manual (Volume Four), most notably Chapter 4, "An Example Application," and Chapter 8, "Events
Translations, and Accelerators.” You can view this manual online using IRIS InSight.

Creating Colormaps

By default, a widget creates a colormap automatically. For many programs, this is sufficient.
However, it is occasionally necessary to create a colormap explicitly, especially when using color
index mode. Se¥&Creating a Colormap and a Windoanhd"Using Colormaps'for more

information.

Widget Troubleshooting

This section provides troubleshooting information by discussing some common pitfalls when
working with widgets.

Note: Additional debugging information is provided'I&eneral Tips for Debugging Graphics
Programs

Keyboard Input Disappears

A common problem in IRIS IM programs is that keyboard input disappears. This is caused by how
IRIS IM handles keyboard focus. When a widget hierarchy has keyboard focus, only one compone
of the hierarchy receives the keyboard events. The keyboard input might be going to the wrong
widget.

There are two solutions to this:
The easiest solution is to set the resource
keyboardFocusPolicy: POINTER

for the application. This overrides the default traversal method (explicit traversal) where you c:
select widgets with keyboard keys rather than the mouse so that input focus follows the pointe
only. The disadvantages of this method are that it eliminates explicit traversal for users who
prefer it and it forces a nhondefault model.

A better solution is to set the resource
*widgettraversalOn: TRUE

wherewidgetis the name of the widget, and to call

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples - 9

XmProcessTraversal(widget, XmTRAVERSE_CURRENT);

whenever mouse button 1 is pressed in the widget. Turning process traversal on causes the
window to respond to traversal (it normally doesn’t), and calintProcessTraversal@ctually
traverses into the widget when appropriate.

Inheritance Issues

In Xt, shell widgets, which include top-level windows, popup windows, and menus,
inherit their colormap and depth from their parent widget

inherit their visual from the parent window

If the visual doesn’t match the colormap and depth, this leads to a BadMatch X protocol error.

In a typical IRIS IM program, everything runs in the default visual, and the inheritance from two
different places doesn’t cause problems. However, when a program uses both OpenGL and IRIS |
it requires multiple visuals, and you have to be careful. Whenever you create a shell widget as a cl
of a widget in a non—default visual, specify pixel depth, colormap, and visual for that widget
explicitly. This happens with menus or popup windows that are children of OpenGL widgets. See
"Using Popup Menus With the GLwMDrawingArea Widget"

If you do get a BadMatch error, follow these steps to determine its cause:

1. Run the application under a C debugger, such as dbx or cvd (the Case Vision debugger) with |
-syndlag.

The —syndlag tells Xt to callXSynchronize(¥orcing all calls to be made synchronously. If your
program is not based on Xt, or if you are not using standard argument parsing, call
XSynchronize(display, TRUB)rectly inside your program.

2. Using the debugger, set a breakpoirgxit() and run the program.

When the program fails, you have a stack trace you can use to determine what Xlib routine
caused the error.

Note: If you don’t use the-synaption, the stack dump on failure is meaningless: X batches
multiple requests and the error is delayed.

Using Xlib

This section explains how to use Xlib for creating windows, handling input, and performing other
activities that the OpenGL part of a program doesn’t deal with. Because the complete example
program inChapter 2, "OpenGL and X: Getting Starteded widgets, this section starts with a
complete annotated example program for Xlib, so you have both available as needed. After that, y
learn about

Creating a Colormap and a Window

Xlib Event Handling
Simple Xlib Example Program

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 10

Example 3-fists the completXlib/simplest.cexample program.

Example 3-2 Simple Xlib Example Program

/*

* simplest — simple single buffered RGBA xlib program.
*

[* compile: cc —o simplest simplest.c —-IGL —IX11 */

#include <GL/glx.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>

static int attributeList[] = { GLX_RGBA, None };

static void

draw_scene(void) {
glClearColor(0.5, 0.5, 0.5, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
glColor3f(1.0,0.0,0.0);
glRectf(-.5,-.5,.5,.5);
glColor3f(0.0,1.0,0.0);
glRectf(-.4,—-.4,.4,.4);
glColor3f(0.0,0.0,1.0);
glRectf(-.3,-.3,.3,.3);
glFlush();

static void
process_input(Display *dpy) {
XEvent event;
Bool redraw = 0;

do {
char buf[31];
KeySym keysym;

XNextEvent(dpy, &event);
switch(event.type) {
case Expose:
redraw = 1;
break;
case ConfigureNotify:
glViewport(0, 0, event.xconfigure.width,
event.xconfigure.height);
redraw = 1;

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 11

break;
case KeyPress:
(void) XLookupString(&event.xkey, buf, sizeof(buf),
&keysym, NULL);
switch (keysym) {

case XK_Escape:
exit(EXIT_SUCCESS);
default:
break;
}
default:
break;
}
} while (XPending(dpy));
if (redraw) draw_scene();

static void

error(const char *prog, const char *msg) {
fprintf(stderr, "%s: %s\n", prog, msg);
exit(EXIT_FAILURE);

}

int

main(int argc, char **argv) {
Display *dpy;
XVisuallnfo *vi;
XSetWindowAttributes swa;
Window win;
GLXContext cx;

/* get a connection */
dpy = XOpenDisplay(0);
if (Idpy) error(argv[0], "can’t open display");

/* get an appropriate visual */
vi = gIXChooseVisual(dpy, DefaultScreen(dpy), attributeList);
if (Ivi) error(argv[0], "no suitable visual");

[* create a GLX context */

cx = gIXCreateContext(dpy, vi, 0, GL_TRUE);

/* create a colormap */

swa.colormap = XCreateColormap(dpy, RootWindow(dpy, vi—>screen),
vi—>visual, AllocNone);

[* create a window */

swa.border_pixel = 0;

swa.event_mask = ExposureMask | StructureNotifyMask | KeyPressMa

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 12

sk;
win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0, 300,

300, 0, vi—>depth, InputOutput, vi->visual,
CWBorderPixel| CWColormap|CWEventMask, &swa);
XStoreName(dpy, win, "simplest™);
XMapWindow(dpy, win);

/* connect the context to the window */
glXMakeCurrent(dpy, win, cx);

for(;;) process_input(dpy);

Creating a Colormap and a Window

A colormap determines the mapping of pixel values in the framebuffer to color values on the scree
Colormaps are created with respect to a specific visual.

When you create a window, you must supply a colormap for it. The visual associated with a colorn
must match the visual of the window using the colormap. Most X programs use the default colorms
because most X programs use the default visual. The easiest way to obtain the colormap for a
particular visual is to caKCreateColormap()

Colormap XCreateColormap (Display *display, Window w, Visual *visual,
int alloc)

Here’s howExample 3—2alls XCreateColormap()

swa.colormap = XCreateColormap(dpy, RootWindow(dpy, vi—>screen),
vi—>visual, AllocNone);

The parameters specify the display, window, and visual, and the number of colormap entries to
allocate. Thealloc parameter can have the special value AllocAll or AllocNone. While it is easy to
simply call XCreateColormap()you are encouraged to share colormaps.E@eple 4-%or details
on how to do this.

Note that you cannot use AllocAll if the colormap corresponds to a visual that has transparent pixe
because the colormap cell that corresponds to the transparent pixel cannot be allocated with Alloc.
For more information about colormaps, §&sing Colormaps"For information on overlays, which

use a visual with a transparent pixel, 8gsing Overlays

You can then create a window usiX@reateWindow()Before calling<CreateWindow()set the
attributes you want in thattributesvariable. When you make the call, indicatduemaslby OR-ing
together symbolic constants that specify the attributes you have set. Her&€sdnople 3—2loes it:

swa.background_pixmap = None;

swa.border_pixel = 0;

swa.event_mask = ExposureMask | StructureNotifyMask | KeyPressMask;
win = XCreateWindow(

dpy, [*display*/

RootWindow(dpy, vi->screen), /[*parent*/

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 13

0, /*x coordinate*/

0, /*y coordinate*/
300, [*width*/
300, [*height*/
0, /*border width*/
vi—>depth, [*depth*/
InputOutput, [*class*/
vi->visual, [*visual*/
CWBackPixmap|CWBorderPixel| CWColormap|CWEventMask,
[*valuemask*/
&swa [*attributes*/
)i

Most of the parameters are self-explanatory. Here are three that are not:
classindicates whether the window is InputOnly or InputOutput.
Note: InputOnly windows cannot be used with GLX contexts.
valuemaslspecifies which window attributes are provided by the call.
attributesspecifies the settings for the window attributes. The XSetWindowAttributes structure

contains a field for each of the allowable attributes.

Note: If the window's visual or colormap doesn’t match the visual or colormap of the window’s
parent, younmust specify a border pixel to avoid a BadMatch X protocol error. Most windows specify
a border zero pixels wide, so the value of the border pixel is unimportant; zero works fine.

If the window you are creating is a top—level window (meaning it was created as a child of the root
window), consider calling(SetWMPropertiesp set the window’s properties after you have created
it.

void XSetWMProperties(Display * display, Window w,
XTextProperty * window_namgeXTextProperty * icon_na
me
char ** argy, int argc, XSizeHints * normal_hints
XWMHints * wm_hints XClassHint * class_hint}

XSetWMProperties@rovides a convenient interface for setting a variety of important window
properties at once. It merely calls a series of other property—setting functions, passing along the v
you pass in. For more information, see the reference page.

Note that two useful properties are the window name and the icon name. The example program ce
XStoreName(instead to set the window and icon names.

Installing the Colormap

Applications should generally rely on the window manager to install the colormaps instead of callin
XlnstallColormap()directly. The window manager automatically installs the appropriate colormaps
for a window, whenever that window gets keyboard focus. Popup overlay menus are an exception,

By default, the window manager looks at the top-level window of a window hierarchy and installs
that colormap when the window gets keyboard focus. For a typical X—based application, this is

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 14

sufficient, but an application based on OpenGL typically uses multiple colormaps: the top-level
window uses the default X colormap, and the Open GL window uses a colormap suitable for
OpenGL.

To address this multiple colormap issue, call the functisetWMColormapWindowsfassing the
display, the top-level window, a list of windows whose colormaps should be installed, and the
number of windows in the list.

The list of windows should include one window for each colormap, including the top—level window’
colormap (normally represented by the top-level window). For a typical OpenGL program that
doesn't use overlays, the list contains two windows: the OpenGL window and the top—level windov
The top-level window should normally be last in the list. Xt programs may use
XtSetWMColormapWindowsif)stead oXSetWMColormapWindows(yhich uses widgets instead

of windows.

Note: The program must cakSetWMColormapWindowsgyen if it is using a TrueColor visual.
Some hardware simulates TrueColor through the use of a colormap. Even though the application
doesn’t interact with the colormap directly, it is still there. If you don't call
XSetWMColormapWindowsgour program may run correctly only some of the time, and only on
some systems.

Use thexpropprogram to determine whethésetWMColormapWindowsglas called. Click the

window and look for the WM_COLORMAP_WINDOWS property. This should be a list of the
windows. The last one should be the top-level windowxWggnfo, providing the ID of the

window as an argument, to determine what colormap the specified window is using, and whether t
colormap is installed.

Xlib Event Handling

This section discusses different kinds of user input and explains how you can use Xlib to perform
them. OpenGL programs running under the X Window System are responsible for responding to
events sent by the X server. Examples of X events are Expose, ButtonPress, ConfigureNotify, and
on.

Note: In addition to mouse devices, Silicon Graphics systems support various other input devices
(for example, spaceballs). You can integrate them with your OpenGL program using the X input
extension. For more information, see ¥nénput Extension Library Specificati@vailable online
through IRIS Insight.

Handling Mouse Events

To handle mouse events, your program first has to request them, then use them in the main (even
handling) loop. Here is an example code fragment ftiimouse.can Xlib program that uses

mouse motion eventExample 3—-8hows how the mouse processing, along with the other event
processing, is defined.

Example 3-3 Event Handling With Xlib

static int
process_input(Display *dpy) {
XEvent event;
Bool redraw = 0;

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 15

static int mstate, omx, omy, mx, my;

do {
char buf[31];
KeySym keysym;
XNextEvent(dpy, &event);
switch(event.type) {
case Expose:
redraw = 1;
break;
case ConfigureNotify:
glViewport(0, 0, event.xconfigure.width,
event.xconfigure.height);
redraw = 1;
break;
case KeyPress:
(void) XLookupString(&event.xkey, buf, sizeof(buf),
&keysym, NULL);
switch (keysym) {
case XK_Escape:
exit(EXIT_SUCCESS);
default:
break;
}
case ButtonPress:
if (event.xbutton.button == Button2) {
mstate |= 2;
mx = event.xbutton.x;
my = event.xbutton.y;
} else if (event.xbutton.button == Button1) {
mstate |= 1;
mx = event.xbutton.x;
my = event.xbutton.y;
}
break;
case ButtonRelease:
if (event.xbutton.button == Button2)
mstate &= ~2;
else if (event.xbutton.button == Button1)
mstate &= ~1;
break;
case MotionNotify:
if (mstate) {
omx = mx;
omy = my;
mx = event.xbutton.x;
my = event.xbutton.y;

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 16

update_view(mstate, omx,mx,omy,my);
redraw = 1;
}
break;
default:
break;
}
} while (XPending(dpy));
return redraw;

}

Theprocess_input(junction is then used by the main loop:

while (1) {

if (process_input(dpy)) {
draw_scene();

Exposing a Window

When a user selects a window that has been completely or partly covered, the X server generates
or more Expose events. It is difficult to determine exactly what was drawn in the now-exposed reg
and redraw only that portion of the window. Instead, OpenGL programs usually just redraw the ent
window. (Note that backing store is not supported on Silicon Graphics systems.)

If redrawing is not an acceptable solution, the OpenGL program can do all your rendering into a
GLXPixmap instead of directly to the window; then, any time the program needs to redraw the
window, you can simply copy the GLXPixmap'’s contents into the window u&BapyArea() For
more information, sedJsing Pixmaps"

Note: Rendering to a GLXPixmap is much slower than rendering to a window. For example, on a
RealityEngine, rendering to a pixmap is perhaps 5% the speed of rendering to a window.

When handling X events for OpenGL programs, remember that Expose events come in batches.
When you expose a window that is partly covered by two or more other windows, two or more
Expose events are generated, one for each exposed region. Each one indicates a simple rectangle
the window to be redrawn. If you are going to redraw the entire window, read the entire batch of
Expose events. It is wasteful and inefficient to redraw the window for each Expose event.

Using Fonts and Strings

The simplest approach to text and font handling in GLX is usingXiuse XFont(¥unction together
with display lists. This section shows you how to use the function by providing an example progran
Note that this information is relevant regardless of whether you use widgets or program in Xlib.

The advantage a@fiXUseXFont()is that bitmaps for X glyphs in the font match exactly what
OpenGL draws. This solves the problem of font matching between X and OpenGL display areas ir
your application.

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples - 17

To use display lists to display X bitmap fonts, your code should do the following:
1. Use X calls to load information about the font you want to use.
2. Generate a series of display lists ugiigUseXFont() one for each glyph in the font.

TheglXUseXFont(function automatically generates display lists (one per glyph) for a
contiguous range of glyphs in a font.

3. Todisplay a string, usglListBase(}o set the display list base to the base for your character
series. Then pass the string as an argumegiCaliLists()

Each glyph display list containggBitmap()call to render the glyph and update the current
raster position based on the glyph’s width.

The example code fragment providedexample 3-grints the string "The quick brown fox jumps
over a lazy dog" in Times Medium. It also prints the entire character set, from ASCII 32 to 127.

Note: You can also use the glc library, which sits atop of OpenGL, for fonts and strings. The libran
is not specific to GLX and lets you do more tigdkUseXFont().

Example 3—-4 Font and Text Handling

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glx.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

GLuint base;

void makeRasterFont(Display *dpy)
{

XFontStruct *fontinfo;

Font id;

unsigned int first, last;

fontinfo = XLoadQueryFont(dpy,

"—adobe-times—-medium-r—-normal--17-120-100-100-p—88-is08859-1

)

if (fontinfo == NULL) {
printf ("no font found\n");
exit (0);

id = fontinfo—>fid;
first = fontinfo—>min_char_or_byte2;
last = fontInfo—>max_char_or_byte2;

base = glGenLists(last+1);

OpenGL ® on Silicon Graphics ® Systems — Chapter 3, OpenGL and X: Examples — 18

if (base ==0) {
printf ("out of display lists\n");
exit (0);
}
gIXUseXFont(id, first, last-first+1, base+first);

void printString(char *s)
{
glListBase(base);
glCallLists(strlen(s), GL_UNSIGNED_BYTE, (unsigned char *)s);

void display(void)

{
GLfloat white[3] ={ 1.0, 1.0, 1.0 };
long i, j;
char teststring[33];

glClear(GL_COLOR_BUFFER_BIT);
glColor3fv(white);
for (i=32;1<127;i+=32){
glRasterPos2i(20, 200 - 18*i/32);
for j=0;] <32; j++)
teststring[j] = i+j;
teststring[32] = O;
printString(teststring);
}
glRasterPos2i(20, 100);
printString("The quick brown fox jumps");
glRasterPos2i(20, 82);
printString("over a lazy dog.");
glFlush ();

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 19

Chapter 4
OpenGL and X: Advanced Topics

This chapter helps you integrate your OpenGL program with the X Window System by discussing
several advanced topics. While understanding the techniques and concepts discussed here is not
relevant for all applications, it is important that you master them for certain special situations. The
chapter covers the following topics:

"Using Animations"

"Using Overlays"

"Using Visuals"

"Using Colormaps"

"Stereo Rendering"

"Using Pixmaps"

"Performance Considerations for X and OpenGL"

"Portability”

Using Animations

Animation in its simplest form consists of drawing an image, clearing it, and drawing a new, slightly
different one in its place. However, attempting to draw into a window while that window is being
displayed can cause problems such as flickering. The solution is double buffering.

This section discusses double—buffered animation inside an X Window System environment,
providing example code as appropriate. You learn about

"Swapping Buffers"
"Controlling an Animation With Workprocs"

"Controlling an Animation With Timeouts"

Xt provides two mechanisms that are suited for continuous animation:

"Controlling an Animation With Workprocg'esults in the fastest animation possible. If you use
workprocs, the program swaps buffers as fast as possible; which is useful if rendering speed i
variable enough that constant speed animation is not possible. Workproc animations also give
other parts of the application priority. The controls don’'t become less responsive just because
animation is being done. The cost of this is that the animation slows down or may stop when tl
user brings up a menu or uses other controls.

"Controlling an Animation With Timeoutg®sults in a constant speed animation. Animations
that use timeouts compete on even footing with other Xt events; the animation won't stop
because the user interacts with other components of the animation.

Note: Controlling animations with workprocs and timeouts applies only to Xt-based programs.

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 1

Swapping Buffers

A double-buffered animation displays one buffer while drawing into another (undisplayed) buffer,
then swaps the displayed buffer with the other. In OpenGL, the displayed buffer is called the front
buffer, and the undisplayed buffer is called the back buffer. This sort of action is common in Open(
programs; however, swapping buffers is a window-related function, not a rendering function, so yc
cannot do it directly with OpenGL.

To swap buffers, usglXSwapBuffers(®r (when using the widget) the convenience function
GLwDrawingAreaSwapBuffers(JheglXSwapBuffers(junction takes a display and a window as
inputd pixmaps don't support buffer swappingnd swaps the front and back buffers in the
drawable. All renderers bound to the window in question continue to have the correct idea of whict
the front buffer and which the back buffer. Note that once yogk&#wapBuffers()any further

drawing to the given window is suspended until after the buffers have been swapped.

Silicon Graphics systems support hardware double buffering; this means buffer swap is instantane
during the vertical retrace of the monitor. As a result, there are no tearing artifacts; that is, you don
simultaneously see part of one buffer and part of the next.

Note: If the window's visual allows only one color buffer, or if the GLX drawable is a pixmap,
glIXSwapBuffers(has no effect (and generates no error).

There is no need to worry about which buffer the X server draws into if you're using X drawing
functions as well as OpenGL,; the X server draws only to the current front buffer, and prevents any
program from swapping buffers while such drawing is going on. Using the X double buffering
extension (DBE), it is possible to render X into the back buffer. DBE is not supported in releases
preceding IRIX 6.2.

Note that users like uniform frame rates such as 60 Hz, 30 Hz, or 20 Hz. Animation may otherwise
look jerky. A slower consistent rate is therefore preferable to a faster but inconsistent rate. For
additional information about optimizing frame rates, '$@ptimizing Frame Rate Performanc&ee
"SGIX_fbconfigd The Framebuffer Configuration Extensioi@'learn how to set a minimum period

of buffer swaps.

Controlling an Animation With Workprocs

A workproc (work procedure) is a procedure that Xt calls when the application is idle. The
application registers workprocs with Xt and unregisters them when it is time to stop calling them.

Note that workprocs do not provide constant speed animation but animate as fast as the applicatia
can.

General Workproc Information

Workprocs can be used to carry out a variety of useful tasks: animation, setting up widgets in the
background (to improve application startup time), keeping a file up to date, and so on.

It is important that a workproc not take very long to execute. While a workproc is running, nothing
else can run, and the application may appear sluggish or may even appear to hang.

Workprocs return Booleans. To set up a function as a workproc, first prototype the function, then
pass its name t&tAppAddWorkProc()Xt then calls the function whenever there is idle time while
Xt is waiting for an event. If the function returns True, it is removed from the list of workprocs; if it

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 2

returns False, it is kept on the list and called again when there is idle time.

To explicitly remove a workproc, caltRemoveWorkProc(Here are the prototypes for the add and
remove functions:

XtWorkProcld XtAppAddWorkProc(XtAppContext app_context
XtWorkProc proc, XtPointer client_datg
void XtRemoveWorkProc(XtWorkProcld id)

Theclient_dataparameter fokKtAppAddWorkProc(lets you pass data from the application into the
workproc, similar to the equivalent parameter used in setting up a callback.

Workproc Example

This section illustrates using workprocs. The examplgtjf/animate.cis a simple animation driven
by a workproc. When the user selects "animate" from the menu, the workproc is registered, as
follows:

static void
menu(Widget w, XtPointer clientData, XtPointer callData) {
int entry = (int) clientData;

switch (entry) {
case O:
if (state.animate_wpid) {
XtRemoveWorkProc(state.animate_wpid);
state.animate_wpid = 0;
}else {
[* register workproc */
state.animate_wpid = XtAppAddWorkProc(state.appctx,
redraw_proc, &state.glxwidget)

}

break;

case 1:
exit(EXIT_SUCCESS);
break;

default:
break;

}

The workproc starts executing if the window is mapped (that is, it could be visible but it may be
overlapped):

static void

map_change(Widget w, XtPointer clientData, XEvent *event, Boolean
*cont)

{

switch (event—>type) {
case MapNotify:

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 3

/* resume animation if we become mapped in the animated state */

if (state.animate_wpid != 0)
state.animate_wpid = XtAppAddWorkProc(state.appctx,
redraw_proc, &state.glxwidge
t);

break;

case UnmapNotify:

/* don’'t animate if we aren’t mapped */
if (state.animate_wpid) XtRemoveWorkProc(state.animate_wpid)

break;

}

If the window is mapped, the workproc cakksiraw_proc()

static Boolean

redraw_proc(XtPointer clientData) {
Widget *w = (Widget *)clientData;
draw_scene(*w);
return False;
/*call the workproc again as possible*/

}

Theredraw_proc()function, in turn, callslraw_scene()which swaps the buffers. Note that this
program doesn’t usgiXSwapBuffers()out instead the convenience function
GLwDrawingAreaSwapBuffers()

static void
draw_scene(Widget w) {
static float rot = 0.;

glClear(GL_COLOR_BUFFER_BIT);
glColor3f(.1, .1, .8);
glPushMatrix();

if ((rot += 5.) > 360.) rot —= 360.;
glRotatef(rot,0.,1.,0.);

cube();

glScalef(0.3,0.3,0.3);

glColor3f(.8, .8, .1);

cube();

glPopMatrix();
GLwDrawingAreaSwapBuffers(w);

}

Note: If an animation is running and the user selects a menu command, the event handling for the
command and the animation may end up in a race condition.

Controlling an Animation With Timeouts

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics - 4

The program that performs an animation using timeouts is actually quite similar to the one using
workprocs. The main difference is that the timeout interval has to be defined and functions that reli
on the workproc now have to be defined to rely on the timeout. Note especiatiydieat_proc()

has to register a new timeout each time it is called.

You may find it most helpful to compare the full programs usidiff or a similar tool. This section
briefly points out the main differences between two example programs.

The redraw procedure is defined to have an additional argument, an interval ID.

work_animate: static Boolean redraw_proc(XtPointer clientData);
time_animate: static Boolean redraw_proc(XtPointer clientData,
Xtintervalld *id);

In time_animatea timeout has to be defined; the example chooses 10 ms:

#define TIMEOUT 10 /*timeout in milliseconds*/

In the state structure, which defines the global Ul variables, the interval ID instead of the
workproc ID is included.

work_animate:
static struct { [* global Ul variables; keep them togethe
r*

XtAppContext appctx;

Widget glxwidget;

Boolean direct;

XtWorkProcld animate_wpid;

} state;
time_animate:
static struct { [* global Ul variables; keep them togethe
r*
XtAppContext appctx;
Widget glxwidget;

Boolean direct;
Xtintervalld animate_toid;
} state;

The menu(¥unction and thenap_change(junction are defined to remove or register the
timeout instead of the workproc. Here are the menu()functions as an example:

work_animate:

static void

menu(Widget w, XtPointer clientData, XtPointer callData) {
int entry = (int) clientData,;

switch (entry) {
case O:
if (state.animate_wpid) {
XtRemoveWorkProc(state.animate_wpid);
state.animate_wpid = 0;

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 5

}else {
[* register work proc */
state.animate_wpid = XtAppAddWorkProc(state.appctx,
redraw_proc, &state.glxwidg
et);
}
break;
case 1:
exit(EXIT_SUCCESS);
break;
default:
break;

}

time_animate

static void

menu(Widget w, XtPointer clientData, XtPointer callData) {
int entry = (int) clientData;

switch (entry) {
case 0O:
if (state.animate_toid) {
XtRemoveTimeOut(state.animate_toid);
state.animate_toid = 0;
}else {
[* register timeout */
state.animate_toid = XtAppAddTimeOut(state.appctx,
TIMEOUT, redraw_proc, &state.glxwidg
et);
}
break;
case 1:
exit(EXIT_SUCCESS);
break;
default:
break;

}

Theredraw_proc()function has to register a new timeout each time it is called. Note that this

differs from the workproc approach, where the application automatically continues animating
long as the system is not doing something else.

static void

redraw_proc(XtPointer clientData, Xtintervalld *id) {
Widget *w = (Widget *)clientData;
draw_scene(*w);
/* register a new timeout */

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 6

state.animate_toid = XtAppAddTimeOut(state.appctx, TIMEOUT,
redraw_proc, &state.glxwidg
et);
}

Using Overlays

Overlays are useful in situations where you want to preserve an underlying image while displaying
some temporary information. Examples for this are popup menus, annotations, or rubber—banding
This section explains overlays and shows you how to use them, discussing the following topics:

“Introduction to Overlays"
"Creating Overlays"

"Rubber Banding"

Introduction to Overlays

An overlay plane is a set of bitplanes displayed preferentially to the normal planes. Non-transpare
pixels in the overlay plane are displayed in preference to the underlying pixels in the normal plane:
Windows in the overlay planes do not damage windows in the normal plane.

If you have something in the main window that is fairly expensive to draw into and want to have
something else on top, such as an annotation, you can use a transparent overlay plane to avoid
redrawing the more expensive main window. Overlays are well-suited for popup menus, dialog
boxes, and "rubber—-band" image resizing rectangles. You can also use overlay planes for text
annotations floating "over" an image and for certain transparency effects.

Note: Transparency discussed here is distinct from alpha buffer blending transparency effects. Se
the section "Blending" in Chapter 7, "Blending, Anti—Aliasing, and Fog," iQfenGL
Programming Guide.

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 7

Mormal & overlay planes

Figure 4-1 Overlay Plane Used for Transient Information

A special value in the overlay planes indicates transparency. On Silicon Graphics systems, it is
always the value zero. Any pixel with the value zero in the overlay plane is not painted, allowing th
color of the corresponding pixel in the normal planes to show.

The concepts discussed in this section apply more generally to any number of framebuffer layers,
example, underlay planes (which are covered up by anything in equivalent regions of higher—level
planes).

You can use overlays in two ways:

To draw additional graphics in the overlay plane on top of your normal plane OpenGL widget,
create a separate GLwMDrawingArea widget in the overlay plane and set the GLX_LEVEL
resource to 1. Position the overlay widget on top of the normal plane widget.

Note that since the GLwMDrawingArea widget is not a manager widget, it is necessary to cree
both the normal and overlay widgets as children of some manager Wiftgetxample, a

formd and have that widget position the two on top of each other. Once the windows are
realized, you must cakRaiseWindow()o guarantee that the overlay widget is on top of the
normal widget. Code fragments'i@reating Overlaysfllustrate this. The whole program is
included asverlay.cin the source tree.

To create menus, look at examplegusar/src/X11/motif/overlay _demoBhey are present if you
have themotif _dev.sw.demsubsystem installed. Placing the menus in the overlay plane avoids
the need for expensive redrawing of the OpenGL window underneath them. While the demos
not deal specifically with OpenGL, they do show how to place menus in the overlay plane.

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 8

Note for IRIS GL Users

IRIS GL supports the concept of popup planes, which are one level higher than the default overlay
plane. Drawing in the popup planes in IRIS GL doesn’t necessarily require a window, but you canr
count on avoiding damage to anything non-transient drawn in those planes (for example, objects
drawn by other applications).

When working with OpenGL and the X Window System, the situation is different: You have to
create a separate window for any overlay rendering. Currently, no OpenGL implementation on a
Silicon Graphics system supports a level greater than one.

Creating Overlays

This section explains how to create overlay planes, using an example program based on Motif. If y
create the window using Xlib, the same process is valid (and a parallel example program is availat
in the example program directory).

The example program from which the code fragments are tadaif/overlay.cuses the visual info
extension to find a visual with a transparent pixel."&€l _visual_infdd The Visual Info
Extension'for more information.

Note: This example doesn’t work if the visual info extension is not available'@& to Check for
OpenGL Extension Availability): The visual info extension is available only in IRIX 6.2. In IRIX
5.3 and earlier releases, you must look at the TRANSPARENT _OVERLAYS property on the root

window to get the information.
To create the overlay, follow these steps:

1. Define attribute lists for the two widgets (the window and the overlay). For the overlay, specify
GLX_LEVEL as 1 and GLX_TRANSPARENT_TYPE_EXT as
GLX_TRANSPARENT_RGB_EXT if the visual info extension is available.

static int attribs[] = { GLX_RGBA, GLX_DOUBLEBUFFER, None};
static int ov_attribs[] = {

GLX_BUFFER_SIZE, 2,

GLX_LEVEL, 1,

GLX_TRANSPARENT_TYPE_EXT, GLX_TRANSPARENT_RGB_E
XT,

None };

2. Create a frame and form, then create the window widget, attaching it to the form on all four
sides. Add expose, resize, and input callbacks.

[* specify visual directly */
if (!(visinfo = gIXChooseVisual(dpy, DefaultScreen(dpy), attribs)

)
XtAppError(appctx, "no suitable RGB visual");

[* attach to form on all 4 sides */

n=0;

XtSetArg(args[n], XtNx, 0); n++;

XtSetArg(args[n], XtNy, 0); n++;

XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 9

XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;

XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;

XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;

XtSetArg(args[n], GLwNvisuallnfo, visinfo); n++;

state.w = XtCreateManagedWidget("glxwidget",
glwMDrawingAreaWidgetClass, form, args, n);

XtAddCallback(state.w, GLwNexposeCallback, expose, NULL);

XtAddCallback(state.w, GLwNresizeCallback, resize, &state);

XtAddCallback(state.w, GLwNinputCallback, input, NULL);

state.cx = gIXCreateContext(dpy, visinfo, 0, GL_TRUE);

3. Create the overlay widget, using the overlay visual attributes specified in Step 1 and attaching
to the same form as the window. This assures that when the window is moved or resized, the
overlay is as well.

if (!(visinfo = gIXChooseVisual(dpy, DefaultScreen(dpy),
ov_attribs)))

XtAppError(appctx, "no suitable overlay visual);
XtSetArg(args[n—1], GLwNvisuallnfo, visinfo);
ov_state.w = XtCreateManagedWidget("overlay",

glwMDrawingAreaWidgetClass, form, args, n);

4. Add callbacks to the overlay.

XtAddCallback(ov_state.w, GLwNexposeCallback, ov_expose, NULL);
XtAddCallback(ov_state.w, GLwNresizeCallback, resize, &ov_state);
XtAddCallback(ov_state.w, GLwNinputCallback, input, NULL);
ov_state.cx = gIXCreateContext(dpy, visinfo, 0, GL_TRUE);

Note that the overlay uses the same resize and input callback:

For resize, you may or may not wish to share callbacks, depending on the desired
functionality; for example, if you have a weathermap with annotations, both should resize i
the same fashion.

For input, the overlay usually sits on top of the normal window and receives the input ever
instead of the overlay window. Redirecting both to the same callback guarantees that you
receive the events regardless of which window actually received them.

The overlay has its own expose function: each time the overlay is exposed, it redraws itse
5. Call XRaiseWindow()o make sure the overlay is on top of the window.

XRaiseWindow(dpy, XtWindow(ov_state.w));

Overlay Troubleshooting
This section gives some advice on issues that can easily cause problems in a program using overl

Colormaps. Overlays have their own colormaps. You therefore should call
XSetWMColormapWindowsg() create the colormap, populate it with colors, and to install it.

Note: Overlays on Silicon Graphics systems reserve pixel zero as the transparent pixel. If you
attempt to create the colormap with AllocAll, ti€reateColormap(function will fail with a

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 10

BadAlloc X protocol error. Instead of AllocAll, use AllocNone and allocate all the color cells
except zero.

Window hierarchy. Overlay windows are created like other windows; their parent window
depends on what you pass in at window creation time. Overlay windows can be part of the sat
window hierarchy as normal windows and be children of the normal windows. An overlay and
its parent window are handled as a single hierarchy for events like clipping, event distribution,
and so on.

Color limitations . On low—end Silicon Graphics systems, there are only a few overlay planes
available; thus, items drawn in the overlay planes (such as menus) usually use only a few
colord] no more than three colors and the transparent pixel in some cases. More recent low—¢€
systems (24-bit Indy graphics), mid-range systems (Indigo2 IMPACT), and high—end system:
(RealityEngine) support 8—bit overlay planes.

Input events. The overlay window usually sits on top of the normal window. Thus, it receives
all input events such as mouse and keyboard events. If the application is only waiting for even
on the normal window, it will not get any of those events. It is necessary to select for events ot
the overlay window as well.

Not seeing the overlayAlthough overlay planes are conceptually considered to be "above" the
normal plane, an overlay window can be below a normal window and thus clipped by it. When
creating an overlay and a normal window, X&aiseWindow(Jo ensure that the overlay

window is on top of the normal window. If you use Xt, you mustXRaiseWindow(after the
widget hierarchy has been realized.

Rubber Banding

Rubber banding can be used for cases where applications have to draw a few lines over a scene i
response to a mouse movement. An example is the movable window outline that you see when
resizing or moving a window. Rubber—banding is also used frequently by drawing programs.

The4Dwmwindow manager provides rubber banding for moving and resizing windows. However, i
you need rubber banding features inside your application, you have to manage it yourself.

Here is the best way to perform rubber banding with overlays (this is the method udadrythe
default Silicon Graphics window manager):

1. Map an overlay window, with iteackgroundixmap set to Noneb@ckgrounds passed in as a
parameter t&XCreateWindowf{) This window should be as large as the area over which rubber
banding could take place.

2. Draw rubber bands in the new overlay window. Ignore resulting damage to other windows in tt
overlay plane.

3. Unmap the rubber-band window, which sends Expose events to other windows in the overlay
plane.

Using Popup Menus With the GLwMDrawingArea Widget

Pop-ups are used by many applications to allow user input. A sample psigrgl@;-popup.ts
included in the source tree. It uses the funckorCreateSimplePopupMenuf add a popup to a

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 11

drawing area widget.

Note that if you are not careful when you create a popup menu as a child of GLwMDrawingArea
widget, you may get a BadMatch X protocol error: The menu (like all other Xt shell widgets) inherit
its default colormap and depth from the GLwMDrawingArea widget, but its default visual from the
parent (root) window. Because the GLwMDrawingArea widget is normally not the default visual, th:
menu inherits a nondefault depth and colormap from the GLwMDrawingArea widget, but also
inherits its visual from the root window (that is, inherits the default visual), leading to a BadMatch X
protocol error. Sednheritance Issuedbr more detail and for information on finding the error.

There are two ways to work around this:

Specify the visual, depth, and colormap of the menu explicitly. If you do that, consider putting
the menu in the overlay plane.

Make the menu a child of a widget that is in the default visual; for example, if the
GLwMDrawingArea widget is a child of an XmFrame, make the menu a child of XmFrame as
well. Example 4—Drovides a code fragment framotif/simple—popup.c

Example 4-1 Popup Code Fragment

static void
create_popup(Widget parent) {
Arg args[10];
static Widget popup;
int n;
XmButtonType button_types[] ={
XmPUSHBUTTON, XmPUSHBUTTON, XmSEPARATOR, XmPUSHBUTTON, }

XmString button_labels[XtNumber(button_types)];

button_labels[0] = XmStringCreateLocalized("draw filled");
button_labels[1] = XmStringCreatelLocalized("draw lines");
button_labels[2] = NULL;

button_labels[3] = XmStringCreateLocalized("quit");

n=0;

XtSetArg(args[n], XmNbuttonCount, XtNumber(button_types)); n
++;

XtSetArg(args[n], XmNbuttonType, button_types); n++;

XtSetArg(args[n], XmNbuttons, button_labels); n++;

XtSetArg(args[n], XmNsimpleCallback, menu); n++;

popup = XmCreateSimplePopupMenu(parent, "popup", args, n);

XtAddEventHandler(parent, ButtonPressMask, False, activate_m
enu,

&popup);

XmStringFree(button_labels[0]);

XmStringFree(button_labels[1]);

XmStringFree(button_labels[3]);

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 12

}
main(int argc, char *argv[]) {
Display *dpy;
XtAppContext app;
XVisuallnfo *visinfo;
GLXContext glxcontext;
Widget toplevel, frame, glxwidget;

toplevel = XtOpenApplication(&app, "simple—popup”, NULL, 0O,
&argc,
argv, fallbackResources, applicationShellwidge
tClass,
NULL, 0);
dpy = XtDisplay(toplevel);

frame = XmCreateFrame(toplevel, "frame", NULL, 0);
XtManageChild(frame);

/* specify visual directly */
if (!(visinfo = gIXChooseVisual(dpy, DefaultScreen(dpy), att
ribs)))
XtAppError(app, "no suitable RGB visual");

glxwidget = XtVaCreateManagedWidget("glxwidget",
glwMDrawingAreaWidgetClass, frame, GLwNvisual
Info,
visinfo, NULL);
XtAddCallback(glxwidget, GLwNexposeCallback, expose, NULL);
XtAddCallback(glxwidget, GLwNresizeCallback, resize, NULL);
XtAddCallback(glxwidget, GLwNinputCallback, input, NULL);

create_popup(frame);
XtRealizeWidget(toplevel);

glxcontext = gIXCreateContext(dpy, visinfo, 0, GL_TRUE);
GLwDrawingAreaMakeCurrent(glxwidget, glxcontext);

XtAppMainLoop(app);

Using Visuals

This section explains how to choose and use visuals on Silicon Graphics workstations. It discusse:
the following topics:

"Some Background on Visuals"

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 13

"Running OpenGL Applications Using a Single Visual"

Some Background on Visuals

An X visual defines how pixels in a window are mapped to colors on the screen. Each window has
associated visual, which determines how pixels within the window are displayed on screen. GLX
overloads X visuals with additional framebuffer capabilities needed by OpenGL.

Table 4-1ists the X visuals support that support different types of OpenGL rendering, and tells you
whether the colormaps for those visuals are writable or not. Visuals that are not available on Silico
Graphics systems are marked with an asterisk.

Table 4-1 X Visuals and Supported OpenGL Rendering Modes

OpenGL Rendering Mode X Visual Writable Colormap?
RGBA TrueColor no

RGBA DirectColof yes

color index PseudoColor yes

color index StaticColof no

not supported GrayScale yes

not supported StaticGray no

aNot supported on Silicon Graphics systems.

An X server can provide multiple visuals, depending on the available hardware and software suppt
Each server has a default visual that can be specified when the server starts. You can determine t
default visual with the Xlib macrefaultVisual().

Because you cannot predict the configuration of every X server, and you may not know the systerr
configuration your program will be used on, it is best to find out what visual classes are available o
a case—by-case basis.

From the command line, ugdpyinfofor a list of all visuals the server supports.

Useglxinfoor findvis to find visuals that are capable of OpenGL rendering fihdeis
command can actually look for available visuals with certain attributes. See the reference pagt
for more information.

From within your application, use the Xlib functiod&etVisuallnfo() and
XMatchVisuallnfo() O orglXGetConfig()J or the GLX functiorgIXChooseVisual()

Note: For most applications, using OpenGL RGBA color mode and a TrueColor visual is
recommended.

Running OpenGL Applications Using a Single Visual

Note: This section applies only to IRIS IM.

In previous chapters, this guide has assumed separate visuals for the X and OpenGL portions of tl
program. The top—level windows and all parts of the application that are not written in OpenGL use
the default visual (typically 8—bit PseudoColor, but it depends on the configuration of the server).
OpenGL runs in a single window that uses an Open GL visual.

An alternative approach is to run the whole application using an OpenGL visual. To do this,

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics - 14

determine the suitable OpenGL visual (and colormap and pixel depth) at the start of the program a
create the top-level window using that visual (and colormap and pixel depth). Other windows,
including the OpenGL window, inherit the visual. When you use this approach, there is no need to
use the GLwMDrawingArea widget; the standard IRIS IM XmDrawingArea works just as well.

The advantages of using a single visual include the following:

Simplicity. Everything uses the same visual, so you don’t have to worry about things like
colormap installation more than once in the application. (However, if you use the
GLwMDrawingArea widget, it does colormap installation for yosee'Drawing—Area Widget
Setup and Creatior)"

Reduced colormap flashing Colormap flashing happens if several applications are running,
each using its own colormap, and you exceed the system’s capacity for installed hardware
colormaps. Flashing is reduced for a single visual because the entire application uses a single
colormap. The application can still cause other applications to flash, but all recent Silicon
Graphics systems have multiple hardware colormaps to reduce flashing.

Easier mixing of OpenGL and X If you run in a single visual, you can render OpenGL to any
window in the application, not just to a dedicated window. For example, you could create an
XmDrawnButton and render OpenGL into it.

The advantages of using separate visuals for X and OpenGL include the following:

Consistent colors in the X visuallf the OpenGL visual has a limited number of colors, you

may want to allow more colors for X. For example, if you are using double buffering on an 8-b
machine, you have only 4 bitplanes (16 colors) per buffer. You can have OpenGL dither in suc
a circumstance to obtain approximations of other colors, but X won't dither, so if you are using
the same visual for OpenGL and X, the X portion of your application will be limited to 16 colors
as well.

This limiting of colors would be particularly unfortunate if your program uses the Silicon
Graphics color-scheme system. While X chooses a color as close as possible to the requeste
color, the choice is usually noticeably different from the requested color. As a result, your
application looks noticeably different from the other applications on the screen.

Memory savings The amount of memory used by a pixmap within the X server depends on the
depth of the associated visual. Most applications use X pixmaps for shadows, pictures, and sc
that are part of the user interface widgets. If you are using a 12-bit or 24-hit visual for OpenG
rendering and your program also uses X pixmaps, those pixmaps would use less memory in tt
default 8—hit visual than in the OpenGL visual.

Easier menu handling in IRIS IM. If the top—level shell is not in the default visual, there will
be inheritance problems during menu creation sd®ritance Issue¥"You have to explicitly
specify the visual depth and colormap when creating a menu. For cascading menus, specify
depth and colormap separately for each pane.

Using Colormaps

This section explains using colormaps in some detail. Note that in many cases, you won't need to
worry about colormaps: Just use the drawing area widget and create a TrueColor visual for your

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 15

RGBA OpenGL program. However, under certain circumstances, for example, if the OpenGL
program uses indexed color, the information in this section is important. The section discusses the
topics:

"Background Information About Colormaps"
"Choosing Which Colormap to Use"

"Colormap Example"

Background Information About Colormaps
OpenGL supports two rendering modes: RGBA mode and color index mode.
In RGBA mode, color buffers store red, green, blue, and alpha components directly.

In color-index mode, color buffers store indexes (names) of colors that are dereferenced by tt
display hardware. A color index represents a color by name rather than value. A colormap is a
table of index-to—RGB mappings.

OpenGL color modes are discussed in some detail in the section "RGBA versus Color-Index Mod:
in Chapter 5, "Color," of th®penGL Programming Guide.

The X Window System supports six different types of visuals, with each type using a different type
of colormap (sedable 4-1 Although working with X colormaps may initially seem somewhat

complicated, the X Window System does

allow you a great deal of flexibility in choosing and allocating colormaps. Colormaps are discussed
detail and with example programs in Chapter 7, "Color," of O'Reilly

Volume One.

The rest of this section addresses some issues having to do with X colormaps.

Color Variation Across Colormaps

The same index in different X colormaps doesn’t necessarily represent the same color. Be sure yo
use the correct color index values for the colormap you are working with.

If you use a nondefault colormap, avoid color macros suBleakPixel() andWhitePixel(). As is
required by X11, these macros return pixel values that are correct for the default colormap but
inappropriate for your application. The pixel value returned by the macro is likely to represent a col
different from black or white in your colormap, or worse yet, be out of range for it. If the pixel value
doesn’t exist in your colormap (such as any pixel greater than three for a 2—bit overlay colormap),
X protocol error results.

A "right index-wrong map" type of mistake is most likely if you use the magliaxskPixel and
WhitePixel. For example, thBlackPixel macro returns zero, which is black in the default colormap.
That value is always transparent (not black) in a popup or overlay colormap (if it supports transpar
pixels).

You might also experience problems with colors not appearing correctly on the screen because the
colormap for your window is not installed in the hardware.

Multiple Colormap Issues

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 16

The need to deal with multiple colormaps of various sizes raises new issues. Some of these issue:
not have well-defined solutions.

There is no default colormap for any visual other than the default visual. You must tell the window
manager which colormaps to install uskg§etWMColormapWindows()nless you use the
GLwMDrawingArea widget, which does this for you.

With multiple colormaps in use, colormap flashing may occur if you exceed the hardware
colormap resources.

An application has as many of its colormaps installed as possible only when it has colormap
focus.

- Atthat time, the window manager attempts to install all the application’s colormaps,
regardless of whether or not all are currently needed. These colormaps remain installed ul
another application needs to have one of them replaced.

— If another application gets colormap focus, the window manager installs that application’s
(possibly conflicting) colormaps. Some widgets may be affected while other widgets remai
unchanged.

- The window manager doesn't reinstall the colormaps for your application until your
application has the colormap focus again.

ThegetColormap()xall defined inExample 4—2eturns a sharable colormap (the ICCCM
RGB_DEFAULT_MAP) for a TrueColor visual given a pointer to XVisuallnfo. This is useful to
reduce colormap flashing for non-default visuals.

Example 4-2 Retrieving the Default Colormap for a Visual

Colormap
getColormap(XVisuallnfo * vi)
{

Status status;

XStandardColormap *standardCmaps;
Colormap cmap;
int i, numCmaps;

/* be lazy; using DirectColor too involved for this example */
if (vi—>class != TrueColor)
fatalError("no support for non—-TrueColor visual");
/* if no standard colormap but TrueColor, make an unshared one *

status = XmuLookupStandardColormap(dpy, vi—>screen, vi—>visualid

vi->depth, XA_RGB_DEFAULT_MAP,
* replace */ False, /* retain */ True);
if (status == 1) {
status = XGetRGBColormaps(dpy, RootWindow(dpy, vi->screen),
&standardCmaps, &numCmaps,
XA _RGB_DEFAULT_MAP);

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 17

if (status == 1)
for (i = 0; i < numCmaps; i++)
if (standardCmapsii].visualid == vi—>visualid) {
cmap = standardCmapsJi].colormap;
XFree(standardCmaps);
return cmap;

}

cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
vi—>visual, AllocNone);
return cmap;

Choosing Which Colormap to Use
When choosing which colormap to use, follow these heuristics:

1. First decide whether your program will use RGBA or color-index mode. Some operations, suc
as texturing and blending, are not supported in color index mode; others, such as lighting, wor
differently in the two modes. Because of that, RGBA rendering is usually the right choice. (See
"Choosing between RGBA and Color-Index Mode" in Chapter 5, "Color," &fgaeGL
Programming Guidg

OpenGL 1.0 and 1.1 and GLX 1.0, 1.1, and 1.2 require an RGBA mode program to use a
TrueColor or DirectColor visual, and require a color index mode program to use a PseudoColc
or StaticColor visual.

Note: Remember that RGBA is usually the right choice for OpenGL on a Silicon Graphics
system.

2. Choose a visual. If you intend to use RGBA mode, specify RGBA in the attribute list when
calling gIXChooseVisual()

If RGBA is not specified in the attribute ligfiXChooseVisual(3elects a PseudoColor visual to
support color index mode (or a StaticColor visual if no PseudoColor visual is available).

If the framebuffer configuration extension is available, you can use a TrueColor or DirectColor
visual in color index mode. SE8GIX_fbconfig] The Framebuffer Configuration Extension”

3. Create a colormap that can be used with the selected visual.
4. If a PseudoColor or DirectColor visual has been selected, initialize the colors in the colormap.

Note: DirectColor visuals are not supported on Silicon Graphics systems. Colormaps for
TrueColor and StaticColor visuals are not writable.

5. Make sure the colormap is installed. Depending on what approach you use, you may or may n
have to install it yourself:

If you use the GLwMDrawingArea widget, the widget automatically calls
XSetWMColormapWindowsfhen the GLwNinstallColormap resource is enabled.

The colormap of the top—level window is used if your whole application uses a single
colormap. In that case, you have to make sure the colormap of the top-level window

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 18

supports OpenGL.

Call XSetWMColormapWindows) ensure that the window manager knows about your
window’s colormap. Here’s the function prototype X8etWMColormapWindows()

Status XSetWMColormapWindows(Display * display, Window w,
Window * colormap_windowsnt counp

Many OpenGL applications use a 24-bit TrueColor visual (by specifying GLX_RGBA in the visual
attribute list when choosing a visual). Colors usually look right in TrueColor, and some overhead is
saved by not having to look up values in a table. On some systems, using 24-bit color can slow dc
the frame rate because more bits must be updated per pixel, but this is not usually a problem.

If you want to adjust or rearrange values in a colormap, you may have to use a PseudoColor visua
which has to be used with color-index mode unless the framebuffer configuration extension is
available. Lighting and antialiasing are difficult in color-index mode, and texturing and accumulatic
don’t work at all. It may be easier to use double—buffering and redraw to produce a new
differently—colored image, or use the overlay plane. In general, avoid using PseudoColor visuals if
possible.

Overlays, which always have PseudoColor colormaps on current systems, are an exception to this

Colormap Example

Here’s a brief example that demonstrates how to store colors into a given colormap cell:

XColor xc;

display = XOpenDisplay(0);

visual = gIXChooseVisual(display, DefaultScreen(display),
attributeList);

context = glXCreateContext (display, visual, 0, GL_FALSE);

colorMap = XCreateColormap (display, RootWindow(display,

visual->screen), visual—->visual, AllocAll);

if (ind < visual->colormap_size) {
xc.pixel = ind;
xc.red = (unsigned short)(red * 65535.0 + 0.5);

xc.green = (unsigned short)(green * 65535.0 + 0.5);

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 19

xc.blue = (unsigned short)(blue * 65535.0 + 0.5);
xc.flags = DoRed | DoGreen | DoBlue;

XStoreColor (display, colorMap, &xc);

}

Note: Do not use AllocAll on overlay visuals with transparency. If youxioreateColormap(jails
because the transparent cell is read-only.

Stereo Rendering

Silicon Graphics systems and OpenGL both support stereo rendering. In stereo rendering, the
program displays a scene from two slightly different viewpoints to simulate stereoscopic vision,
resulting in a 3D image to a user wearing a special viewing device. Various viewing devices exist;
most of them cover one eye while the computer displays the image for the other eye, then cover tr
second eye while the computer displays the image for the first eye.

Note: Be sure to look at thsetereoreference page for more information on stereo rendering
(including sample code fragments and pointers to sample code).

In this section, you learn about

"Stereo Rendering Background Information™

"Stereo Rendering"

Stereo Rendering Background Information

There are two basic approaches to stereo rendé@ugd Buffer Sterecdnd"Divided—Screen
Stereo."

Quad Buffer Stereo

Quad buffer stereo uses a separate buffer for the left and right eye, resulting in four buffers if the
program is already using a front and back buffer for animation. Quad buffer stereo is supported on
RealityEngine and Indigo2 Maximum IMPACT and will be supported on future high—end systems.

The main drawback of this approach is that it needs a substantial amount of framebuffer resources
and is therefore feasible only on high—end systems'Peemrming Stereo Rendering on High—End
Systems'for step—by-step instructions.

Divided—Screen Stereo

Divided-screen stereo divides the screen into left and right pixel lines. This approach is usually
appropriate on low—end systems, which don’'t have enough memory for quad—buffer stereo.

If you put the monitor in stereo mode, you lose half of the screen’s vertical resolution and pixels ge
1 x 2 aspect ratio. The XSGlvc extension does all X rendering in both parts of the screen. Note,
however, that monoscopic OpenGL programs will look wrong if you use the extension.

When working with divided-screen stereo, keep in mind the following caveats:

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 20

Because stereo is enabled and disabled without restarting the server, the advertised screen h
is actually twice the height displayed.

With quad-buffering, stereo pixels are square. If you are using divided—screen stereo, pixels ¢
twice as high as they are wide. Thus, transformed primitives and images need an additional
correction for pixel aspect ratio.

For More Information on Stereo Rendering

See the reference pages for the following functi¥®51StereoQueryExtension
XSGIStereoQueryVersigrKSGIQueryStereoModeXSGISetStereoModeXSGlSetStereoBuffer

Stereo Rendering

This section first explains how to do stereo rendering on high—end systems, then on low—end and
mid-range systems.

Performing Stereo Rendering on High—End Systems

To perform stereo rendering on high—end systems (RealityEngine, Indigo2 Maximum IMPACT, an
future high—end systems), follow these steps:

1. Perform initialization, that is, make sure the GLX extension is supported and so on.
2. Put the monitor in stereo mode with fetmorcommand.
3. Choose a visual with front left, front right, back left, and back right buffers.

4. Perform all other setup operations illustrated in the examplehapter 2andChapter 3create
a window, create a context, make the context current, and so on.

5. Start the event loop.
6. Draw the stereo image:

glDrawBuffer(GL_BACK_LEFT);
< draw left image >
glDrawBuffer(GL_BACK_RIGHT);
< draw right image >
glXSwapBuffers(...);

For more information, see tlgtDrawBuffer()reference page.

Performing Stereo Rendering on Low—End and Mid—-Range Systems

To perform stereo rendering on low—end and mid-range systems (including Indigo2 High IMPACT
follow these steps:

1. Perform initialization, that is, make sure the GLX extension is supported and so on.
2. Put the monitor in stereo mode using set¢morcommand.

3. Call XSGlStereoQueryExtension) see if the stereo extension is supported.
n If stereo is not supported, exit.
n If stereo is supported, cISGISetStereoModef) turn it on (options are

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics - 21

STEREO_BOTTOM or STEREO_TOP).

4. Choose a visual with front left, front right, back left and back right buffers by calling
gIXChooseVisuakith both GLX_DOUBLEBUFFER and GLX_STEREO in the attribute list.

5. Perform all other setup operations discussed in the examples in the previous two chapters: cre
a window, create a context, make the context current, and so on.

6. To draw the stereo image, use code similar to this pseudo—code fragment:

XSGlSetStereoBuffer(STEREO_BUFFER_LEFT);
< draw left image >
XSGISetStereoBuffer(STEREO_BUFFER_RIGHT);
< draw right image >

glXSwapBuffers(...);

Using Pixmaps

An OpenGL program can render to two kinds of drawables: windows and pixmaps. (Rendering to
PBuffers is also possible if that extension is supported'S8&X_pbuffef] The Pixel Buffer
Extension®) A pixmap is an offscreen rendering area. On Silicon Graphics systems, pixmap
rendering is not hardware accelerated.

DpenGl ancillary buffers

Irmage buffer

Jlxpmap

pixrmap -
Figure 4-2 X Pixmaps and GLX Pixmaps

In contrast to windows, where drawing has no effect if the window is not visible, a pixmap can be
drawn to at any time because it resides in memory. Before the pixels in the pixmap become visible
they have to be copied into a visible window. The unaccelerated rendering for pixmap pixels has
performance penalties.

This section explains how to create and use a pixmap and looks at some related issues:

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics — 22

"Creating and Using Pixmapgtovides basic information about working with pixmaps.

"Direct and Indirect Renderingdrovides some background information; it is included here
because rendering to pixmaps is always indirect.

Creating and Using Pixmaps

Integrating an OpenGL program with a pixmap is very similar to integrating it with a window. It
involves the steps given below. (Note that Steps 1-3 and Step 6 are discussed irffldétgidting
Your OpenGL Program With IRIS IM)

1. Open the connection to the X server.

2. Choose a visual.

3. Create a rendering context with the chosen visual.
This context must be indirect.

4. Create an X pixmap usingCreatePixmap().

5. Create a GLX pixmap usirgiXCreateGLXPixmap().

GLXPixmap gIXCreateGLXPixmap(Display *dpy, XVisuallnfo *vis,
Pixmap pixmap

The GLX pixmap "wraps" the pixmap with ancillary buffers determinedib{seeFigure 4-p

Thepixmapparameter must specify a pixmap that has the same depth as the visualpbimts
to (as indicated by the visual's GLX_BUFFER_SIZE value), or a BadMatch X protocol error
results.

6. UseglXMakeCurrent(Xo bind the pixmap to the context.

You can now render into the GLX pixmap.

Direct and Indirect Rendering
OpenGL rendering is done differently in different rendering contexts (and on different platforms).

Direct rendering contexts support rendering directly from OpenGL via the hardware, bypassinc
X entirely. Direct rendering is much faster than indirect rendering, and all Silicon Graphics
systems can do direct rendering to a window.

In indirect rendering contexts, OpenGL calls are passed by GLX protocol to the X server,
which does the actual rendering. Remote rendering has to be done indirectly; pixmap renderin
is implemented to work only indirectly.

Note: As a rule, use direct rendering unless you are using pixmaps. If you ask for direct and your
DISPLAY is remote, the library automatically switches to indirect rendering.

In indirect rendering, OpenGL rendering commands are added to the GLX protocol stream, which
turn is part of the X protocol stream. Commands are encoded and sent to the X server. Upon
receiving the commands, the X server decodes them and dispatches them to the GLX extension.
Control is then given to the GLX process (via a context switch) so the rendering commands can be
processed. The faster the graphics hardware, the higher the overhead from indirect rendering.

OpenGL ® on Silicon Graphics ® Systems — Chapter 4, OpenGL and X: Advanced Topics - 23

You can obtain maximum indirect-rendering speed by using display lists; they require a minimum
interaction with the X server. Unfortunately, not all applications can take full advantage of display
lists; this is particularly a problem in applications using rapidly—changing scene structures. Display
lists are efficient because they reside in the X server.

You may see multiple XSGI processes on your workstation when you are running indirect renderin
OpenGL programs.

Performance Considerations for X and OpenGL

Due to synchronization and context switching overhead, there is a possible performance hit for
mixing OpenGL and X in the same window. GLX doesn’t constrain the order in which OpenGL
commands and X requests are executed. To ensure a particular order, use the GLX commands
gIXWaitGL()andgIXWaitX()

gIXWaitGL()prevents any subsequent X calls from executing until all pending OpenGL calls
complete. When you use indirect rendering, this function doesn’t contact the X server and is
therefore more efficient thagiFinish().

gIXWaitX(), when used with indirect rendering, is just the opposite: it makes sure that all
pending X calls complete before any further OpenGL calls are made. This function, too, doesr
need to contact the X server, giving it an advantageXSgnc()when rendering indirectly.

Remember also to batch Expose events."Bgposing a Window."

Make sure no additional Expose events are already queued after the current one. You can dis
all but the last event.

Portability

If you expect to port your program from X to other windowing systems (such as Windows NT),
certain programming practices make porting easier. Here is a partial list:

Isolate your windowing functions and calls from your rendering functions. The more modular
your code is in this respect, the easier it is to switch to another windowing system.

For Windows NT porting onlyi Avoid naming variables with any variation of the words "near"
and "far' they are reserved words in Intel xx86 compilers. For instance, you should avoid the
names near, far, near, far, near, far, Near, Far, NEAR, FAR, and so on.

Windows NT programs by default have a small stack; don’t allocate large arrays on the stack.

Windows NT doesn’t have an equivalengt¥CopyContext().

OpenGL ® on Silicon Graphics ® Systems — Chapter 5, Introduction to OpenGL Extensions — 24

Chapter 5
Introduction to OpenGL Extensions

OpenGL extensions introduce new features and enhance performance. Some extensions provide
completely new functionality; for example, the convolution extension allows you to blur or sharpen
images using a filter kernel. Other extensions enhance existing functionality; for example, the fog
function extension enhances the existing fog capability.

Several extensions provide functionality that existed in IRIS GL but is not available in OpenGL. If
you are porting a program from IRIS GL to OpenGL, you may therefore find some extensions
particularly helpful. Seéppendix A, "OpenGL and IRIS GLfor a list of IRIS GL commands and
corresponding OpenGL functionality.

This chapter provides basic information about OpenGL extensions. You learn about
"Determining Extension Availability"

"Finding Information About Extensions"

Determining Extension Availability

Function names and tokens for OpenGL extensions have EXT or a vendor-specific acronym as a
suffix, for exampleglConvolutionFilter2DEXT(pr glColorTableSGI() The hames of the extensions
themselves (the extension strings) use prefixes, for example, SGI_color_table. Here is a detailed i
of all suffixes and prefixes:

EXT is used for extensions that have been reviewed and approved by more than one OpenGL
vendor.

SGl is used for extensions that are available across the Silicon Graphics product line, althougl
the support for all products may not appear in the same release.

SGIS is used for extensions that are found only on a subset of Silicon Graphics platforms.

SGIX is used for extensions that are experimental: In future releases, the API for these
extensions may change, or they may not be supported at all.

How to Check for OpenGL Extension Availability

All supported extensions have a corresponding definitiayl.irand a token in the extensions string
returned byglGetString() For example, if the ABGR extension (EXT_abgr) is supported, it is
defined ingl.h as follows:

#define GL_EXT _abgr 1

GL_EXT_abgr appears in the extensions string returnegdstString() Use the definitions igl.h
at compile time to determine if procedure calls corresponding to an extension exist in the library.

Applications should do compile—time checkinfgr example, making sure GL_EXT_abgr is defined;
and run—time checkingfor example, making sure GL_EXT _abgr is in the extension string returned
by glGetString()

Compile-time checking ensures that entry points such as new functions or new enums are

OpenGL ® on Silicon Graphics ® Systems — Chapter 5, Introduction to OpenGL Extensions - 1

supported. You cannot compile or link a program that uses a certain extension if the client-sid
development environment doesn’t support it.

Run-time checking ensures that the extension is supported for the OpenGL server and run-til
library you are using.

Note that availability depends not only on the operating system version but also on the particu
hardware you are using: even though the 5.3 OpenGL library supports
GL_CONVOLUTION_2D_EXT, you get an GL_INVALID_OPERATION error if you call
glConvolutionFilter2DEXT(on an Indy system.

Note that libdl interface allows users to dynamically load their own shared objects as needed.
Applications can use this interface, particularly dlym()command, to compile their application on
any system, even if some of the extensions used are not supported.

Example Program: Checking for Extension Availability
In Example 5=1the functionQueryExtension(¢hecks whether an extension is available.

Example 5-1 Checking for Extensions

main(int argc, char* argv[]) {

if (IQueryExtension("GL_EXT _texture_object")) {
fprintf(stderr, "texture_object extension not supported.\n")

exit(1);

static GLboolean QueryExtension(char *extName)

{
/*
** Search for extName in the extensions string. Use of strstr()
** is not sufficient because extension names can be prefixes of
** other extension names. Could use strtok() but the constant
** string returned by glGetString might be in read—only memaory.
*
char *p;
char *end;
int extNameLen;

extNameLen = strlen(extName);
p = (char *)glGetString(GL_EXTENSIONS);

if (NULL ==p) {
return GL_FALSE;

OpenGL ® on Silicon Graphics ® Systems — Chapter 5, Introduction to OpenGL Extensions - 2

end = p + strlen(p);

while (p < end) {
int n = strcspn(p, " ");
if ((extNameLen == n) && (strncmp(extName, p, n) == 0)) {
return GL_TRUE;

}
p+=(n+1)

}
return GL_FALSE;

}

As an alternative to checking for each extension explicitly, you can make the following calls to
determine the system and IRIX release on which your program is running:

glGetString(GL_RENDERER)

glGetString(GL_VERSION)

Given a list of extensions supported on that system for that release, you can usually determine
whether the particular extension you need is available. For this to work on all systems, a table of
different systems and the extensions supported has to be available. Some extensions have been
included in patch releases, so be careful when using this approach.

When an extension is incomplete, it is not advertised in the extensions string. Some of the
RealityEngine extensions that were supported in IRIX 5.3 (for example, the subtexture, sharpen
texture, convolution, and histogram extensions) fall in that category.

Checking for GLX Extension Availability

If you use any of the extensions to GLX, describe@lapter 6, "Resource Control Extensionsi
also need to check for GLX extension availability.

Querying for GLX extension support is similar to querying for OpenGL extension support with the
following exceptions:

Compile time defines are foundgx.h.

To get the list of supported GLX extensions, gidQueryExtensionsString().

GLX versions must be 1.1 or greater (no extensions to GLX 1.0 exist).

Adapt the process described'iiow to Check for OpenGL Extension Availabilitytaking these
exceptions into account.

Finding Information About Extensions

You can find information about the extensions through reference pages, example programs, and
extension specifications.

Reference Pages

OpenGL ® on Silicon Graphics ® Systems — Chapter 5, Introduction to OpenGL Extensions — 3

For the most up—-to—date information on extensions, see the following reference pages:
glintro Information about the current state of extensions on your system.
glXintro Information on GLX extensions.

Note that individual OpenGL reference pages have a MACHINE DEPENDENCIES section that list
the systems on which certain extension functions or options are implemented. Here is an example
from the glSampleMaskSGIS reference page:

MACHINE DEPENDENCIES

Multisampling is supported only on RealityEngine, RealityEngine2, VTX and InfiniteReality
systems. Currently it can be used with windows of Multisampling—capable Visual types, but not wit
pixmaps.

Example Programs

All complete example programs included in this guide (though not the short code fragments) are
available in/usr/share/src/OpenGlf you have thegl_dev.sw.samplesibsystem installed. You can
also find example programs through the Silicon Graphics Developer Toolbox,
http://www.sgi.com/Technology/toolbox.html.

Extension Specifications

Extension specifications describe extension functionality from the implementor’s point of view. The
are prepared to fit in with the OpenGL specification. Specification contain detailed information that
goes beyond what developers usually need to know. If you need more detail on any of the extensit
search for its specification in the developer toolbox.

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 4

Chapter 6
Resource Control Extensions

This chapter discusses resource control extensions, which are extensions to GLX. GLX is an
extension to the X Window System that makes OpenGL available in an X Window System
environment. All GLX functions and other elements have the pgéfiXjust as all OpenGL elements
have the prefixgl).

You can find information on GLX in several places:
Introductory informatiofll See thalxintro reference page

In—depth coverageSee Appendix C, "OpenGL and Window Systems," ofQpenGL
Programming GuidandOpenGL Programming for the X Window System

See"OpenGL and Associated Tools and Librariém"bibliographical information).

This chapter explains how to use extensions to GLX. The extensions are presented in alphabetica
order. You learn about

"EXT_import_contexi] The Import Context Extension"
"EXT_make_current_read The Make Current Read Extension"
"EXT _visual_infdd The Visual Info Extension"

"EXT_visual_ratindg] The Visual Rating Extension”

The following sections describe extensions that are experimental:
"SGIX_dm_pbuffefr] The Digital Media Pbuffer Extension”
"SGIX_fbconfig] The Framebuffer Configuration Extension"

"SGIX_pbuffefd The Pixel Buffer Extension"

Note: Using OpenGL in an X Window System environment is discussed in the following chapters ¢
this guide:

Chapter 2, "OpenGL and X: Getting Started"
Chapter 3, "OpenGL and X: Examples"

Chapter 4, "OpenGL and X: Advanced Topics"

EXT _import_context [The Import Context Extension

The import context extension, EXT_import_context, allows multiple X clients to share an indirect
rendering context. The extension also adds some query routines to retrieve information associatec
with the current context.

To work effectively with this extension, you must first understand direct and indirect rendering. See
"Direct and Indirect Renderingor some background information.

Importing a Context

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 1

You can use the extension to import another process’ OpenGL context, as follows:
To retrieve the XID for a GLX context, cglXGetContextIDEXT()
GLXContextID gIXGetContextIDEXT(const GLXContext ctx)

This function is client-side only. No round trip is forced to the server; unlike most X calls that
return a valueglXGetContextIDEXT@loes not flush any pending events.

To create a GLX context, given the XID of an existing GLX context, call
gIXImportContextEXT()You can use this function in placegbkCreateContext(jo share
another process’ indirect rendering context:

GLXContext glXImportContextEXT(Display *dpy, GLXContext|D contextID
)

Only the server—side context information can be shared between X clients; client-side state, s
as pixel storage modes, cannot be shared. GiXibnportContextEXT (Inust allocate memory
to store client-side information.

A call to gIXImportContextEXT(Jloesn’t create a new XID. It merely makes an existing XID
available to the importing client. The XID goes away when the creating client drops its
connection or the ID is explicitly deleted. The object goes away when the XID goes away and
the context is not current to any thread.

To free the client—side part of a GLX context that was createdjiibmportContextEXT()call
gIXFreeContextEXTY)

void gIXFreeContextEXT(Display * dpy, GLXContext ctx)

gIXFreeContextEXT(@oesn't free the server—side context information or the XID associated
with the server—side context.

Retrieving Display and Context Information

Use the extension to retrieve the display of the current context, or other information about the
context, as follows:

To retrieve the current display associated with the current context, call
gIXGetCurrentDisplayEXT(which has the following prototype:

Display * gIXGetCurrentDisplayEXT(void);

If there is no current context, NULL is returned. No round trip is forced to the server; unlike
most X calls that return a valugiXGetCurrentDisplayEXT(jloesn’t flush any pending events.

To obtain the value of a context’s attribute, gidQueryContextInfoEXTY()

int gIXQueryContextinfoEXT(Display * dpy, GLXContext ctx,
int attributeint * value)

The values and types corresponding to each GLX context attribute are liStdulare—1

Table 6-1 Type and Context Information for GLX Context Attributes

GLX Context Attribute Type Context Information
GLX_SHARE_CONTEXT_EXT XID XID of the share list context

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 2

GLX_VISUAL_ID_EXT XID visual ID
GLX_SCREEN_EXT int screen number

New Functions

gIXGetCurrentDisplayEXTgIXGetContextIDEXT giXImportContextEXT gIXFreeContextEXT
gIXQueryContextInfoEXT

EXT_make_current_read [0 The Make Current Read Extension

The make current read extension, SGI_make_current_read, allows you to attach separate read an
write drawables to a GLX context by calligKMakeCurrentReadSGJ@vhich has the following

prototype:

Bool gIXMakeCurrentReadSGI(Display * dpy,GLXDrawable draw,
GLXDrawable read GLXContext gc)

where

dpy Specifies the connection to the X server.

draw A GLX drawable that receives the results of OpenGL drawing operations.

read A GLX drawable that provides pixels fgtReadPixels(andglCopyPixels()

operations.
gc A GLX rendering context to be attached to draw and read.

Read and Write Drawables

In GLX 1.1, you associate a GLX context with one drawable (window or pixmap) by calling
glXMakeCurrent()giXMakeCurrentReadSGI(gts you attach a GLX context to two drawables: The
first is the one you draw to, the second serves as a source for pixel data.

In effect, the following calls are equivalent:

MakeCurent(context, win)
MakeCurrentRead(context, win, win)

Having both a read and a write drawable is useful, for example, to copy the contents of a window t
another window, to stream video to a window, and so on.

Thewrite drawable is used for all OpenGL operations. Accumulation buffer operations fetch data
from the write drawable and are not allowed when the read and write drawable are not identical.

Thereaddrawable is used for any color, depth, or stencil values that are retriegéRdagdPixels()
glCopyPixels()glCopyTexlmage()or glCopyTexSublmage(l is also use by any OpenGL
extension that sources images from the framebuffer in the mangktezdPixels()glCopyPixels()
glCopyTeximage()or glCopyTexSublmage()

Here is some additional information about the two drawables:

The two drawables do not need to have the same ancillary buffers (depth buffer, stencil buffer
and so on).

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 3

The read drawable does not have to contain a buffer corresponding to the current
GL_READ_BUFFER of a GLX context. For example, the current GL_READ_BUFFER may be
GL_BACK, and the read drawable may be single—buffered.

If a subsequent command sets the read buffer to a color buffer that does not exist on the read
drawablé] even if set implicitly byglPopAttrib()J or if an attempt is made to source pixel
values from an unsupported ancillary buffer, a GL_INVALID_OPERATION error is generated.

If the current GL_READ_BUFFER does not exist in the read drawable, pixel values extracted
from that drawable are undefined, but no error is generated.

Operations that query the value of GL_READ_BUFFER use the value set last in the context,
regardless of whether the read drawable has the corresponding buffer.

Possible Match Errors

WhenglXMakeCurrentReadSGl@ssociates two GLX drawables with a single GLX context, a
BadMatch X protocol error is generated if either drawable was not created with the same X screen

The color, depth, stencil, and accumulation buffers of the two drawables don’t need to match. Cert
implementations may impose additional constraints. For example, the current RealityEngine
implementation requires that the color component resolution of both drawables be the same. If it is
not, giXMakeCurrentReadSGl@enerates a BadMatch X protocol error.

Retrieving the Current Drawable’s Name

gIXGetCurrentReadDrawableSGl@turns the name of the GLXDrawable currently being used as a
pixel query source.

If giIXMakeCurrent()specified the current rendering context, then
gIXGetCurrentReadDrawableSGl@turns the drawable specifieddraw by that
glXMakeCurrent call.

If giXMakeCurrentReadSGlgpecified the current rendering context, then
gIXGetCurrentReadDrawableSGl@turns the drawable specifiedraadby that
gIXMakeCurrentReadSGIgall.

If there is no current read drawabigXGetCurrentReadDrawableSGlgturns None.

New Functions

glXefReadSGl

EXT visual_info O The Visual Info Extension

The visual info extension, EXT_visual_info, enhances the standard GLX visual mechanism as
follows:

You can request that a particular X visual type be associated with a GLX visual.
You can query the X visual type underlying a GLX visual.

You can request a visual with a transparent pixel.

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 4

You can query whether a visual supports a transparent pixel value and query the value of the

transparent pixel.

Note that the notions of level and transparent pixels are orthogonal as both level 1 and level 0
visuals may or may not support transparent pixels.

Using the Visual Info Extension

To find a visual that best matches specified attributesgté&hooseVisual()

XVisuallnfo* gIXChooseVisual(Display

*dpy, int screenint * attrib_list)

The following heuristics determine which visual is chosen:

Table 6-2 Heuristics for Visual Selection

If...

And GLX_X_VISUAL_TYPE_EXT
is...

The result is...

GLX_RGBA is
in attrib_list

GLX_RGBA is
not inattrib_list

GLX_TRUE_COLOR_EXT

GLX_DIRECT_COLOR_EXT
GLX_PSEUDO_COLOR_EXT,
GLX_STATIC_COLOR_EXT,
GLX_GRAY_SCALE_EXT, or
GLX_STATIC_GRAY_EXT
Not in attrib_list, and if all other
attributes are equivalent...

GLX_PSEUDO_COLOR_EXT

GLX_STATIC_COLOR_EXT
GLX_TRUE_COLOR_EXT,
GLX_DIRECT_COLOR_EXT,
GLX_GRAY_SCALE_EXT, or
GLX_STATIC_GRAY_EXT
Not in attrib_list and if all other
attributes are equivalent...

TrueColor visual

DirectColor visual
Visual Selection fails

A TrueColor visual
(GLX_TRUE_COLOR_EXT) is chosen in
preference to a DirectColor visual
(GLX_DIRECT_COLOR_EXT)
PseudoColor visual

StaticColor visual
Visual selection fails

A PseudoColor visual
(GLX_PSEUDO_COLOR_EXT) is chosen
in preference to a StaticColor visual
(GLX_STATIC_COLOR_EXT)

If an undefined GLX attribute, or an unacceptable enumerated attribute value is encountered, NUL

is returned.

More attributes may be specified in the attribute list. If a visual attribute is not specified, a default
value is used. See thEXChooseVisuateference page for more detail.

To free the data returned fragiXChooseVisual(JuseXFree()

Note that GLX_VISUAL_TYPE_EXT can also be used watXGetConfig()

Using Transparent Pixels

How you specify that you want a visual with transparent pixels depends on the existing attributes:
Then callgIXChooseVisual(@nd specify as the value of

GLX_TRANSPARENT_TYPE_EXT...

If...

GLX_RGBA is inattrib_list

GLX_TRANSPARENT RGB_EXT

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 5

GLX_RGBA is not inattrib_list GLX_TRANSPARENT_INDEX_EXT

Don't specify one of the following values attrib_list because typically only one transparent color
or index value is supported:

GLX_TRANSPARENT_INDEX_VALUE_EXT,
GLX_TRANSPARENT_{RED|GREEN|BLUE|ALPHA} VALUE_EXT

Once you have a transparent visual, you can query the transparent color value by calling
gIXGetConfig() To get the transparent index value for visuals that support index rendering, use
GLX_TRANSPARENT_INDEX_VALUE_EXT. For visuals that support RGBA rendering, use
GLX_TRANSPARENT_{RED|GREEN|BLUE} VALUE_EXT. The visual attribute
GLX_TRANSPARENT_ALPHA VALUE_EXT is included in the extension for future use.

"Creating Overlayspresents an example program that uses a transparent visual for the overlay
window.

EXT visual_rating 0 The Visual Rating Extension

The visual rating extension, EXT_visual_rating, allows servers to export visuals with improved
features or image quality, but lower performance or greater system burden, without having to have
these visuals selected preferentially. It is intended to ensure that mdgtossibly not

alll] applications get the "right" visual.

You can use this extension during visual selection, keeping in mind that while you will get a good
match for most systems, you may not get the best match for all systems.

Using the Visual Rating Extension

To determine the rating for a visual, cglKGetConfig(with attributeset to
GLX_VISUAL_CAVEAT_EXT. gIXGetConfig(returns the rating of the visual in the parameter
value GLX_NONE_EXT or GLX_SLOW_EXT.

If the GLX_VISUAL_CAVEAT_EXT attribute is not specified in tla¢trib_list parameter of
glIXChooseVisual()preference is given to visuals with no caveats (that is, visuals with the attribute
set to GLX_NONE_EXT). If the GLX_VISUAL_CAVEAT_EXT attribute is specified, then
glIXChooseVisual()natches the specified value exactly. For example, if the value is specified as
GLX_NONE_EXT, only visuals with no caveats are considered.

SGIX_dm_pbuffer O The Digital Media Pbuffer Extension

The Digital Media Pbuffer extension, SGIX_dm_pbuffer, introduces a new type of GLXPbuffer, the
DMbuffer. Images generated by digital media libraries in DMbuffer form can be used directly by
OpenGL as renderable buffers or as the pixel source for texture images.

Note: Note:

The SGIX_dm_pbuffer extension is currently supported only on O2 systems. This discussion
therefore focuses on the buffer configurations available on O2 systems.

This section explains how to use the Digital Media Pbuffer extension in the following sections:

"Creating a Digital Media Pbuffeprovides a conceptual introduction to the steps involved in

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 6

using the extension.

"Compatibility Conditions'discusses image layout and pixel formats in for the different
libraries. This background information is used when an application creates DMbuffers that are
compatible with DMPbuffers.

"OpenGL Rendering to DMbuffergdrovides an example program that illustrates the material
discussed in the other two sections.

"DMbuffers as OpenGL Texturegkplains conditions under which DMbuffers can be used as
OpenGL textures. It also includes an example code fragment.

Creating a Digital Media Pbuffer

Creating a digital media Pbuffer involves three separate conceptual steps, explained in the followir
sections!'OpenGL Rendering to DMbufferdurther illustrates each step in the context of an
example program.

Table 6-3 Steps for Creating a Digital Media Pbuffer

Step... Discussed in...

1 "Creating a DMBuffer"

2 "Creating a Digital Media Pbuffer"
3 "Associating Pbuffer and DMbuffer"

Creating a DMBuffer

DMbuffers are a class of buffer common to video, JPEG decompression and other digital media
libraries. They permit the sharing and exchange of images in various formats. A graphical DMbuffe
is essentially a chunk of memory used to store a single image or, in the special case of mipmappe
DMbuffers, a set of images.

To use the dm_pbuffer extension, you have to create a DMbufferPool with characteristics that mat
the Pbuffer you want to associate with the DMbuffer. Follow these conceptual steps (in an actual
program, memory allocation and other issues are also part of the process):

1. CalldmBufferSetPoolDefaults{p specify the parameters of the DMbuffers you want to create.

The DMparams identify the DMbuffer when it is passed to OpenGLEsa®ple 6-)l The
following elements in the structure must be compatible with the characteristics of the Pbuffer:

DM_IMAGE_WIDTH and DM_IMAGE_HEIGHT
DM_IMAGE_PACKINGO (see"Pixel Formats)
DM_IMAGE_LAYOUT [(see"Compatibility Conditionsy
2. Call dmBufferCreatePoolfp create a DMbufferPool.
All the buffers in the pool will have the characteristics specified in step 1.

3. Once the buffer pool is created, DMbuffers are obtained with a call to ditfieufferAllocate()
vIEventToDMBuffer()or dmICReceive()depending on the application generating DMbuffers
for OpenGL.

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 7

Creating a Digital Media Pbuffer

A pixel buffer, or Pbuffer, is a window-independent, non-visible rendering buffer for an OpenGL
renderer. Pbuffers are supported by the Pbuffer extensiots&¥_pbuffef] The Pixel Buffer
Extension' A digital media Pbuffer is a special kind of Pbuffer.

To create a digital media Pbuffer, an application @i¥CreateGLXPbufferSGIX(3pecifying the
GLX_DIGITAL_MEDIA_PBUFFER_SGIX attribute.

The resulting Pbuffer is identical in all respects to a standard Pbuffer except that its primary color
buffer does not exist until the Phuffer is associated with a compatible DMbuffer for the first time. Al
other buffers (depth, stencil, accumulation) defined by the FBConfig for the pbuffer are allocated by
OpenGL.

Associating Pbuffer and DMbuffer

To associate a Pbuffer with a compatible DMbuffer, applicationg&iissociateDMPbufferSGIX()
which has the following prototype:

Bool gIXAssociateDMPbufferSGIX(Display * dpy,GLXPbufferSGIX pbuffer,
DMparams * paramsDMbuffer dmbuffer)

where

dpy Connection to an X server.

pbuffer GLX pixel buffer target of the associate operation.

params Parameter list that describes the format of the images in the DMbuffer that is to

be associated with the pixel buffer.
dmbuffer DMbuffer to be used as the front left color buffer.

The call togIXAssociateDMPbufferSGIXfust be issued before the pbuffer can be made current for
the first time, as either a read or write drawable. Once associated with a pbuffer, all rendering to, ©
read and copy operations from the pbuffer's color buffer will access the DMbuffer directly.

Compatible DMbuffers can be associated in sequence with the same pbuffer while the pbuffer is
current. A DMbuffer remains associated either until it is replaced by another associate command, «
until the pbuffer is destroyed. Once the DMbuffer is released, it is freed only if it has no remaining
clients on the system. DMbuffers are local resources, and a DMPbuffer can be current only to a dil
GLXContext.

Compatibility Conditions

A pbuffer and DMbuffer can be associated only if their image layout and pixel formats are
compatible. This section provides some background information on these two topics.

Image Layouts

When an application creates a pool of DMbuffers, it has to choose between two types of DMbuffer
image layout, linear and graphics, specified with the DM_IMAGE_LAYOUT parameter in the
DMparams structur&.able 6—4ists OpenGL commands that are compatible with DMbuffers of each
layout.

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 8

Table 6-4Linear and Graphics Layout

Linear Layout Graphics Layout
VL Layout VL_LAYOUT_ LINEAR VL_LAYOUT_ GRAPHICS,
VL_LAYOUT_ MIPMAP
DM image Layout DM_IMAGE_LAYOUT_LINEAR DM_IMAGE_LAYOUT_ GRAPHICS,
DM_IMAGE_LAYOUT_ MIPMAP
OpenGL commands glDrawPixels, glReadPixels, gIXAssociateDMPbufferSGIX,
glTeximage2D glCopyTexSublmage2D

Only DMbuffers with a graphics layout can be associated with a DMPbuffer. These DMbuffers
cannot be mapped, and so can be accessed only through digital media or graphics library commatr
not directly by the application.

DMbuffers with linear image layout can be mapped, and can be passed by address as the pixels
parameter tglDrawPixels() gIReadPixels(andglTexImage2D().

Pixel Formats

There are three internal pixel formats that are shared by the video, digital media and graphics
libraries. The video library (libvl), the digital media library (libdmedia), and the graphics library
(libGL) each have different designations for the same internal format, as illustratiolén6—-5

Table 6-5 Pixel and Texel Formats (Video, Digital Media and Graphics)

libvl libmedia libGL- texel, pixel
rgha-8888 VL_PACKING_ABGRS DM_IMAGE_PACKING_ GL_RGBAS8_EXT,
RGBA GL_RGBA with

GL_UNSIGNED_BYTE
rgba-5551 VL_PACKING_ARGB_1555 DM_IMAGE_PACKING_ GL_RGB5 Al _EXT,
XRGB5551 GL_RGBA with
GL_UNSIGNED_BYTE_5_
55 1 EXT
rgh-332 VL_PACKING_X444 332 DM_IMAGE_PACKING_ (332 texel not supported)
RGB332 GL_RGB with
GL_UNSIGNED_BYTE_3_
3 2 EXT

The DM_IMAGE_PACKING parameter of the DMparams structure should be set to a format that
matches the component depths described by the DMPbuffer FBConfig. Video applications also ne
to initialize the path to a matching video library format.

OpenGL Rendering to DMbuffers

Setup required for rendering to a DMPbuffer involves three basic steps, illustrated by example cod
fragments in the following section:

1. "Creating DMParams Structure and DMBuffer Pool"
2. "Creating a Compatible DMPbuffer"

3. "Associating the DMBuffer With the DMPbuffer"

Creating DMParams Structure and DMBuffer Pool

The following sample code fragment creates a DMparams structure, and a pool of DMbuffers that .

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 9

suitable for use by video and GL. The buffers are 640 x 480 with a graphics layout and 32-bit RGE
format.

Example 6-1 Creating a DMparams Structure and DMbuffer Pool

DMparams *imageParams, *poolParams;

DMbufferpool bufferPool,

DMpacking dmPacking = DM_IMAGE_PACKING_RGBA;

DMimagelayout dmLayout = DM_IMAGE_LAYOUT_GRAPHICS;
DMboolean cacheable = DM_FALSE;

DMboolean mapped = DM_FALSE;

int bufferCount = NUMBER_OF_BUFFERS_NEEDED_BY_APPLICATION;
DMbuffer bufferflNUMBER_OF BUFFERS_NEEDED_BY_APPLICATION];
DMstatus s;

[* Create and initialize image params. */

s = dmParamsCreate(&imageParams);

s = dmSetimageDefaults(imageParams, 640, 480, dmPacking);

s = dmParamsSetEnum(imageParams, DM_IMAGE_LAYOUT, dmLayout);

/* Set up a VL video path before creating the DMbuffer pool. */

[* Create and initialize pool params using VL & GL dm utilities. */
s = dmParamsCreate(&poolParams);
s = dmBufferSetPoolDefaults(count, 0, cacheable, mapped);

s = vIDMPoolGetParams(viServer, vIPath, viINode, poolParams);

s = dmBufferGetGLPoolParams(imageParams, poolParams);

[* Set buffer count and create pool. */
bufferCount += dmParamsGetInt(poolParams, DM_BUFFER_COUNT);
dmParamsSetint(poolParams, DM_BUFFER_COUNT, bufferCount);

s = dmBufferCreatePool(poolParams, &bufferPool);
dmParamsDestroy(poolParams);

Creating a Compatible DMPbuffer

The next step is to create a DMPbuffer with the same size and format as the DMbuffers that are to
rendered to.

Example 6-2 Creating a Digital Media Pbuffer

GLXFBConfigSGIX *config;

GLXPbufferSGIX pbuffer;

GLXContext context;

int configAttribs [] = {
GLX_DOUBLEBUFFER, True,

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 10

GLX_RED_SIZE, 8,
GLX_GREEN_SIZE, 8,
GLX_BLUE_SIZE, 8,
GLX_ALPHA_SIZE, 8,
GLX_DRAWABLE_TYPE_SGIX, GLX_PBUFFER_BIT_SGIX,
(int) None };
int pbufAttribs] = {
GLX_DIGITAL_MEDIA_PBUFFER_SGIX, True,
(int) None };

config = gIXChooseFBConfigSGIX(display, screen, configAttribs);

pbuffer = gIXCreateGLXPbufferSGIX(display, *config, 640, 480,
pbufAttribs);
context = gIXCreateContextWithConfigSGIX(display, *config,
GLX_RGBA_TYPE_SGIX, NULL, True);

Associating the DMBuffer With the DMPbuffer

Finally the DMbuffer is allocated and associated with the DMPbuffer and made current to a contex
Applications typically cycle through a sequence of DMbuffers, rendering to them, or copying them"
OpenGL textures. Freeing the DMbuffer after it has been associated allows the buffer to return to t
pool for reuse once it is released by the OpenGL pbuffer or texture object.

Example 6-3 Associating a DMbuffer With a DMPbuffer

DMparams *imageParams = ...;
DMbufferpool bufferPool = ...;
DMbuffer dmBuffer;

DMstatus s;

[* associate the first DMbuffer before making current */

s = dmBufferAllocate(bufferPool, &dmBuffer);
gIXAssociateDMPbufferSGIX(display, pbuffer, imageParams, dmBuffer);
glXMakeCurrent(display, pbuffer, context);

for(i = 0; i < bufferCount; i++)i {
[* perform GL rendering operations to the DMbuffer */

dmBufferFree(dmBuffer);
s = dmBufferAllocate(bufferPool, &dmBuffer);
gIXAssociateDMPbufferSGIX(display, pbuffer, imageParams, dmBuffe

r;
}

DMbuffers as OpenGL Textures

Under certain conditions, the SGIX_dm_pbuffer implementation on O2 permits the direct use of a

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 11

DMbuffer as a GL texture. The benefits are optimized texture loading for DMbuffers generated as
video and JPEG images, and for textures rendered as images to a DMPbuffer.

After DMBuffer and pbuffer have been associated, applications cagiX®bkeCurrentReadSGI()
with a DMPbuffer as the read drawable, then giélbpyPixels(or giCopyTeximage2D¢p copy the
contents of the associated DMbuffer to another drawable or to a texture. These copy operations
behave as they would with any standard read drawable.

The following conditions allow for a "copy by reference" of the currently associated DMbuffer to a
texture object (also see the reference paggl@opyTexSublmage2P

glCopyTexSublmage2Di§ used to copy the entire texture image from the DMPbulffer.

The DMPbuffer and target 2D texture object match in terms of width, height, and depth of
RGBA components. Sé®ixel Formats'for comparable formats.

The texture object is 64 (or more) texels in its largest dimension.

If the DMbuffer image layout is DM_IMAGE_LAYOUT_MIPMAP, then the
GL_GENERATE_MIPMAP_SGIS texture parameter must also be set to TRUE for the texture
object at the time of the copy.

Only the default pixel transfer operations are enabled at the time of the copy.

After a DMbuffer is copied by reference to the texture object it remains associated as the texture,
even once the association to the source DMPbuffer changes, and until the texture object is destroy
or the texture image is updated through another OpenGL command.

DiMbutferpasal
GLXContext
raad draw
T
L J
T
DMPhuffar } 1 GLXDrawabla
texture
L ¥ object
Dibuffer

Figure 6-1 DMPbuffers and DMbuffers

The following example demonstrates the optimized case for copying a DMbuffer by reference to a
texture object. The source DMPbuffer and DMbuffer differ from previous examples only in size; the
are 512 square to allow for direct use as a OpenGL texture.

Example 6—-4 Copying a DMbuffer to a Texture Object.

I* Make DMPbuffer current as a read drawable */

pbuffer = gIXCreateGLXPbufferSGIX(display, *config, 512, 512, attrib

s);

gIXAssociateDMPbufferSGIX(display, pbuffer, imageParams, dmBuffer);
glXMakeCurrentReadSGI(display, drawable, pbuffer, context);

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 12

[* Create and init a compatible GL texture object with NULL image */

glGenTextures(1, &texObj);

glBindTexture(GL_TEXTURE_2D, texObj);

glTeximage2D(GL_TEXTURE_2D, level = 0, GL_RGBA8, w =512, h =512,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);

[* copy the DMbuffer by reference to the texture object */

glCopyTexSublmage(GL_TEXTURE_2D, level = 0, xoff = 0, yoff = 0,
x=0,y=0,w=512, h=512);
New Function

glXAssociateDMPbufferSGIX

SGIX_fbconfig OO The Framebuffer Configuration Extension
The framebuffer configuration extension, SGIX_fbconfig, provides three new features:

It introduces a new way to describe the capabilities of a GLX drawable, that is, to describe the
resolution of color buffer components and the type and size of ancillary buffers by providing a
GLXFBConfigSGIX construct (also called FBConfig).

It relaxes the "similarity" requirement when associating a current context with a drawable.

It supports RGBA rendering to one— and two—component windows (luminance and luminance
alpha rendering) and GLX pixmaps as well as pbuffers (pixel buffers). Pbuffers are discussed
"SGIX_pbuffefd The Pixel Buffer Extension"

Caution : This extension is an SGIX (experimental) extension. The interface may change, or some
other details of the extension may change.

Why Use the Framebuffer Configuration Extension?

Use this extension
if you want to use pbuffers (sé8GIX_pbuffef] The Pixel Buffer Extension"
if you want to render luminance data to a TrueColor visual

instead ofgIXChooseVisual()because it provides visual selection for all GLX drawables,
including pbuffers, and incorporates the visual info and visual rating extensions.

This section briefly explores the three new features the extension provides.

Describing a Drawable With a GLXFBConfigSGIX Construct

Currently GLX overloads X visuals so they have additional buffers and other characteristics neede
for OpenGL rendering. This extension packages GLX drawables by defining a new construct, a
GLXFBConfigSGIX, that encapsulates GLX drawable capabilities and has the following properties:

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 13

It may or may not have an associated X visual. If it does have an associated X visual, then it it
possible to create windows that have the capabilities described by the FBConfig.

A particular FBConfig is not required to work with all GLX drawables. For example, it is
possible for implementations to export FBConfigs that work only with GLX pixmaps.

Less—Rigid Similarity Requirements When Matching Context and Drawable

In OpenGL without the extension, if you associate a drawable with a GLX context by calling
glXMakeCurrent()the two have to be "similar"; that is, they must have been created with the same
visual. This extension relaxes the requirement; it only requires the context and drawable to be
compatible. This is less restrictive and implies the following:

Therender_typaattribute for the context must be supported by the FBConfig that the drawable
was created with. For example, if the context was created for RGBA rendering, it can be used
only if the FBConfig supports RGBA rendering.

All color buffers and ancillary buffers that exist in both FBConfigs must have the same size. Fc
example, a GLX drawable that has a front left buffer and a back left buffer with red, green, anc
blue sizes of 4 is not compatible with an FBConfig that has only a front left buffer with red,
green, and blue sizes of 8. However, it is compatible with an FBConfig that has only a front lef
buffer if the red, green, and blue sizes are 4.

Note that when a context is created, it has an associated rendering type: GLX_RGBA_TYPE_SGL
or GLX_COLOR_INDEX_TYPE_SGIX.

Less—Rigid Match of GLX Visual and X Visual

The current GLX specification requires that the GLX_RGBA visual attribute be associated only witl
TrueColor and DirectColor X visuals. This extension makes it possible to do RGBA rendering to
windows created with visuals of type PseudoColor, StaticColor, GrayScale, and StaticGray. In eac
case, the red component is used to generate the framebuffer values and the green and blue fragm
are discarded.

The OpenGL RGBA rendering semantics are more powerful than the OpenGL index rendering

semantics. By extending the X visual types that can be associated with an RGBA color buffer, this
extension allows RGBA rendering semantics to be used with pseudo—color and gray—scale display
particularly useful application of this extension is that it allows you to work with single-component
images with texture mapping, then use a pseudo—color visual to map the luminance values to colo

GLXFBConfigSGIX Constructs

A GLXFBConfigSGIX (FBConfig) describes the format, type, and size of the color and ancillary
buffers for a GLX drawable. If the GLX drawable is a window, then the FBConfig that describes it
has an associated X visual; for a GLXPixmap or GLXPbuffer there may or may not be an X visual
associated with the FBConfig.

Choosing a GLXFBConfigSGIX Construct

UseglXChooseFBConfigSGIX{d get GLXFBConfigSGIX constructs that match a list of attributes
or to get the list of GLXFBConfigSGIX constructs (FBConfigs) that are available on the specified

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 14

screen.

GLXFBConfigSGIX *gIXChooseFBConfigSGIX(Display *dpy, int screen
const int *attrib_list, int ~ *nitemg

If attrib_list is NULL, gIXChooseFBConfigSGIX(gturns an array of FBConfigs that are available

on the specified screen; otherwise this call returns an array of FBConfigs that match the specified
attributesTable 6—&hows only attributes added by this extension; additional attributes are listed or
the gIXChooseVisuateference page.

Table 6-6 Visual Attributes Introduced by the FBConfig Extension

Attribute Type Description
GLX_DRAWABLE_TYPE_SGI bitmask Mask indicating which GLX drawables are supported.
X Valid bits are GLX_WINDOW_BIT_SGIX and

GLX_PIXMAP_BIT_SGIX.
GLX_RENDER_TYPE_SGIX bitmask Mask indicating which OpenGL rendering modes are

supported. Valid bits are GLX_RGBA_BIT_SGIX and

GLX_COLOR_INDEX_BIT_SGIX.
GLX_X_RENDERABLE_SGIX boolean True if X can render to drawable.
GLX_FBCONFIG_ID_SGIX XID XID of FBConfig.

The attributes are matched in an attribute—specific manner. Some attributes, such as GLX_LEVEL
must match the specified value exactly; others, such as GLX_RED_SIZE, must meet or exceed thi
specified minimum values.

The sorting criteria are defined as follows:

smaller FBConfigs with an attribute value that meets or exceeds the specified value are
matched. Precedence is given to smaller values (when a value is not explicitly
requested, the default is implied).

larger When the value is requested explicitly, only FBConfigs with a corresponding
attribute value that meets or exceeds the specified value are matched. Preceder
is given to larger values. When the value is not requested explicitly, behaves
exactly like the "smaller" criterion.

exact Only FBConfigs whose corresponding attribute value exactly matches the
requested value are considered.

mask For a config to be considered, all the bits that are set in the requested value mus
be set in the corresponding attribute. (Additional bits might be set in the
attribute.)

Note that "don’t care" means that the default behavior is to have no preference when searching for
matching FBConfig.

Table 6-Tllustrates how each attribute is matched.
Table 6-7 FBConfig Attribute Defaults and Sorting Criteria

Attribute Default Sorting Criteria
GLX_BUFFER_SIZE 0 Smaller
GLX_LEVEL 0 Smaller
GLX_DOUBLEBUFFER Don't care Smaller
GLX_STEREO False Exact
GLX_AUX_BUFFERS 0 Smaller

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 15

GLX_RED_SIZE 0
GLX_GREEN_SIZE 0
GLX_BLUE_SIZE 0
GLX_ALPHA_SIZE 0
GLX_DEPTH_SIZE 0
GLX_STENCIL_SIZE 0
GLX_ACCUM_RED_SIZE 0
GLX_ACCUM_GREEN_SIZE 0
GLX_ACCUM_BLUE_SIZE 0
GLX_ACCUM_ALPHA_SIZE 0
GLX_SAMPLE_BUFFERS_SGIS 0 if GLX_SAMPLES_SGIS =

0,

1 otherwise
GLX_SAMPLES_SGIS 0
GLX_X_VISUAL_TYPE_EXT Don't care
GLX_TRANSPARENT_TYPE_EXT GLX_NONE_EXT

GLX_TRANSPARENT_INDEX_VALUE_EXT Don't care
GLX_TRANSPARENT_RED_VALUE_EXT Don't care
GLX_TRANSPARENT_GREEN_VALUE_EXTDon't care
GLX_TRANSPARENT_BLUE_VALUE_EXT Don't care
GLX_TRANSPARENT_ALPHA_VALUE_EXT Don't care

GLX_VISUAL_CAVEAT EXT GLX_NONE_EXT
GLX_DRAWABLE_TYPE_SGIX GLX_WINDOW_BIT_ SGIX
GLX_RENDER_TYPE_SGIX GLX_RGBA_BIT_SGIX
GLX_X_RENDERABLE_SGIX Don't care
GLX_FBCONFIG_ID_SGIX Don't care

Larger
Larger
Larger
Larger
Larger
Larger
Larger
Larger
Larger
Larger
Smaller

Smaller
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact, if
specified,
otherwise
minimum
Mask
Mask
Exact
Exact

There are several uses for tfi¥ChooseFBConfigSGIX{unction:

Retrieve all FBConfigs on the screext(ib_listis NULL).

Retrieve an FBConfig with a given ID specified with GLX_FBCONFIG_ID_SGIX.

Retrieve the FBConfig that is the best match for a given list of visual attributes.

Retrieve first a list of FBConfigs that match some criteria, for example, each FBConfig availab

on the screen or all double—buffered visuals available on the screen. Then call
gIXGetFBConfigAttribSGIX({o find their attributes and choose the one that best fits your needs

Once the FBConfig is obtained, you can use it to create a GLX pixmap, window, or pbuffer (see

"SGIX_pbuffef] The Pixel Buffer Extension.' In the case of a window, you must first get the

associated X visual by callimgXGetVisualFromFBConfigSGIX().

Below is a description of what happens when yougt&lChooseFBConfigSGIX()

If no matching FBConfig exists, or if an error occurs (that is, an undefined GLX attribute is
encountered imttrib_list, screenis invalid, ordpy doesn’t support the GLX extension) then

NULL is returned.

If attrib_list is not NULL and more than one FBConfig is found, then an ordered list is returned
with the FBConfigs that form the "best" match at the beginning of the'lisiw(an FBConfig

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 16

Is Selected'tlescribes the selection process.) KBese()to free the memory returned by
gIXChooseFBConfigSGIX()

If GLX_RENDER_TYPE_SGIX is irattrib_list, the value that follows is a mask indicating
which types of drawables will be created with it. For example, if GLX_RGBA _BIT_SGIX |
GLX_COLOR_INDEX_BIT_SGIX is specified as the mask, tlgdChooseFBConfigSGIX()
searches for FBConfigs that can be used to create drawables that work with both RGBA and
color index rendering contexts. The default value for GLX_RENDER_TYPE_SGIX is
GLX_RGBA_BIT_SGIX.

The attribute GLX_DRAWABLE_TYPE_SGIX has as its value a mask indicating which
drawables to consider. Use it to choose FBConfigs that can be used to create and render to a
particular GLXDrawable. For example, if GLX_WINDOW_BIT_SGIX |
GLX_PIXMAP_BIT_SGIX is specified as the mask for GLX_DRAWABLE_TYPE_SGIX then
gIXChooseFBConfigSGIX§earches for FBConfigs that support both windows and GLX
pixmaps. The default value for GLX_DRAWABLE_TYPE_SGIX is
GLX_WINDOW_BIT_SGIX.

If an FBConfig supports windows it has an associated X visual. Use the
GLX_X_VISUAL_TYPE_EXT attribute to request a particular type of X visual.

Note that RGBA rendering may be supported for any of the six visual types, but color index
rendering can be supported only for PseudoColor, StaticColor, GrayScale, and StaticGray visuals
(that is, single—channel visuals). The GLX_X_VISUAL_TYPE_EXT attribute is ignored if
GLX_DRAWABLE_TYPE_SGIX is specified iattrib_list and the mask that follows doesn’t have
GLX_WINDOW_BIT_SGIX set.

GLX_X_RENDERABLE_SGIX is a Boolean indicating whether X can be used to render into a
drawable created with the FBConfig. This attribute is always true if the FBConfig supports windows
and/or GLX pixmaps.

Retrieving FBConfig Attribute Values
To get the value of a GLX attribute for an FBConfig, call

int gIXGetFBConfigAttribSGIX(Display *dpy, GLXFBConfigSGIX config,
int attribute int *value)

If gIXGetFBConfigAttribSGIX(pucceeds, it returns Success, and the value for the specified attribut:
is returned irvalue otherwise it returns an error.

Note: An FBConfig has an associated X visual if and only if the GLX_DRAWABLE_TYPE_SGIX
value has the GLX_WINDOW_BIT_SGIX bit set.

To retrieve the associated visual, call

XVisuallnfo *gIXGetVisualFromFBConfigSGIX(Display *dpy,
GLXFBConfigSGIX config)

If configis a valid FBConfig and it has an associated X visual, then information describing that visu
is returned; otherwise NULL is returned. UsEree()to free the returned data.

It is also possible to get an FBConfig, given visual information:

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 17

GLXFBConfigSGIX gIXGetFBConfigFromVisualSGIX(Display *dpy, XVisualln
fo *vis)
If the visual is valid and supports OpenGL rendering (that is, if the GLX visual attribute

GLX_USE_GL is GL_TRUE) then the associated FBConfig is returned; otherwise NULL is
returned.

To create a GLX rendering context or a GLX pixmap using an FBConfig, call
gIXCreateContextWithConfigSGIXgy gIXCreateGLXPixmapWithConfigSGIX@hich have the
following prototypes:

GLXContext gIXCreateContextWithConfigSGIX(Display * dpy,
GLXFBConfigSGIX config,
int render_type,
GLXContext share_list
Bool direct)

GLXPixmap glXCreateGLXPixmapWithConfigSGIX(Display * dpy,

GLXFBConfigSGIX config,
Pixmap pixmap)

The functions are similar giXCreateContext(@ndglXCreateGLXPixmap()See the
gIXCreateContextWithConfigSGIdndglXCreateGLXPixmapWithConfigSGIXeference pages for
detailed information.

How an FBConfig Is Selected

If more than one FBConfig matches the specification, they are prioritized as follable 6-7
summarizes this information):

Preference is given to FBConfigs with the largest GLX_RED_SIZE, GLX_GREEN_SIZE, and
GLX_BLUE_SIZE.

If the requested GLX_ALPHA_SIZE is zero, preference is given to FBConfigs that have
GLX_ALPHA_SIZE set to zero; otherwise preference is given to FBConfigs that have the
largest GLX_ALPHA_SIZE value.

If the requested number of GLX_AUX BUFFERS is zero, preference is given to FBConfigs th:
have GLX_AUX_BUFFERS set to zero; otherwise preference is given to FBConfigs that have
the smallest GLX_AUX_ BUFFERS value.

If the requested size of a particular ancillary buffer is zero (for example,
GLX_DEPTH_BUFFER is zero), preference is given to FBConfigs that also have that size set
zero; otherwise preference is given to FBConfigs that have the largest size.

If the requested value of either GLX_SAMPLE_BUFFERS_SGIS or GLX_SAMPLES SGIS is
zero, preference is given to FBConfigs that also have these attributes set to zero; otherwise
preference is given to FBConfigs that have the smallest size.

If GLX_X_VISUAL_TYPE_EXT is not specified but there is an X visual associated with the
FBConfig, the visual type is used to prioritize the FBConfig.

If GLX_RENDER_TYPE_SGIX has GLX_RGBA_BIT_SGIX set, the visual types are

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 18

prioritized as follows: TrueColor, DirectColor, PseudoColor, StaticColor, GrayScale, and
StaticGray.

If only the GLX_COLOR_INDEX_SGIX is set in GLX_RENDER_TYPE_SGIX, visual types
are prioritized as PseudoColor, StaticColor, GrayScale, and StaticGray.

If GLX_VISUAL_CAVEAT_EXT is set, the implementation for the particular system on which
you run determines which visuals are returned."&&& visual_rating] The Visual Rating
Extension'for more information.

New Functions

gIXGetFBConfigAttribSGIX gIXChooseFBConfigSGIXgIXCreateGLXPixmapWithConfigSGIX
glXCreateContextWithConfigSGI)gIXGetVisualFromFBConfigSGIX
gIXGetFBConfigFromVisualSGIX

SGIX_pbuffer O The Pixel Buffer Extension

You can use the pixel buffer extension, SGIX_pbuffer, to define a pixel buffer (GLXPbuffer or
pbuffer for short).

Note: This extension is an SGIX (experimental) extension. The interface or other aspects of the
extension may change.

About GLXPbuffers

A GLXPbuffer is an additional non-visible rendering buffer for an OpenGL renderer. It has the
following distinguishing characteristics:

Support hardware—accelerated renderingPbuffers support hardware—accelerated rendering in
an off-screen buffer, unlike pixmaps, which typically do not allow accelerated rendering.

Window independent.Pbuffers differ from auxiliary buffers (aux buffers) because they are not
related to any displayable window, so a pbuffer may not be the same size as the application’s
window, while an aux buffer must be the same size as its associated window.

PBuffers and Pixmaps
A pbuffer is equivalent to a GLXPixmap, with the following exceptions:

There is no associated X pixmap. Also, since pbuffers are a GLX resource, it may not be
possible to render to them using X or an X extension other than GLX.

The format of the color buffers and the type and size of associated ancillary buffers for a pbuff
can be described only with an FBConfig; an X visual cannot be used.

It is possible to create a pbuffer whose contents may be arbitrarily and asynchronously lost at
any time.

A pbuffer works with both direct and indirect rendering contexts.

A pbuffer is allocated in non-visible framebuffer memory, that is, areas for which

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 19

hardware—accelerated rendering is possible. Applications include additional color buffers for
rendering or image processing algorithms.

Volatile and Preserved Pbuffers

Pbuffers can be either "volatile," that is, their contents can be destroyed by another window or
pbuffer, or "preserved,” that is, their contents are guaranteed to be correct and are swapped out ta
virtual memory when other windows need to share the same framebuffer space. The contents of a
preserved pbuffer are swapped back in when the pbuffer is needed. The swapping operation incur
performance penalty, so preserved pbuffers should be used only if re-rendering the contents is no
feasible.

A pbuffer is intended to be a "static" resource: a program typically allocates it only once, rather tha
as a part of its rendering loop. The framebuffer resources that are associated with a GLXPbuffer a
also static. They are deallocated only when the GLXPbuffer is destroyed, or, in the case of volatile
pbuffers, as the result of X server activity that changes framebuffer requirements of the server.

Creating a PBuffer
To create a GLXPbuffer, callXCreateGLXPbufferSGIX()

GLXPbufferSGIX gIXCreateGLXPbhufferSGIX(Display *dpy, GLXFBConfigSGIX
config,
unsigned int *width, unsigned int *height, int attrib_lis
t)
This call creates a single GLXPbuffer and returns its XID.

width andheightspecify the pixel width and height of the rectangular GLXPbuffer.

attrib_list specifies a list of attributes for the GLXPbuffer. (Note that the attribute list is defined
in the same way as the list igiXChooseFBConfigSGIX@ttributes are immediately followed
by the corresponding desired value and the list is terminated with None.)

Currently only two attributes can be specifiedttrib_list
GLX_CONTENTS_PRESERVED_SGIX and GLX_GET_LARGEST_PBUFFER_SGIX.

— Use GLX_GET_LARGEST_PBUFFER_SGIX to get the largest available GLXPbuffer
when the allocation of the pbuffer would otherwise fail. The width and height of the pbuffer
(if one was allocated) are returnedaidth andheight Note that these values can never
exceed thavidth andheightthat were initially specified. By default,
GLX_GET_LARGEST_PBUFFER_SGIX is False.

— Ifthe GLX_CONTENTS_PRESERVED_SGIX attribute is set to Falsstiib_list, a
"volatile" GLXPbuffer is created and the contents of the pbuffer may be lost at any time. If
this attribute is not specified, or if it is specified as Truatirib_list, the contents of the
pbuffer are preserved, most likely by swapping out portions of the buffer to main memory
when a resource conflict occurs. In either case, the client can register to receive a "buffer
clobber" event and be notified when the pbuffer contents have been swapped out or have
been damaged.

The resulting GLXPbuffer contains color buffers and ancillary buffers as specifaahfig It is

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 20

possible to create a pbuffer with back buffers and to swap the front and back buffers by calling
gIXSwapBuffers()Note that a pbuffer uses framebuffer resources, so applications should deallocate
when not in use, for example, when the application windows are iconified.

If gIXCreateGLXPhufferSGIXils to create a GLXPbuffer due to insufficient resources, a
BadAlloc X protocol error is generated and NULL is returnedolffigis not a valid FBConfig then
a GLXBadFBConfigSGIX error is generated¢c@nfigdoesn’t support pbuffers, a BadMatch X
protocol error is generated.

Rendering to a GLXPbuffer

Any GLX rendering context created with an FBConfig or X visual that is compatible with an
FBConfig may be used to render into the pbuffer. For the definition of "compatible," see the
reference pages fgtXCreateContextWithConfigSGI)gIXMakeCurrentand
glXMakeCurrentReadSGl

If a GLXPbuffer is created with GLX_CONTENTS_PRESERVED_SGIX set to false, the storage fo
the buffer contents or a portion of the buffer contefitanay be lost at any time. It is not an error to
render to a GLXPbuffer that is in this state, but the effect of rendering to it is undefined. It is also n
an error to query the pixel contents of such a GLXPbuffer, but the values of the returned pixels are
undefined.

Because the contents of a volatile GLXPbuffer can be lost at any time with only asynchronous
notification (via the "buffer clobber" event), the only way a client can guarantee that valid pixels are
read back witlylReadPixels()s by grabbing the X server. (Note that this operation is potentially
expensive and you should not do it frequently. Also, because grabbing the X server locks out othel
clients, you should do it only for short periods of time.) Clients that don’t wish to grab the X server
can check whether the data returne@i®eadPixels()s valid by callingKSync()and then checking

the event queue for "buffer clobber” events (assuming that any previous clobber events were pulle
off of the queue before thigReadPixels(tall).

To destroy a GLXPbuffer cadfiXDestroyGLXPbufferSGIX()
void gIXDestroyGLXPbufferSGIX(Display *dpy, GLXPbufferSGIX pbuf)
To query an attribute associated with a GLXPbuffer,glXlQueryGLXPbufferSGIX()

void gIXQueryGLXPbufferSGIX(Display *dpy, GLXPbufferSGIX pbuf, int attr
ibute
unsigned int *value)

To get the FBConfig for a GLXPbuffer, first retrieve the ID for the FBConfig and then call
gIXChooseFBConfigSGIX(pee'SGIX_fbconfig] The Framebuffer Configuration Extension"

Directing the Buffer Clobber Event

An X client can ask to receive GLX events on a window or GLXPbuffer by calling
gIXSelectEventSGIX()

void glXSelectEventSGIX(Display *dpy, GLXDrawable drawable
unsigned long mask

Currently you can only select the GLX_BUFFER_CLOBBER_BIT_SGIX GLX event an#is&

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 21

The event structure is

typdef struct {
int event_type; /* GLX_DAMAGED_SGIX or GLX_SAVED_SGIX */
int draw_type; /* GLX_WINDOW_SGIX or GLX_PBUFFER_SGIX *

/
unsigned long serial; /* # of last request processed by server

*/

Bool send_event; /* true if it came for SendEvent request
*/

Display *display; [* display the event was read from */

GLXDrawable drawable; /*i.d. of Drawable */

unsigned int mask; /* mask indicating which buffers are affecte
d*/

intx,y;

int width, height;

int count; /* if nonzero, at least this many more *
/
} GLXBufferRestoreEvent;

A single X server operation can cause several buffer clobber events to be sent, for example, a sing
GLXPbuffer may be damaged and cause multiple buffer clobber events to be generated. Each eve
specifies one region of the GLXDrawable that was affected by the X server operation.

Events are sent to the application and queried using the normal X even comxiNext¥t()
XPending() and so on). Thenaskvalue returned in the event structure indicates which color and
ancillary buffers were affected. The following values can be set in the event structure:

GLX_FRONT_LEFT_BUFFER_BIT_SGIX
GLX_FRONT_RIGHT _BUFFER_BIT_SGIX
GLX_BACK_LEFT_BUFFER_BIT_SGIX
GLX_BACK_RIGHT _BUFFER_BIT_SGIX
GLX_AUX_BUFFERS_BIT_SGIX
GLX_DEPTH_BUFFER_BIT_SGIX
GLX_STENCIL_BUFFER_BIT_SGIX
GLX_ACCUM_BUFFER_BIT_SGIX
GLX_SAMPLE_BUFFERS_BIT_SGIX

All the buffer clobber events generated by a single X server action are guaranteed to be contiguou
the event queue. The conditions under which this event is generated and the event type vary,
depending on the type of the GLXDrawable:

For a preserved GLXPbuffer, a buffer clobber event, with type GLX_SAVED_SGIX, is
generated whenever the contents of the GLXPbuffer are swapped out to host memory. The
event(s) describes which portions of the GLXPbuffer were affected. Clients who receive many
buffer clobber events, referring to different save actions, should consider freeing the
GLXPbuffer resource to prevent the system from thrashing due to insufficient resources.

For a volatile GLXPbuffer, a buffer clobber event with type GLX_DAMAGED_SGIX is
generated whenever a portion of the GLXPbuffer becomes invalid. The client may wish to

OpenGL ® on Silicon Graphics ® Systems — Chapter 6, Resource Control Extensions — 22

regenerate the invalid portions of the GLXPbuffer.

Calling gIXSelectEventSGIX@verrides any previous event mask that was set by the client for the
drawable. Note that it doesn’t affect the event masks that other clients may have specified for a
drawable, because each client rendering to a drawable has a separate event mask for it.

To find out which GLX events are selected for a window or GLXPbuffer, call
gIXGetSelectedEventSGIX()

void glXSelectEventSGIX(Display *dpy, GLXDrawable drawable
unsigned long mask

New Functions

gIXCreateGLXPbufferSGIXglXDestroyGLXPbufferSGIX gIXGetGLXPbufferStatusSGIX
gIXGetGLXPbufferConfigSGIX giXGetLargestGLXPbufferSGIX

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 23

Chapter 7
Texturing Extensions

This chapter explains how to use the different OpenGL texturing extensions. The extensions are
discussed in alphabetical order, by extension name:

"EXT_texture3D] The 3D Texture Extension”

"SGI_texture color_tablé The Texture Color Table Extension”
"SGIS_detail_texturd The Detail Texture Extension”

"SGIS filterd_parametels The Filterd Parameters Extension”
"SGIS_sharpen_textureThe Sharpen Texture Extension"
"SGIS_texture4Dl The 4D Texture Extension"
"SGIS_texture_edge/border_clamexture Clamp Extensions”
"SGIS_texture filterdl The Texture Filter4 Extensions"
"SGIS_texture_lod The Texture LOD Extension”

"SGIS_texture_selelctThe Texture Select Extension”

The following sections describe extensions that are experimental:
"SGIX_clipmagl The Clipmap Extension"
"SGIX_texture_add_ery The Texture Environment Add Extension"
"SGIX texture_lod_bids The Texture LOD Bias Extension"
"SGIX_texture_scale_biaksThe Texture Scale Bias Extension"

"SGIX_texture_multi_bufferl The Texture Multibuffer Extension”

EXT_texture3D [The 3D Texture Extension

The 3D texture extension, EXT_texture3D, defines 3—dimensional texture mapping and in—-memor
formats for 3D images, and adds pixel storage modes to support them.

3D textures can be thought of as an array of 2D textures, as illustrdtiegiig 7-1

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 1

0.1.1 14,1

1,01 -

000 1,00

Figure 7-1 3D Texture

A 3D texture is mapped into (s,t,r) coordinates such that its lower left back corner is (0,0,0) and its
upper right front corner is (1,1,1).

Why Use the 3D Texture Extension?
3D textures are useful for

volume rendering and examining a 3D volume one slice at a time
animating textured geometry, for example, people that move
solid texturing, for example, wood, marble and so on

eliminating distortion effects that occur when you try to map a 2D image onto 3D geometry

Texel values defined in a 3D coordinate system form a texture volume. You can extract textures fri
this volume by intersecting it with a plane oriented in 3D space, as shdviguie 7-2

Figure 7-2 Extracting a Planar Texture From a 3D Texture Volume

The resulting texture, applied to a polygon, is the intersection of the volume and the plane. The
orientation of the plane is determined from the texture coordinates of the vertices of the polygon.

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 2

Using 3D Textures

To create a 3D texture, ugd eximage3DEXT(which has the following prototype:

void glTexlmage3DEXT(GLenum target,
GLint level,
GLenum internalformat,
GLsizei width,
GLsizei height,
GLsizei depth,
GLint border,
GLenum format,
GLenum type,
const GLvoid *pixels)

The function is defined likglTeximage2D(put has alepthargument that specifies how many
"slices" the texture consists of.

The extension provides the following additional features:

Pixel storage modesThe extension extends the pixel storage modes by adding eight new state
variables:

- GL_(UN)PACK_IMAGE_HEIGHT_EXT defines the height of the image the texture is read
from, analogous to the GL_(UN)PACK_LENGTH variable for image width.

- GL_(UN)PACK_SKIP_IMAGES_EXT determines an initial skip analogous to
GL_(UN)PACK_SKIP_PIXELS and GL_(UN)PACK_SKIP_ROWS.

All four modes default to zero.

Texture wrap modes.The functionglTexParameter*() accept the additional token value
GL_TEXTURE_WRAP_R_EXT.

GL_TEXTURE_WRAP_R_EXT affects the R coordinate in the same way that
GL_TEXTURE_WRAP_S affects the S coordinate and GL_ TEXTURE_WRAP_T affectsthe T
coordinate. The default value is GL_REPEAT.

Mipmapping. Mipmapping for two—dimensional textures is discussed in the section "Multiple
Levels of Detail," on page 338 of tpenGL Programming Guid&ipmapping for 3D

textures works the same way: A 3D mipmap is an ordered set of volumes representing the sat
image; each volume has a resolution lower than the previous one.

The filtering options GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR, and GL_LINEAR_MIPMAP_NEAREST, apply to
subvolumes instead of subareas. GL_LINEAR_MIPMAP_LINEAR results in two trilinear
blends in two different volumes, followed by an LOD blend.

Proxy textures. Use the proxy texture GL_PROXY_TEXTURE_3D_EXT to query an
implementation’s maximum configuration. For more information on proxy textures, see
"Texture Proxy" on page 330 of tpenGL Programming Guid&econd Edition

You can also caljlGetintegerv(with argument GL_MAX_TEXTURE_SIZE_3D_EXT.

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 3

Querying. Use the following call to query the 3D texture:
glGetTexlmage(GL_TEXTURE_3D_EXT, level, format, type, pixel9

Subvolumes of the 3D texture can be replaced gihexSubimage3DEXTénd
glCopyTexSublmage3DEXTgee "Replacing All or Part of a Texture Image,” on pages 332 -
335 of theOpenGL Programming Guide, Second Edifion

3D Texture Example Program

The code fragment presented in this section illustrates the use of the extension. The complete
program is included in the example source tree.

Example 7-1 Simple 3D Texturing Program

/*

* Shows a 3D texture by drawing slices through it.
*/

[* compile: cc —o tex3d tex3d.c —-IGL —IX11 */

#include <GL/gIx.h>
#include <GL/glu.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>

static int attributeList[] = { GLX_RGBA, None };
unsigned int tex[64][64][64];

[* generate a simple 3D texture */
static void
make_texture(void) {

inti, j, k;

unsigned int *p = &tex[0][0][0];

for (i=0; i<64; i++) {
for (j=0; j<64; j++) {
for (k=0; k<64; k++) {

if(i<10]|i>48]|
j<10]j>48]|
k<10| k>48){
if(i<2]|i>62]
i<2lli>6z2]|
k<2]|k>62){
*p++ = 0x00000000;
}else {
*p++ = Oxff8Offff;
}

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions - 4

}else {
*p++ = 0x000000ff;

static void
init(void) {

make_texture();
glEnable(GL_TEXTURE_3D_EXT);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glClearColor(0.2,0.2,0.5,1.0);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glMatrixMode(GL_PROJECTION);
gluPerspective(60.0, 1.0, 1.0, 100.0);
gIMatrixMode(GL_MODELVIEW);
glTranslatef(0.,0.,—3.0);
gIMatrixMode(GL_TEXTURE);

/* Similar to defining a 2D texture, but note the setting of the
/* wrap parameter for the R coordinate. Also, for 3D textures
[* you probably won’t need mipmaps, hence the linear min filter.

gITexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_R_EXT,
GL_CLAMP);
glTeximage3DEXT(GL_TEXTURE_3D_EXT, 0, 4, 64, 64, 64, 0,
GL_RGBA, GL_UNSIGNED_BYTE, tex);

#define NUMSLICES 256

static void
draw_scene(void) {

inti;

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 5

floatr, dr, z, dz;

glColor4f(1, 1, 1, 1.4/NUMSLICES);

glClear(GL_COLOR_BUFFER_BIT);

/* Display the entire 3D texture by drawing a series of quads */

/* that slice through the texture coordinate space. Note that
*/

/* the transformations below are applied to the texture matrix,
*/

/* not the modelview matrix. */

glLoadldentity();

/* center the texture coords around the [0,1] cube */
glTranslatef(.5,.5,.5);

/* a rotation just to make the picture more interesting */
glRotatef(45.,1.,1.,.5);

/* to make sure that the texture coords, after arbitrary */
[* rotations, still fully contain the [0,1] cube, make them span
*

/* arange sqrt(3)=1.74 wide */

r=-0.87; dr = 1.74/NUMSLICES;

z =-1.00; dz = 2.00/NUMSLICES;

for (i=0; i < NUMSLICES; i++) {
giBegin(GL_TRIANGLE_STRIP);
glTexCoord3f(-.87,-.87,r); glVertex3f(-1,-1,2);
glTexCoord3f(-.87, .87,r); glVertex3f(-1, 1,2);
glTexCoord3f(.87,-.87,r); glVertex3f(1,-1,2);
glTexCoord3f(.87, .87,r); glVertex3f(1, 1,2);
glEnd();
r+=dr;
Z +=dz;

[* process input and error functions and main(), which handles windo
w

* setup, go here.

*/

New Functions

glTeximage3DEXTgITexSubimage3DEX]glCopyTexlmage3DEXT

SGI _texture color_table [0 The Texture Color Table Extension

The texture color table extension, SGI_texture_color_table, adds a color lookup table to the texture

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 6

mechanism. The table is applied to the filtered result of a texture lookup before that result is used i
the texture environment equations.

Why Use a Texture Color Table?
Here are two example situations in which the texture color table extension is useful:

Volume rendering. You can store something other than color in the texture (for example, a
physical attribute like bone density) and use the table to map that density to an RGB color. Th
is useful if you want to display just that physical attribute and also if you want to distinguish
between that attribute and another (for example, muscle density). You can selectively replace
table to display different features. Note that updating the table can be faster than updating the
texture. (This technique is also called "false color imaging" or "segmentation™).

Representing shades (gamut compressionj.you need to display a high color-resolution

image using a texture with low color-component resolution, the result is often unsatisfactory. /
16-hit texel with 4 bits per component doesn't offer a lot of shades for each color, because ea
color component has to be evenly spaced between black and the strongest shade of the color
an image contains several shades of light blue but no dark blue, for example, the on—screen
image cannot represent that easily because only a limited number of shades of blue, many of
them dark, are available. When using a color table, you can "stretch" the colors.

Using Texture Color Tables

To use a texture color table, define a color table, as describ8&Incolor_tablél The Color Table
Extension’ Use GL_TEXTURE_COLOR_TABLE_SGI as the value fortdmgetparameter of the
various commands, keeping in mind the following points:

The table size, specified by thedth parameter aflColorTableSGI()js limited to powers of
two.

Each implementation supports a at least a maximum size of 256 entries. The actual maximum
size is implementation—dependent; it is much larger on most Silicon Graphics systems.

Use GL_PROXY_TEXTURE_COLOR_TABLE_SGiI to find out whether there is enough room
for the texture color table in exactly the manner described in "Texture Proxy," on page 330 of
the OpenGL Programming Guide

The following code fragment loads a table that inverts a texture. It uses a GL_LUMINANCE extern
format table to make identical R, G, and B mappings.

loadinversetable()

{
static unsigned char table[256];
int i;

for (i=0; i< 256; i++) {
table[i] = 255-i;

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 7

glColorTableSGI(GL_TEXTURE_COLOR_TABLE_SGI, GL_RGBA8_EXT,
256, GL_LUMINANCE, GL_UNSIGNED_BYTE, table);
glEnable(GL_TEXTURE_COLOR_TABLE_SGI);

Texture Color Table and Internal Formats

The contents of a texture color table are used to replace a subset of the components of each texel
group, based on the base internal format of the table. If the table size is zero, the texture color tabl
effectively disabled. The texture color table is applied to the texture components Red (Rt), Green
(Gt), Blue (Bt), and Alpha(At) texturing components according to the following table:

Table 7-1 Modification of Texture Components

Base Table Internal Format Rt Gt Bt At
GL_ALPHA Rt Gt Bt A(At)
GL_LUMINANCE L(Rt) L(Gt) L(Bt) At
GL_LUMINANCE_ALPHA L(Rt) L(Gt) L(Bt) A(At)
GL_INTENSITY I(Rt) 1(Gt) 1(Bt) I(At)
GL_RGB R(Rt) G(Gt) B(Bt) At
GL_RGBA R(Rt) G(Gt) B(Bt) A(At)

Using Texture Color Table On Different Platforms

The texture color table extension is currently implemented on RealityEngine, RealityEngine2, VTX
InfiniteReality, High IMPACT, and Maximum IMPACT systems. For a detailed discussion of
machine—-dependent issues, seg@l@ielorTableParameterS@ference page. This section
summarizes the most noticeable restrictions.

Texture Color Table on Indigo2 IMPACT Systems

On Indigo2 IMPACT systems, certain combinations of texture internal format and texture color tabl
internal format do not work, as shown in the following table:

Table 7-2 Unsupported Combinations on Indigo2 IMPACT

TCT Texture

GL_RGB GL_LUMINANCE or GL_LUMINANCE_ALPHA
GL_RGBA All formats

GL_INTENSITY All formats

Texture Color Table on InfiniteReality Systems

InfiniteReality systems reserve an area of 4K 12-bit entries for texture color tables. Applications ce
use four 1KB tables, two 2KB tables, or one 4KB table. Not all combinations of texture and texture
color tables are legal. InfiniteReality systems support the following combinations:

Table 7-3 Supported Combinations on InfiniteReality

TCT size TCT Format Texture
>=1024 Any Any
2048 L, I, LA L, I, LA
4096 I, L I, L

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 8

SGIS_detall_texture O The Detail Texture Extension

This section discusses the detail texture extension, SGIS_detail_texture, which like the sharpen
texture extension (s€8GIS_sharpen_textureThe Sharpen Texture Extensipig useful in

situations where you want to maintain good image quality when a texture is magnified for close—-uf
views.

Ideally, programs should always use textures that have high enough resolution to allow magnificat
without blurring. High-resolution textures maintain realistic image quality for both close-up and
distant views. For example, in a high—-resolution road texture, the large féauodsas potholes, oil
stains, and lane markers that are visible from a distaasewell as the asphalt of the road surface
look realistic no matter where the viewpoint is.

Unfortunately, a high—resolution road texture with that much detail may be as large as

2K x 2K, which may exceed the texture storage capacity of the system. Making the image close to
equal to the maximum allowable size still leaves little or no memory for the other textures in the
scene.

The detail texture extension provides a solution for representing a 2K x 2K road texture with smalle¢
textures. Detail texture works best for a texture with high—frequency information that is not strongly
correlated to its low-frequency information. This occurs in images that have a uniform color and
texture variation throughout, such as a field of grass or a wood panel with a uniform grain. If
high-frequency information in your texture is used to represent edge information (for example, a s
sign or the outline of a tree) consider the sharpen texture extension (see
"SGIS_sharpen_textureThe Sharpen Texture Extensipn”

Using the Detail Texture Extension

Because the high-frequency detail in a texture (for example, a road) is often approximately the sal
across the entire texture, the detail from an arbitrary portion of the texture image can be used as tt
detail across the entire image.

When you use the detail texture extension, the high—resolution texture image is represented by the
combination of a low-resolution texture image and a small high—frequency detail texture image (th
detail texture). OpenGL combines these two images during rasterization to create an approximatio
of the high-resolution image.

This section first explains how to create the detail texture and the low-resolution texture that are u
by the extension, then briefly looks at how detail texture works and how to customize the LOD
interpolation function, which controls how OpenGL combines the two textures.

Creating a Detail Texture and a Low—Resolution Texture

This section explains how to convert a high-resolution texture image into a detail texture and a
low-resolution texture image. For example, for a 2K x 2K road texture, you may want to use a 512
512 low-resolution base texture and a 256 x 256 detail texture. Follow these steps to create the
textures:

1. Make the low-resolution image usiagomor another resampling program by shrinking the
high-resolution image by'2

In this examplen is 2, so the resolution of the low-resolution image is 512 x 512. This

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 9

band-limited image has the two highest-frequency bands of the original image removed from

2. Create the subimage for the detail texture usitgjmageor another tool to select a 256 x 256
region of the original high—-resolution image, whoké&ghest-frequency bands are characteristic
of the image as a whole. (For example, rather than choosing a subimage from the lane markin
or aroad, choose an area in the middle of a lane.)

3. Optionally, make this image self-repeating along its edges to eliminate seams.

4. Create a blurry version of the 28&56 subimage as follows:

n First shrink the 256 256 subimage by'R2to 64x 64.
n Then scale the resulting image back up to2266.

The image is blurry because it is missing the two highest-frequency bands present in the two
highest levels of detail.

5. Subtract the blurry subimage from the original subimage. This difference iribgaletail
texturd] has only the two highest frequency bands.

6. Define the low-resolution texture (the base texture created in Step 1) with the
GL_TEXTURE_2D target and the detail texture (created in Step 5) with the
GL_DETAIL_TEXTURE_2D_SGIS target.

In the road example, you would use

GLvoid *detailtex, *basetex;
glTeximage2D(GL_DETAIL TEXTURE_2D_SGIS, 0, 4, 256, 256, 0, GL_RGB
A,
GL_UNSIGNED_BYTE, detailtex);
glTeximage2D(GL_TEXTURE_2D, 0, 4, 512, 512, 0, GL_RGBA,
GL_UNSIGNED_BYTE, basetex);

The internal format of the detail texture and the base texture must match exactly.

7. Setthe GL_DETAIL _TEXTURE_LEVEL_SGIS parameter to specify the level at which the
detail texture resides. In the road example, the detail texture is level -2 (because the original 2
x 2048 texture is two levels below the 512 x 512 base texture):

glTexParameteri(GL_TEXTURE_2D, GL_DETAIL_TEXTURE_LEVEL_SGIS, -2);

Because the actual detail texture supplied to OpenGL is 256 x 256, OpenGL replicates the det
texture as necessary to fill a 2048 x 2048 texture. In this case, the detail texture repeats eight
timesinSandinT.

Note that the detail texture level is set on the GL_TEXTURE_2D target, not on
GL_DETAIL_TEXTURE_2D_SGiIS.

8. Set the magnification filter to specify whether the detail texture is applied to the alpha or color
component, or both. Use one of the filterSable 7-4For example, to apply the detail texture
to both alpha and color components, use

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR_DETAIL_SGIS);

Note that the magnification filter is set on the GL_TEXTURE_2D target, not on

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 10

GL_DETAIL_TEXTURE_2D_SGIS.

Table 7-4 Magnification Filters for Detail Texture

GL_TEXTURE_MAG_FILTER Alpha Red, Green, Blue
GL_LINEAR_DETAIL_SGIS Detail
Detail

GL_LINEAR_DETAIL _COLOR_SGIS Detail
Bilinear

GL_LINEAR_DETAIL_ALPHA_SGIS Bilinear
Detall

Detail Texture Computation

For each pixel that OpenGL textures, it computes an LOD-based factor that represents the amour
which the base texture (that is, level 0) is scaled. If@B8presents a scaling of 2 Negative values

of LOD correspond to magnification of the base texture.

To produce a detailed textured pixel at level of detail n, OpenGL uses one of the two formulas sho
in Table 7-5depending on the detail texture mode.

Table 7-5 How Detail Texture Is Computed

GL_DETAIL_TEXTURE_MODE_SGIS Formula
GL_ADD LODn = LODO + weight() * DET
GL_MODULATE LODn = LODO + weight() * DET * LODO

The variables in the formulas are defined as follows:

n level of detall
weight(n) detail function
LODO base texture value
DET detail texture value

For example, to specify GL_ADD as the detail mode, use
glTexParameteri(GL_TEXTURE_2D, GL_DETAIL_TEXTURE_MODE_SGIS, GL_ADD);

Note that the detail texture level is set on the GL_TEXTURE_2D target, not on
GL_DETAIL TEXTURE_2D_SGIS.

Customizing the Detail Function

In the road example, the 512 x 512 base texture is LOD 0. The detail texture combined with the ba
texture represents LOD -2, which is called the maximum-detail texture.

By default, OpenGL performs linear interpolation between LOD 0 and LOD -2 when a pixel’'s LOD
is between 0 and —2. Linear interpolation between more than one LOD can result in aliasing. To
minimize aliasing between the known LODs, OpenGL lets you specify a nonlinear LOD interpolatic
function.

Figure 7-3hows the default linear interpolation curve and a nonlinear interpolation curve that
minimizes aliasing when interpolating between two LODs.

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 11

Drefault LOD interpalation Custorn LOD interpolation

Weight Weaight Walues of
TH_CONTROL_PCIMNTs

(4.9 (21 (3,11
Y

0 -1 -2 -3 -4
LoD

Figure 7-3 LOD Interpolation Curves

The basic strategy is to use very little of the detail texture until the LOD is within one LOD of the
maximum-detail texture. More of the information from the detail texture can be used as the LOD
approaches LOD -2. At LOD -2, the full amount of detail is used, and the resultant texture exactly
matches the high-resolution texture.

UseglDetailTexFuncSGIS€p specify control points for shaping the LOD interpolation function.
Each control point contains a pair of values; the first value specifies the LOD, and the second valu
specifies the weight for that magnification level. Note that the LOD values are negative.

The following control points can be used to create a nonlinear interpolation function (as shown abc
in Figure 7-B

GLfloat points[] = {
0.0, 0.0,
-1.0, 0.3,
-2.0, 1.0,
-3.0,1.1
h
glDetailTexFuncSGIS(GL_TEXTURE_2D, 4, points);

Note that how these control points determine a function is system dependent. For example, your
system may choose to create a piecewise linear function, a piecewise quadratic function, or a cubi
function. However, regardless of which kind of function is chosen, the function passes through the
control points.

Using Detail Texture and Texture Object

If you are using texture objects, the base texture and the detail texture are separate texture object:
You can bind any base texture object to GL_TEXTURE_2D and any detail texture object to
GL_DETAIL_TEXTURE_2D_SGIS. (You cannot bind a detail texture object to
GL_TEXTURE_2D.)

Each base texture object contains its own detail mode, magnification filter, and LOD interpolation
function. Setting these parameters therefore affects only the texture object that is currently bound !

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 12

GL_TEXTURE_2D. (If you set these parameters on the detail texture object, they are ignored.)

Detail Texture Example Program

Example 7-% a code fragment taken from a simple detail texture example program. The complete
example is included in the source tre@letil.c.It is also available through the developer toolbox
under the same name. For information on toolbox access, see
http://www.sgi.com/Technology/toolbox.html.

Example 7-2 Detail Texture Example

unsigned int tex[128][128];
unsigned int detailtex[256][256];

static void
make_textures(void) {
inti, j;
unsigned int *p;

/* base texture is solid gray */
p = &tex[0][0];
for (i=0; i<128*128; i++) *p++ = 0x808080ff;

/* detall texture is a yellow grid over a gray background */
/* this artificial detail texture is just a simple example */
/* you should derive a real detail texture from the original */
/* image as explained in the text. */
p = &detailtex[0][O];
for (i=0; i<256; i++) {
for (j=0; j<256; j++) {
if (1%8 ==0 || j%8 == 0) {
*p++ = OxffffOOff;
}else {
*p++ = 0x808080ff;

static void
init(void) {
make_textures();

glEnable(GL_TEXTURE_2D);
glMatrixMode(GL_PROJECTION);
gluPerspective(90.0, 1.0, 0.3, 10.0);
glMatrixMode(GL_MODELVIEW);
glTranslatef(0.,0.,—1.5);

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 13

glClearColor(0.0, 0.0, 0.0, 1.0);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

/* NOTE: parameters are applied to base texture, not the detail
*/
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR_DETAIL_SGIS);
glTexParameteri(GL_TEXTURE_2D, GL_DETAIL_TEXTURE_LEVEL_SGIS, 1)

glTeximage2D(GL_TEXTURE_2D,
0, 4, 128, 128, 0, GL_RGBA, GL_UNSIGNED_BYTE, tex);
glTeximage2D(GL_DETAIL_TEXTURE_2D_SGiIS,
0, 4, 256, 256, 0, GL_RGBA, GL_UNSIGNED_BYTE,
detailtex);

static void
draw_scene(void) {
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_TRIANGLE_STRIP);
glTexCoord2f(0, 0); glVertex3f(-1,-0.4, 1);
glTexCoord2f(0, 1); glVertex3f(-1,-0.4,-1);
glTexCoord2f(1, 0); glVertex3f(1,-0.4, 1);
glTexCoord2f(1, 1); glVertex3f(1,-0.4,-1);
glEnd();
glFlush();

New Functions

glDetailTexFuncSGIgylGetDetail TexFuncSGIS

SGIS filter4_parameters [The Filter4 Parameters Extension

The filter4 parameters extension, SGIS _filter4_parameters, provides a convenience function that
facilitates generation of values needed by the Texture Filter4 extension (see
"SGIS_texture_filterdl The Texture Filter4 Extensions"

Note: This extension is part of GLU.

Applications can derive 4 x 4 and 4 x 4 x 4 interpolation coefficients by calculating the cross produ
of coefficients in 2D or 3D, using the two—pixel-wide span of filter function.

The coefficients are computed in one of two ways:

Using the Mitchell-Netravali scheme. In that case, many of the desired characteristics of othel

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 14

4x1 interpolation schemes can be accomplished by setting B and C in their piecewise cubic
formula. Notably, the blurriness or sharpness of the resulting image can be adjusted with B
and C. See Mitchell, Don. and Netravali, Arun, "Reconstruction Filters for Computer Graphics,
SIGGRAPH '88, pp. 221-228.

Using Lagrange interpolation. In that case, four piecewise cubic polynomials (two redundant
ones) are used to produce coefficients resulting in images at a high sharpness level. See
Dahlquist and Bjorck, "Numerical Methods", Prentice—Hall, 1974, pp 284-285.

To choose one of the two schemas, sefilieetype parameter ofjluTexFilterFuncSGI(jo
GLU_LAGRANGIAN_SGI or GLU_MITCHELL_NETRAVALI_SGI.

Using the Filter4 Parameters Extension

Applications use the Filter4 Parameter extension in conjunction with the Texture Filter4 extension
generate coefficients that are then used awéightsparameter ofjITexFilterFuncSGIS()

To generate the coefficients, cgluiTexFilterFuncSGI(with the following argument values:
targetset to GL_TEXTURE_1D or GL_TEXTURE_2D
filterypeset to GLU_LAGRANGIAN_SGI or GLU_MITCHELL_NETRAVALI_SGI
paramsset to the value appropriate for the chddtartype:
- If filtertypeis GLU_LAGRANGIAN_SGI,parmsmust be NULL.

- If filtertypeis GLU_MITCHELL_NETRAVALI_SGI, parmsmay point to a vector of two
floats containing B and C control valuesparmsmay be NULL in which case both B and
C default to 0.5.

n set to a power of two plus one and must be less than or equal to 1025.

weightspointing an array of floating—point values generated by the function. It must pomt to
values of type GL_FLOAT worth of memory.

Note thagluTexFilterFuncSGI(andglTexFilterFuncSGIl(pnly customize filter4 filtering behavior;
texture filter4 functionality needs to be enabled by calljifiggxParameter*(with pnameset to
TEXTURE_MIN_FILTER or TEXTURE_MAG_FILTER, angaramsset to GL_FILTER4_SGIS.
See'"Using the Texture Filter4 Extensiofdr more information.

SGIS_point_line_texgen [The Point or Line Texture
Generation Extension

The point or line texgen extension, SGIS_point_line_texgen, adds two texture coordinate generatic
modes, which both generate a texture coordinate based on the minimum distance from a vertex to
specified line.

The section "Automatic Texture—Coordinate Generation" in Chapter 9, "Texture Mapping" of the
OpenGL Programming Guide, Second Edifidiscusses how applications can gdexGen(to
have OpenGL automatically generate texture coordinates.

This extension adds two modes to the existing three. The two new modes are different from the otl

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 15

three. To use them, the application uses one of the newly defined constantpf@antieparameter
and another, matching one for tieram (orparamg parameter. For example:

glTexGeni(GL_S, GL_EYE_POINT_SGIS, EYE_DISTANCE_TO_POINT_SGIS)

Why Use Point or Line Texture Generation

The extension is useful for certain volumetric rendering effects. For example, applications could
compute fogging based on distance from an eyepoint.

SGIS_sharpen_texture [The Sharpen Texture Extension

This section discusses the sharpen texture extension, SGIS_sharpen_texture. This extension and
detail texture extension (s&8GIS_detail_texturi@ The Detail Texture Extensiopére useful in
situations where you want to maintain good image quality when a texture must be magnified for
close-up views.

When a textured surface is viewed close up, the magnification of the texture can cause blurring. O
way to reduce blurring is to use a higher—resolution texture for the close—-up view, at the cost of ex
storage. The sharpen texture extension offers a way to keep the image crisp without increasing
texture storage requirements.

Sharpen texture works best when the high—frequency information in the texture image comes from
sharp edges, for example:

In a stop sign, the edges of the letters have distinct outlines, and bilinear magnification normal
causes the letters to blur. Sharpen texture keeps the edges crisp.

In a tree texture, the alpha values are high inside the outline of the tree and low outside the
outline (where the background shows through). Bilinear magnification normally causes the
outline of the tree to blur. Sharpen texture, applied to the alpha component, keeps the outline
crisp.

Sharpen texture works by extrapolating from mipmap levels 1 and 0 to create a magnified image tt
has sharper features than either level.

About the Sharpen Texture Extension

This section first explains how to use the sharpen texture extension to sharpen the component of y
choice. It then gives some background information about how the extension works and explains hc
you can customize the LOD extrapolation function.

How to Use the Sharpen Texture Extension

You can use the extension to sharpen the alpha component, the color components, or both, deper
on the magnification filter. To specify sharpening, use one of the magnification filfEable 7-6

Table 7-6 Magnification Filters for Sharpen Texture

GL_TEXTURE_MAG_FILTER Alpha Red, Green, Blue
GL_LINEAR_SHARPEN_SGIS sharpen sharpen
GL_LINEAR_SHARPEN_COLOR_SGIS bilinear sharpen
GL_LINEAR_SHARPEN_ALPHA_SGIS sharpen bilinear

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 16

For example, suppose that a texture contains a picture of a tree in the color components, and the
opacity in the alpha component. To sharpen the outline of the tree, use

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR_SHARPEN_ALPHA_SGIS);

How Sharpen Texture Works

When OpenGL applies a texture to a pixel, it computes a level of detail (LOD) factor that represent
the amount by which the base texture (that is, level 0) must be scaled tgpEesents a scaling of

20, For example, if OpenGL needs to magnify the base texture by a factor of 4 in both S and T, th:
LOD is —2. Note that magnification corresponds to negative values of LOD.

To produce a sharpened texel at level-of-aef@penGL adds the weighted difference between the
texel at LOD 0 and LOD 1 to LOD 0; that is:

LODn = LODO + weight(n) * (LODO - LOD1)

The variables are defined as follows:

n Level-of-detail

weight(n) LOD extrapolation function
LODO Base texture value

LOD1 Texture value at mipmap level 1

By default, OpenGL uses a linear extrapolation function, where wejght{n/4 You can customize
the LOD extrapolation function by specifying its control points, as discussed in the next section.

Customizing the LOD Extrapolation Function

With the default linear LOD extrapolation function, the weight may be too large at high levels of
maghnification, that is, as becomes more negative. This can result in so much extrapolation that
noticeable bands appear around edge features, an artifact known as "ringing." In this case, it is usi
to create a nonlinear LOD extrapolation function.

Figure 7-4hows LOD extrapolation curves as a function of magnification factors. The curve on the
left is the default linear extrapolation, where weightf -n/4. The curve on the right is a nonlinear
extrapolation, where the LOD extrapolation function is modified to control the amount of sharpenin
so that less sharpening is applied as the magnification factor increases. The function is defined for
less than or equal to O.

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 17

Weight Detault LOD exdrapolation Weight Custem LOD extrapolation

2 2 '
1 1
I il
0 0
0 - = -3 -4 0 - -2 3 -4
LoD LOD

Figure 7-4 LOD Extrapolation Curves

UseglSharpenTexFuncSGIS(specify control points for shaping the LOD extrapolation function.
Each control point contains a pair of values; the first value specifies the LOD, and the second valu
specifies a weight multiplier for that magnification level. (Remember that the LOD values are
negative.)

For example, to gradually ease the sharpening effect, use a nonlinear LOD extrapolatidrasurve
shown on the right ifrigure 7-4 with these control points:

GLfloat points[] = {
0,0,
-1, 1,
-2.,1.7,
-4, 2.
h
glSharpenTexFuncSGIS(GL_TEXTURE_2D, 4, points);

Note that how these control points determine the function is system dependent. For example, your
system may choose to create a piecewise linear function, a piecewise quadratic function, or a cubi
function. However, regardless of the kind of function you choose, the function will pass through the
control points.

Using Sharpen Texture and Texture Object

If you are using texture objects, each texture object contains its own LOD extrapolation function ar
magnification filter. Setting the function or the filter therefore affects only the texture object that is
currently bound to the texture target.

Sharpen Texture Example Program

Example 7-8lustrates the use of sharpen texture. Because of space limitations, the sections dealir
with X Window System setup and some of the keyboard input are omitted. The complete example
included in the source tree sisarpen.clt is also available through the developer toolbox under the

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 18

same name. See http://www.sgi.com/Technology/toolbox.html for information on toolbox access.
Example 7-3 Sharpen Texture Example

[* tree texture: high alpha in foreground, zero alpha in background

*/

#define B 0x00000000

#define F OXAOAOQAOff

unsigned int tex[] = {
B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,F,F,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,F,F,B,B,B,B,B,B,B,
B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
B,B,B,B,B,F,F,FFF,F,B,B,B,B,B,
B,B,B,B,B,F,F,F,F,FFB,B,B,B,B,
B,B,B,B,FFF,F,F,F,FF,B,B,B,B,
B,B,B,B,F,F,FFFFF,FB,B,B,B,
B,B,B,F,F,F,F,F,F,FFFFB,B,B,
B,B,B,F,FF,F,FFFFFFB,B,B,
B,B,F,F,F,F,F.F,FFFFFFB,B,
B,B,F,F,F,F,FFFFFFFFB,B,
B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,

static void

init(void) {
glEnable(GL_TEXTURE_2D);
glMatrixMode(GL_PROJECTION);
gluPerspective(60.0, 1.0, 1.0, 10.0);
gIMatrixMode(GL_MODELVIEW);
glTranslatef(0.,0.,—2.5);

glColor4f(0,0,0,1);

glClearColor(0.0, 0.0, 0.0, 1.0);

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

gITexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)

[* sharpening just alpha keeps the tree outline crisp */
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR_SHARPEN_ALPHA_SGIS);
/* generate mipmaps; levels 0 and 1 are needed for sharpening */
gluBuild2DMipmaps(GL_TEXTURE_2D, 4, 16, 16, GL_RGBA,
GL_UNSIGNED_BYTE, tex);

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 19

static void
draw_scene(void) {
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_TRIANGLE_STRIP);
glTexCoord2f(0, 1); glVertex2f(-1,-1);
glTexCoord2f(0, 0); glVertex2f(-1, 1);
glTexCoord2f(1, 1); glVertex2f(1,-1);
glTexCoord2f(1, 0); glVertex2f(1, 1);
glEnd();
glFlush();

New Functions

glSharpenTexFuncSGJ§IGetSharpenTexFuncSGIS

SGIS_texture4D O The 4D Texture Extension

The 4D texture extension, SGIS_texture4D, defines four—dimensional texture mapping.
Four—dimensional textures are used primarily as color lookup tables for color conversion.

Note: This extension is currently implemented only on Indigo2 IMPACT and OCTANE systems.
Because of that, developers are encouraged to consult information available through the OpenGL
home page, most notably the extension specifications.

SGIS_texture _edge/border_clamp [Texture Clamp
Extensions

This section first provides some background information on texture clamping. It then looks at reasc
for using the texture clamping extensions and explains how to use them. The two extensions are

The texture edge clamp extension, SGIS_texture_edge_clamp

The texture border clamp extension, SGIS_texture_border_clamp
Texture clamping is especially useful for nonrepeating textures.

Texture Clamping Background Information

OpenGL provides clamping of texture coordinates: Any values greater than 1.0 are set to 1.0, any
values less than 0.0 are set to 0.0. Clamping is useful for applications that want to map a single cc
of the texture onto a large surface. Clamping is discussed in detail in the section "Repeating and
Clamping Textures" on page 360 of thpenGL Programming Guide, Second Edition.

Why Use the Texture Clamp Extensions?

When a texture coordinate is clamped using the default OpenGL algorithm, and a GL_LINEAR filte
or one of the LINEAR mipmap filters is used, the texture sampling filter straddles the edge of the
texture image, taking half its sample values from within the texture image and the other half from tl

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 20

texture border.

It is sometimes desirable to alter the default behavior of OpenGL texture clamping operations as
follows:

Clamp a texture without requiring a border or a constant border color. This is possible with the
texture clamping algorithm provided by the texture edge—clamp extension.
GL_CLAMP_TO_EDGE_SGIS clamps texture coordinates at all mipmap levels such that the
texture filter never samples a border texel.

When used with a GL_NEAREST or a GL_LINEAR filter, the color returned when clamping is
derived only from texels at the edge of the texture image.

Clamp a texture to the border color, rather than to an average of the border and edge colors. 1
is possible with the texture border—clamp extension. GL_CLAMP_TO_BORDER_SGIS clamp:
texture coordinates at all mipmap levels.

GL_NEAREST and GL_LINEAR filters return the color of the border texels when the texture
coordinates are clamped.

This mode is well-suited for using projective textures such as spotlights.

Both clamping extensions are supported for one—, two—, and three—dimensional textures. Clampin
always occurs for texture coordinates less than zero and greater than 1.0.

Using the Texture Clamp Extensions
To specify texture clamping, cgllTexParameteri()
Settargetto GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D_EXT.

Setpnameto GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, or
GL_TEXTURE_WRAP_R_EXT.

Setparamto
- GL_CLAMP_TO_EDGE_SGIS for edge clamping

- GL_CLAMP_TO_BORDER_SGIS for border clamping

SGIS texture_filter4 [0 The Texture Filter4 Extensions

The texture filter4 extension, SGIS_texture_filter4, allows applications to filter 1D and 2D textures
using an application—defined filter. The filter has to be symmetric and separable and have four
samples per dimension. In the most common 2D case, the filter is bicubic. This filtering can yield
better—quality images than mipmapping, and is often used in image processing applications.

TheOpenGL Programming Guide, Second Editidiscusses texture filtering in the section

"Filtering" on page 345, as follows: "Texture maps are square or rectangular, but after being mapp
to a polygon or surface and transformed into screen coordinates, the individual texels of a texture
rarely correspond to individual pixels of the final screen image. Depending on the transformation
used and the texture mapping applied, a single pixel on the screen can correspond to anything frol
small portion of a texel (magnification) to a large collection of texels (minification)."

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 21

Several filters are already part of OpenGL; the extension allows you to define your own custom filti
The custom filter cannot be a mipmapped filter and must be symmetric and separable (in the 2D
case).

Using the Texture Filter4 Extension

To use Filter4 filtering, you have to first define the filter function. Filter4 uses an application—define
array of weights (setetermining the weights Array!' There is an implementation—dependent
default set of weights.

Specifying the Filter Function

Applications specify the filter function by callirgdTexFilterFuncSGIS(jsee also the
glTexFilterFuncSGlSeference page) with

targetset to GL_TEXTURE_1D or GL_TEXTURE_2D
filter setto GL_FILTER4_SGIS

weightspointing to an array of floating—point values. The valaenust equal 2**m + 1 for
some nonnegative integer value of m.

Determining the weights Array

Theweightsarray contains samples of the filter function

f(x), O<=x<=2

Each elemeniveightéi] is the value of

f((2*i)/(n-1)), O<=i<= n-1

OpenGL stores and uses the filter function as a set of samples
f((2*i)/(Size—-1)), O<=i<=Size-1

whereSizeis the implementation—dependent constant GL_ TEXTURE_FILTER4_SldEglials
Size the arrayweightsis stored directly in OpenGL state. Otherwise, an implementation—dependent
resampling method is used to compute the stored samples.

Note: "SGIS_filter4_parametersThe Filter4 Parameters Extensigorovides interpolation
coefficients just as they are required for GL_FILTER4_SGIS filtering.

Sizemust equal 2**m + 1 for some integer value§reater than or equal to 4. The va&ieefor
texturetargetis returned byaramswhenglGetTexParameterivQr glGetTexParameterfv(s called
with pnameset to TEXTURE_FILTER4_SIZE_SGIS.

Setting Texture Parameters
After the filter function has been defined, aifexParameter*()with

pnameset to one of GL_ TEXTURE_MIN_FILTER or GL_TEXTURE_MAG_FILTER
paramor paramsset to FILTER4_SGIS

the value oparam(s)set to the function you just defined

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 22

Because filter4 filtering is defined only for non—mipmapped textures, there is no difference betweel
its definition for minification and magnification.
New Functions

glTexFilterFuncSGISglGetTexFilterFuncSGIS

SGIS texture lod O The Texture LOD Extension

The texture LOD extension, SGIS_texture_lod, imposes constraints on the texture LOD parameter
Together these constraints allow a large texture to be loaded and used initially at low resolution, ai
to have its resolution raised gradually as more resolution is desired or available. By providing
separate, continuous clamping of the LOD parameter, the extension makes it possible to avoid
"popping" artifacts when higher-resolution images are provided.

To achieve this, the extension imposes the following constraints:
It clamps LOD to a specific floating point range.

It limits the selection of mipmap image arrays to a subset of the arrays that would otherwise b
considered.

To understand the issues discussed in this section, you should be familiar with the issues discusse
the sections "Multiple Levels of Detail" on page 338 and "Filtering” on page 344 OpteGL
Programming Guide.

Specifying a Minimum or Maximum Level of Detail

To specify a minimum or maximum level of detail for a specific texturegtBdixParameter*(Jand
set

targetto GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D_EXT
pnameto GL_TEXTURE_MIN_LOD_SGIS or GL_TEXTURE_MAX_LOD_SGIS

paramto (orparamspointing to) the new value

LOD is clamped to the specified range before it is used in the texturing process. Whether the
minification or magnification filter is used depends on the clamped LOD.

Specifying Image Array Availability

The OpenGL Specificatiodescribes a "complete” set of mipmap image arrays at levels 0 (zero)
through p, where p is a well-defined function of the dimensions of the level 0 image.

This extension lets you redefine any image level as the base level (or maximum level). This is usel
for example, if your application runs under certain time constraints, and you want to make it possik
for the application to load as many levels of detail as possible but stop loading and continue
processing, choosing from the available levels after a certain period of time has elapsed. Availabili
in that case does not depend on what is explicitly specified in the program but on what could be
loaded in a specified time.

To set a new base (or maximum) level, ghllexParameteri()glTexParemeterf()

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 23

glTexParameteriv()or glTexParameterfv(and set
targetto GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D_EXT
pnameto
- GL_TEXTURE_BASE_LEVEL_SGIS to specify a base level
- GL_TEXTURE_MAX_LEVEL_SGIS to specify a maximum level

paramto (orparamspointing to) the desired value

Note that the number used for the maximum level is absolute, not relative to the base level.

SGIS_texture select [0 The Texture Select Extension

The texture select extension, SGIS_texture_select, allows for more efficient use of texture memory
by subdividing the internal representation of a texel into one, two, or four smaller texels. The
extension may also improve performance of texture loading.

Why Use the Texture Select Extension?

On InfiniteReality graphics systems, the smallest texel supported by the hardware is 16 bits. The
extension allows you to pack multiple independent textures together to efficiently fill up space in
texture memory (the extension itself refers to each of the independent textures as component grot

Two eight—bit textures can be packed together. Examples include 8-bit luminance, 8-bit inten
8-bit alpha, and 4-bit luminance—-alpha.

Four four-bit textures can be packed together. Examples include 4-bit luminance, 4-bit intens
and 4-bit alpha.

The extension allows developers to work with these components by providing several new texture
internal formats. For example, assume that a texture internal format of
GL_DUAL_LUMINANCE4_SGIS is specified. Now there are two component groups, where each
group has a format of GL_LUMINANCE4. One of the two GL_LUMINANCE groups is always
selected. Each component can be selected and interpreted as a GL_LUMINANCE texture.

Note: The point of this extension is to save texture memory. Applications that need only 8-bit or
4-hit texels would otherwise use half or one quarter of texture memory. However, applications tha
use 16-hit or larger texels (such as RGBA4, LA8) won't benefit from this extension.

Using the Texture Select Extension

To use the texture select extension, first gllexImage*D()to define the texture using one of the
new internal formats:

glTexlmage[n]D[EXT] (/* Definition */
internalFormat =
GL_DUAL_{ ALPHA, LUMINANCE, INTENSITY * K4, 8, 12, 16 }_SG
IS
GL_DUAL_LUMINANCE_ALPHA{ 4,8} _SGIS
GL_QUAD_{ ALPHA, LUMINANCE, INTENSITY*}{ 4, 8} SGIS

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 24

)i
The system then assigns parts of the texture data supplied by the application to parts of the 16-bit
texel, as illustrated iable 7-7

To select one of the component groups for use during rendering, the application then calls
glTexParameter*(jas follows:

glTexParameteri (/* Selection & Usage */

target = GL_TEXTURE_[n]D[_EXT],

param = GL_DUAL_TEXTURE_SELECT_SGIS GL_QUAD_TEXTURE_SELECT_S
GIS

value={0,1},

{0,1,2,3}

);
There is always a selection defined for both DUAL_TEXTURE_SELECT_SGIS and
QUAD_TEXTURE_SELECT_SGIS formats. The selection becomes active when the current textur
format becomes one of the DUAL* or QUAD* formats, respectively. If the current texture format is
not one of DUAL* or QUAD* formats, this extension has no effect.

Component mapping from the canonical RGBA to the new internal formats is as follows:

Table 7-7 Texture Select Host Format Components Mapping

Format Grouping

DUAL* formats that are groups of RED component goes to the first group

ALPHA, LUMINANCE, and ALPHA component goes to the second group
INTENSITY

DUAL* formats that are groups of RED and GREEN components go to the first group
LUMINANCE_ALPHA BLUE and ALPHA go to the second group

QUAD* formats RED component goes to the first group

GREEN component to the second group
BLUE component to the third group
ALPHA component to the fourth group

The interpretation of the bit resolutions of the new internal formats is implementation dependent. T
query the actual resolution that is granted, gi@8ktTexLevelParameter{yith pnameset

appropriately, for example GL_TEXTURE_LUMINANCE_SIZE. The bit resolution of similar type
components in a group, such as multiple LUMINANCE components, is always the same.

SGIX_clipmap O The Clipmap Extension

The clipmap extension, SGIX_clipmap, allows applications to use dynamic texture representations
that efficiently cache textures of arbitrarily large size in a finite amount of physical texture memory.
Only those parts of the mipmapped texture that are visible from a given application—-specified locat
are stored in system and texture memory. As a result, applications can display textures too large t
in texture memory by loading parts on the texture into texture memory only when they are requirec

Full clipmap support is implemented in IRIS Performer 2.2 (or later). Applications can also use this
extension on the appropriate hardware (currently InfiniteReality only) for the same results. In that
case, the application has to perform memory management and texture loading explicitly.

This section explains how clipmaps work and how to use them in the following sections:

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 25

"Clipmap Overview"explains the basic assumptions behind clipmaps.

"Using Clipmaps From OpenGlprovides step by step instructions for setting up a clipmap
stack and for using clipmaps. Emphasis is on the steps, with references to the background
information as needed.

"Clipmap Background Informatioréxplains some of the concepts behind the steps in clipmap
creation in more detail.

"Virtual Clipmaps"discusses how to work with a virtualized clipmap, which is the appropriate
solution if not all levels of the clipmap fit.

Note: For additional conceptual information, see the specification for the clipmap extension, which
is available through the developer’s toolbox.

Clipmap Overview

Clipmaps avoid the size limitations of normal mipmaps by clipping the size of each level of a
mipmap texture to a fixed area, called the clip region Fégere 7-b A mipmap contains a range of
levels, each four times the size of the previous one. Each level (size) determines whether clipping
occurs:

For levels smaller than the clip regiorthat is, for low-resolution levels that have relatively few

texel$] the entire level is kept in texture memory.

Levels larger than the clip region are clipped to the clip region’s size. The clip region is set by
the application, trading off texture memory consumption against image quality. (The image me
become blurry because texture accesses outside the clip region are forced to use a coarse LC

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 26

CAip size

. -
- -

CHip region

" Entire level in
teadtLre mmermorny

Figure 7-5 Clipmap Component Diagram

Clipmap Constraints

The clipmap algorithm is based on the following constraints:
The viewer can see only a small part of a large texture from any given viewpoint.
The viewer looks at a texture from only one location.
The viewer moves smoothly relative to the clipmap geometry (no teleporting).

The textured geometry must have a reasonable, relatively flat topology.

Given these constraints, applications can maintain a high-resolution texture by keeping only those
parts of the texture closest to the viewer in texture memory. The remainder of the texture is on disl
and cached in system memory.

Why Do the Clipmap Constraints Work?

The clipmap constraints work because only the textured geometry closest to the viewer needs a
high-resolution texture. Distant objects are smaller on the screen, so the texels used on that objec

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 27

also appear smaller (cover a small screen area). In normal mipmapping, coarser mipmap levels ar
chosen as the texel size gets smaller relative to the pixel size. These coarser levels contain fewer
texels because each texel covers a larger area on the textured geometry.

Clipmaps store only part of each large (high-resolution) mipmap level in texture memory. When th
user looks over the geometry, the mipmap algorithm starts choosing texels from a lower level befo
running out of texels on the clipped level. Because coarser levels have texels that cover a larger a
at a great enough distance, texels from the unclipped, smaller levels are chosen as appropriate.

When a clip size is chosen, the mipmap levels are separated into two categories:
Clipped levels, which are texture levels that are larger than the clip size.

Nonclipped levels, which are small enough to fit entirely within the clip region.

The nonclipped levels are viewpoint independent; each nonclipped texture level is complete. Clipp
levels, however, must be updated as the viewer moves relative to the textured geometry.

Clipmap Textures and Plain Textures

Clipmaps are not completely interchangeable with regular OpenGL textures. Here are some
differences:

Centering. In a regular texture, every level is complete in a regular texture. Clipmaps have
clipped levels, where only the portion of the level near the clipmap center is complete. In ordel
to look correct, a clipmap center must be updated as the viewport of the textured geometry
moves relative to the clipmap geometry.

As a result, clipmaps require functionality that recalculates the center position whenever the
viewer moves (essentially each frame). This means that the application has to update the loca
of the clip center as necessary.

Texel Data A regular texture is usually only loaded once, when the texture is created. The text
data of a clipmap must be updated by the application each time the clipmap center is moved.
This is usually done by callingiTexSublmage2D@nd using the toroidal loading technique (see
"Toroidal Loading).

Using Clipmaps From OpenGL
To use clipmaps, an application has to take care of two distinct tasks, discussed in this section:
"Setting Up the Clipmap Stack"

"Updating the Clipmap Stack”

Setting Up the Clipmap Stack
To set up the clipmap stack, an application has to follow these steps:

1. CallglTexParameter*(with the GL_TEXTURE_MIN_FILTER_SGIX parameter set to
GL_LINEAR_CLIPMAP_LINEAR_SGIX to let OpenGL know that clipmaps, not mipmaps will
be used.

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 28

GL_LINEAR_CLIPMAP_LINEARY);
GL_TEXTURE_MAG_FILTER can be anything but GL_FILTER4_SGIS

2. Setthe GL_TEXTURE_CLIPMAP_FRAME_SGIX parameter to set an invalid border region of
at least eight pixels.

The frame is the part of the clip that the hardware should ignore. Using the frame avoids certai
sampling problems; in addition, the application can load into the Frame region while updating
the texture. Se¥nvalid Borders"for more information.

In the following code fragmengjzeis the fraction of the clip size that should be part of the
border; that is, .2 would mean 20 percent of the entire clip size area would be dedicated to the
invalid border, along the edge of the square clip size region.

GLfloat size = .2f; /*20% */
[* can range from O (no border) to 1 (all border) */
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_CLIPMAP_FRAME_SGIX,size)

’

3. Set GL_TEXTURE_CLIPMAP_CENTER_SGIX to set the center texel of the highest-resolutiol
texture, specified as an integer. The clip center is specified in terms of the top
(highest-resolution) level of the clipmap, level 0. OpenGL automatically adjusts and applies th
parameters to all of the other levels.

The position of the center is specified in texel coordinates. Texel coordinate are calculated by
taking the texture coordinates (which range from 0 to 1 over the texture) and multiplying them
by the size of the clipmap’s top level. S&toving the Clip Center'for more information.

The following code fragment specifies the location of the region of interest on every clipped
level of clipmap. The location is specified in texel coordinates, so texture coordinates must be
multiplied by the size of the top level in each dimension. In this exaagi¢eris at the center

of texture (.5, .5). Assume this clipmap is 4096 (s direction) by 8192 (t direction) at level 0.

int center[3];

center[0] = .5 * 4096;

center[1] = .5 * 8192;

center[2] = 0; /* always zero until 3d clipmaps supported */

glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_CLIPMAP_CENTER_SGIX,
center);

4. Set GL_TEXTURE_CLIPMAP_OFFSET_SGIX to specify the offset. dfisetparameter
allows applications to offset the origin of the texture coordinates so that the incrementally
updated texture appears whole and contiguous.

Like the center, the offset is supplied in texel coordinates. In the code fragment below, clip siz¢
is the size of the region of interest.

int offset[2];

offset[0] = (center[0] + clipsize/2) % clipsize;
offset[1] = (center[1] + clipsize/2) % clipsize;

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 29

glTexParameteriv(GL_TEXTURE_2D,
GL_TEXTURE_CLIPMAP_OFFSET_SGIX,
offset);

5. CallglTeximage2D(Jo define the highest-resolution level that contains the entire map. This
indirectly tells OpenGL what the clip size is and which level of the clipmap contains the largest
clipped level. OpenGL indirectly calculates the clip size of a clipmap by the size of the texture
levels. Although the clipmap levels can be loaded in any order, it is most efficient for the currer
clipmap system if the top of the pyramid is loaded first. Note that a clipmap’s clip size level is ¢
some level other than zero (otherwise there would be no levels larger than the clip size; that is
no clipped levels.)

In the following code fragment, the clipmap is RGB, with a top level of dimensions 8192 by
8192, and a clip size of 512 by 512. There will be 12 levels total, and the last level at which the
whole mipmap is in memory (512 level) is level 4.

GLint pyramid_level, border = 0;

GLsizei clipsize_wid, clipsize_ht;

clipsize_wid = clipsize_ht = 512;

pyramid_level = 4; /* 8192 = 0, 4096 = 1, 2048 = 2, 1024 =3, ...
*

glTeximage2D(GL_TEXTURE_2D,

pyramid_level,

GL_RGB, /* internal format */

clipsize_wid,

clipsize_ht,

border, /* not invalid border! */,

GL_RGB, /* format of data being loaded */

GL_BYTE, /* type of data being loaded */

data); /* data can be null and subloaded later if desired
*

6. Create the clipmap stack by callig eximage2D(yepeatedly for each level.

If you want to use a virtual clipmap, you can use the texture_LOD extension (see
"SGIS_texture_lod The Texture LOD Extensiof'to specify the minimum and maximum
LOD. Seé€'Virtual Clipmaps".

7. After the application has precomputed all mipmaps, it stores them on disk for easy access. No
that it is not usually possible to create the stack in real time.

Updating the Clipmap Stack

As the user moves through the "world," the center of the clipmap usually changes with each frame
Applications therefore have to update the clipmap stack with each frame, following these steps:

1. Compute the difference between the old and new center.
See"Moving the Clip Centerfor background information.

2. Determine the incremental texture load operations needed for each level.

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 30

3. Perform toroidal loads by calling TexSublmage2D{p load the appropriate texel regions.
"Toroidal Loading"discusses this in more detail.

4. Set the parameters for center and offset for the next move.

Clipmap Background Information

The following sections provide background information for the stefidsimg Clipmaps From
OpenGL"

Moving the Clip Center

Only a small part of each clipped level of a clipmap actually resides in texture memory. As a result
moving the clip center requires updating the contents of texture memory so it contains the pixel da
corresponding to the new location of the region of interest.

Updates must usually happen every frame, as showigime 7-6Applications can update the
clipmaps to the new center using toroidal loading (3eeoidal Loading).

S

Centerad Center moves Texture coordinates wrap

S

Toroidal loads Same as centered

Figure 7-6 Moving the Clip Center

The clip center is set by the application for level 0, the level with the highest resolution. The clipma
code has to derive the clip center location on all levels. As the viewer roams over a clipmap, the
centers of each mipmap level move at a different rate. For example, moving the clip center one un
corresponds to the center moving one half that distance in each dimension in the next-coarser
mipmap level.

When applications use clipmaps, most of the work consists of updating the center properly and
updating the texture data in the clipped levels reliably and efficiently for each frame.To facilitate
loading only portions of the texture at a time, the texture data should first be subdivided into a
contiguous set of rectangular areas, cdiled. These tiles can then be loaded individually from disk
into texture memory.

Invalid Borders

Applications can improve performance by imposing alignment requirements to the regions being
downloaded to texture memory. Clipmaps support the conceptio¥alid borderto provide this
feature. The border is an area around the perimeter of a clip region that is guaranteed not to be

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 31

displayed. The invalid border shrinks the usable area of the clip region, and can be used to
dynamically change the effective size of the clip region.

When texturing requires texels from a portion of an invalid border at a given mipmap level, the
texturing system moves down a level, and tries again. It keeps going down to coarser levels until it
finds texels at the proper coordinates that are not in the invalid region. This is always guaranteed t
happen, because each level covers the same area with fewer texels. Even if the required texel is
clipped out of every clipped level, the unclipped pyramid levels will contain it.

The invalid border forces the use of lower levels of the mipmap. As a result, it
Reduces the abrupt discontinuity between mipmap levels if the clip region is small.
Using coarser LODs blends mipmap levels over a larger textured region.
Improves performance when a texture must be roamed very quickly.

Because the invalid border can be adjusted dynamically, it can reduce the texture and system mer
loading requirements at the expense of a blurrier textured image.

Requiraed texeal Clip center

Fine Clip region

[rwalid border
Required texeal

L

Clip center

Coarser

Figure 7-7 Invalid Border

Toroidal Loading

To minimize the bandwidth required to download texels from system to texture memory, the image
cache’s texture memory should be updated usirmdal loading which means the texture wraps
upon itself. (se€&igure 7-H

A toroidal load assumes that changes in the contents of the clip region are incremental, such that 1
update consists of

new texels that need to be loaded

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 32

texels that are no longer valid

texels that are still in the clip region, but have shifted position

Toroidal loading minimizes texture downloading by updating only the part of the texture region that
needs new texels. Shifting texels that remain visible is not necessary, because the coordinates of 1
clip region wrap around to the opposite side.

As the center moves, only texels along the edges of the clipmap levels change. To allow for
incremental loading only of these texels gidiexSublmage2D(Joroidal offset values have to be
added to the texture addresses of each level. The offset is specified by the applicatiett{rge

Up the Clipmap Stacl' The offsets for the top level define the offsets for subsequent levels by a
simple shift, just as with the center.

Virtual Clipmaps

You can use the texture LOD extension in conjunction with mipmapping to change the base level
from zero to something else. Using different base levels results in clipmaps with more levels than t
hardware can store at once when texturing.

These larger mipmapped textures can be used by only accessing a subset of all available mipmap
levels in texture memory at any one time. A virtual offset is used to set a virtual "level 0" in the
mipmap, while the number of effective levels indicates how many levels starting from the new leve
can be accessed. The minLOD and maxLOD are also used to ensure that only valid levels are
accessed. The application typically divides the clipmapped terrain into pieces, and sets the values
each piece is traversed, using the relative position of the viewer and the terrain to calculate the val

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 33

Cliprap LOD

offzet

Virtual cliprmap
depth

Figure 7-8 Virtual Clipmap

To index into a clipmap of greater than GL_MAX_CLIPMAP_DEPTH_SGIX levels of detail,
additional parameters are provided to restrictively index a smaller clipmap of (N+1) levels located
wholly within a complete, larger clipmapigure 7-8llustrates how a virtual clipmap fits into a

larger clipmap stack. The clipmap extension specification explains the requirements for the larger i
smaller clipmap in more detail.

When creating a virtual clipmap, an application cglleexParameteriv()or glTexParameterfv(jvith
targetset to GL_TEXTURE_2D
pnameset to GL_TEXTURE_CLIPMAP_VIRTUAL_DEPTH_SGIX
paramsset to (D,N+1,V+1)
where D is the finest level of the clipmap, N+1 is the depth of the clipmap, and V+1 is the depth of
the virtual clipmap.

If the depth of the virtual clipmap is zero, clipmap virtualization is ignored, and texturing proceeds :
with a non-virtual clipmap.

If you have virtualized the clipmap, you will be adjusting the LOD offset and possibly the number o
displayable levels as you render each chunk of polygons that need a different set of clipmap levels
be rendered properly. The application has to compute the levels needed.

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 34

SGIX_texture_add_env [The Texture Environment Add
Extension

The texture environment add extension, SGIX_texture_add_env, defines a new texture environme
function, which scales the texture values by the constant texture environment color, adds a consta
environment bias color, and finally adds the resulting texture value on the in—coming fragment colc
The extension can be used to simulate highlights on textures (although that functionality is usually
achieved with multi-pass rendering) and for situations in which it has to be possible to make the
existing color darker or lighter, for example, for simulating an infrared display in a flight simulator.

OpenGL 1.1 supports four texture environment functions: GL_DECAL, GL_REPLACE,
GL_MODULATE, and GL_BLEND.

The extension provides an additional environment, GL_ADD, which is supported with the following
equation:

Cv=Cf+CcCt+Cb

where

Cr Fragment color

Cc Constant color (set by callimdTexEnv() with pname set to
GL_TEXTURE_ENV_COLOR)

Ct Texture color

Cb Bias color (set by callinglTexEnv()with pnameset to

GL_TEXTURE_ENV_BIAS_SGIX.) angharamset to a value greater than -1
and less than 1.

The new function works just like the other functions discussed in the section "Texture Functions" o
page 354 of th®penGL Programming Guide, Second Edition

SGIX texture lod bias [The Texture LOD Bias Extension

The texture LOD bias extension, SGIX_texture_lod_bias, allows applications to bias the default LC
to make the resulting image sharper or more blurry. This can improve image quality if the default
LOD is not appropriate for the situation in question.

Background: Texture Maps and LODs

If an application uses an image as a texture map, the image may have to be scaled down to a sme
size on the screen. During this process the image must be filtered to produce a high—quality result
Nearest—neighbor or linear filtering do not work well when an image is scaled down; for better
results, an OpenGL program can use mipmapping. A mipmap is a series of prefiltered texture map
of decreasing resolution. Each texture map is referred to as one level of detail or LOD. Application
create a mipmap using the routirgggBuild1DMipmaps(Jor gluBuild2DMipmaps() Mipmaps are
discussed starting on page 338 of@penGL Programming Guide, Second Edition

Graphics systems from Silicon Graphics automatically select an LOD for each textured pixel on the
screen. However, in some situations the selected LOD results in an image that is too crisp or too
blurry for the needs of the application. For example, 2D mipmapping works best when the shape o

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 35

the texture on the screen is a square. If that is not the case, then one dimension of the texture mus
scaled down more than the other to fit on the screen. By default the LOD corresponding to the larg
scale factor is used, so the dimension with the smaller scale factor will appear too blurry.

Figure 7-%hows an image that is too blurry with the default LOD bias. You can see that the marke
in the middle of the road is blurred out.Rigure 7-10this effect is exaggerated by a positive LOD
bias.Figure 7-15hows how the markers become visible with a negative LOD bias.

Figure 7-9 Original Image

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 36

Figure 7-10 Image With Positive LOD Bias

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 37

Figure 7-11 Image with Negative LOD Bias

As another example, the texture data supplied by the application may be slightly oversampled or
undersampled, so the textured pixels drawn on the screen may be correspondingly blurry or crisp.

Why Use the LOD Bias Extension?

The texture LOD bias extension allows applications to bias the default LOD to make the resulting
image sharper or more blurry. An LOD of 0 corresponds to the most—detailed texture map, an LOL
1 corresponds to the next smaller texture map, and so on. The default bias is zero, but if the
application specifies a new bias, that bias will be added to the selected LOD. A positive bias produ
a blurrier image, and a negative bias produces a crisper image. A different bias can be used for e
dimension of the texture to compensate for unequal sampling rates.

Examples of textures that can benefit from this LOD control include:

Images captured from a video source. Because video systems use non—square pixels, the
horizontal and vertical dimensions may require different filtering.

A texture that appears blurry because it is mapped with a nonuniform scale, such as a texture
a road or runway disappearing toward the horizon (the vertical dimension must be scaled dow
lot near the horizon, the horizontal dimension is not scaled down much).

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 38

Textures that don’t have power of two dimensions and therefore had to be magnified before
mipmapping (the magnification may have resulted in a nonuniform scale).

Using the Texture LOD Bias Extension

To make a mipmapped texture sharper or blurrier, applications can supply a negative or positive b
by callingglTexParameter*(with

targetset to TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D_EXT.

pnameset to GL_TEXTURE_LOD_BIAS_S_SGIX, GL_TEXTURE_LOD_BIAS_T_SGIX, or
GL_TEXTURE_LOD_BIAS_R_SGIX.

paramset to (omparamspointing to) the desired bias value, which may be any integer or
floating—point number. The default value is 0.

You can specify a bias independently for one or more texture dimensions. The final LOD is at leas
large as the maximum LOD for any dimension; that is, the texture is scaled down by the largest sc
factor, even though the best scale factors for each dimension may not be equal.

Applications can also caf/iGetTexParameter*(jo check whether one of these values has been set.

SGIX_texture_scale bias [The Texture Scale Bias Extension

The texture_scale_bias extension, SGIX_texture_scale_bias, allows applications to perform scale,
bias, and clamp operations as part of the texture pipeline. By allowing scale or bias operations on

texels, applications can make better utilization of the color resolution of a particular texture internal
format, by, for example, performing histogram normalization, or gamut expansion. In addition some
color remapping may be performed with this extension if a texture color lookup table is not availabl
or too expensive.

The scale, bias, and clamp operations are applied, in that order, directly before the texture
environment equations, or, if the SGI_texture_color_table extension exists, directly before the text
color lookup table. The four values for scale (or bias) correspond to the R, G, B, and A scale (or bi
factors. These values are applied to the corresponding texture components, Rt, Gt, Bt, and At.
Following the scale and bias is a clamp to the range [0, 1].

To use the extension, an application cglleexParameter*(with apnameparameter
GL_POST_TEXTURE_FILTER_BIAS_SGIX or GL_POST_TEXTURE_FILTER_SCALE_SGIX
and withparamsset to an array of four values.The scale or bias values can be queried using
glGetTexParameterfv@r glGetTexParameteriv()rhe scale, bias, and clamp operations are
effectively disabled by setting the four scale values to 1 and the four bias values to 0. There is no
specific enable or disable token for this extension.

Because an implementation may have a limited range for the values of scale and bias (for example
due to hardware constraints), this range can be queried. To obtain the scale or bias range, call
glGet*() with GL_POST_TEXTURE_FILTER_SCALE_RANGE_SGIX or
GL_POST_TEXTURE_FILTER_BIAS_RANGE_SGIX, respectively asuhkie parameter. An

array of two values is returned: the first is the minimum value and the second is the maximum valu

OpenGL ® on Silicon Graphics ® Systems — Chapter 7, Texturing Extensions — 39

SGIX_texture_multi_buffer [0 The Texture Multibuffer
Extension

The texture multibuffer extension, SGIX_texture_multi_buffer, allows applications to change the
way OpenGL handles multiple textures.

Texture objects, which were introduced in OpenGL 1.1, allow the simultaneous definition of multipl
textures. As a result, you can in principle render one texture and at the same time load another tex
into hardware or perform other actions on its definition. This is true as long as all redefinitions
strictly follow any use of the previous definition.

Conceptually using textures in this fashion is similar to frame buffer double-buffering, except that
intent here is to provide a hint to OpenGL to promote such double-buffering if and wherever possil
The effect of such a hint is to speed up operations without affecting the result. Developers on any

particular system must be knowledgable and prepared to accept any trade-offs that may result fro
such a hint.

The extension is currently used for video texture—mapping; that is, instead of mapping a static ima
onto an object in a 3D view, live video is mapped. So there is a variety of special effects that can b
done. On Indigo2 IMPACT and OCTANE, the method is to use a GLX extension to set the
"readsource" to be "video" and then adiCopyTeximage2D(p get the latest video image into

texture memory. Using the multibuffer extension, it is possible to be drawing with the previous vide
frame (the front buffer) while the new frame is being loaded in (the back buffer). This really speeds
things up.

How to use the Texture Multibuffer Extension

To use the extension, cglHint() with thetarget parameter set to
GL_TEXTURE_MULTI_BUFFER_HINT_SGIX.

If you specify a hint of GL_FASTEST, texture multi-buffering is used whenever possible to improwv:
performance. Generally, textures that are adjacent in a sequence of multiple texture definitions ha
the greatest chance of being in different buffers. The number of buffers available at any time depe!
on various factors, such as the machine being used and the textures’ internal formats.

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 40

Chapter 8
Rendering Extensions

This chapter explains how to use the different OpenGL rendering extensions. Rendering refers to
several parts of the OpenGL pipeline: the evaluator stage, rasterization, and per—fragment operati
You learn about

"Blending Extensions"

"SGIS_fog_functiofl The Fog Function Extension”

"SGIS_fog_offsefl The Fog Offset Extension”

"SGIS_multisample The Multisample Extension”

"SGIS_point_parametdrisThe Point Parameters Extension"

"SGIX_reference_plariéThe Reference Plane Extension™

"SGIX_shadow, SGIX_depth_texture, and SGIX_shadow_anibi€he Shadow Extensions"

"SGIX_spritd] The Sprite Extension”

Blending Extensions

Blending refers to the process of combining color values from an incoming pixel fragment (a sourc
with current values of the stored pixel in the framebuffer (the destination). The final effect is that
parts of a scene appear translucent. You specify the blending operation bygtBlengiFunc()

then enable or disable blending usgignable()or gIDisable()with GL_BLEND.

Blending is discussed in the first section of Chapter 7, "Blending, Antialiasing, Fog, and Polygon
Offset" of theOpenGL Programming Guid&he section, which starts on page 214, also lists a
number of sample uses of blending.

This section explains how to use extensions that support color blending for images and rendered
geometry in a variety of ways:

"Constant Color Blending Extension"
"Minmax Blending Extension"

"Blend Subtract Extension"

Constant Color Blending Extension

The standard blending feature allows you to blend source and destination pixels. The constant coli
blending extension, EXT_blend_color, enhances this capability by defining a constant color that yc
can include in blending equations.

Constant color blending allows you to specify input source with constant alpha that is not 1 without
actually specifying the alpha for each pixel. Alternatively, when working with visuals that have no
alpha, you can use the blend color for constant alpha. This also allows you to modify a whole
incoming source by blending with a constant color (which is faster than clearing to that color). In
effect, the image looks as if it were viewed through colored glasses.

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 1

Using Constant Colors for Blending
To use a constant color for blending, follow these steps:
1. CallglBlendColorEXT(}o specify the blending color:

void gIBlendColorEXT(GLclampf red, GLclampf green GLclampf blue
GLclampf alpha)

The four parameters are clamped to the range [0,1] before being stored. The default value for
constant blending color is (0,0,0,0).

2. CallglBlendFunc(to specify the blending function, using one of the tokens list@alre 8-1
as source or destination factor, or both.

Table 8-1 Blending Factors Defined by the Blend Color Extension

Constant Computed Blend Factor
GL_CONSTANT_COLOR_EXT

(Rc, G, Bc, Ac)

GL_ONE_MINUS_CONSTANT_COLOR_EXT

(1,1,1,1) - (Rc, Gc, Bc, Ac)

GL_CONSTANT_ALPHA EXT

(Ac, Ac, Ac, Ac)

GL_ONE_MINUS_CONSTANT_ALPHA_EXT

(1,1,1,1) - (Ac, Ac, Ac, Ac)

Rc, Gc, Bc, and Ac are the four components of the constant blending color. These blend factol
are already in the range [0,1].

You can, for example, fade between two images by drawing both images with Alpha and
1-Alpha as Alpha goes from 1 to 0, as in the following code fragment:

glBlendFunc(GL_ONE_MINUS_CONSTANT_COLOR_EXT, GL_CONSTANT_COLOR_EX
T
for (alpha = 0.0; alpha <= 1.0; alpha += 1.0/16.0) {

glClear(GL_COLOR_BUFFER_BIT);

glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE, image0)

glEnable(GL_BLEND);
glBlendColorEXT(alpha, alpha, alpha, alpha);
glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE, imagel)

glDisable(GL_BLEND);
gIXSwapBuffers(display, window);
}

New Functions

glBlendColorEXT

Minmax Blending Extension

The minmax blending extension, EXT_blend_minmax, extends blending capability by introducing

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 2

two new equations that produce the minimum or maximum color components of the source and
destination colors. Taking the maximum is useful for applications such as maximum intensity
projection (MIP) in medical imaging.

This extension also introduces a mechanism for defining alternate blend equations. Note that ever
the minmax blending extension is not supported on a given system, that system may still support t
logical operation blending extension or the subtract blending extension. When these extensions ar
supported, thgIlBlendEquationEXT (function is also supported.

Using a Blend Equation
To specify a blend equation, cglBlendEquationEXTY()
void gIBlendEquationEXT(GLenum mode

Themodeparameter specifies how source and destination colors are combined. The blend equatio
GL_MIN_EXT, GL_MAX_EXT, and GL_LOGIC_OP_EXT doot use source or destination factors,
that is, the values specified wigiBlendFunc()do not apply.

If modeis setto GL_FUNC_ADD_EXT, then the blend equation is set to GL_ADD, the equation
used currently in OpenGL 1.0. ThiBlendEquationEXT ()eference page lists other modes. These
modes are also discussed'Blend Subtract ExtensionWhile OpenGL 1.0 defines logic operation
only on color indices, this extension extends the logic operation to RGBA pixel groups. The
operation is applied to each component separately.

New Functions

glBlendEquationEXT

Blend Subtract Extension

The blend subtract extension, EXT_blend_subtract, provides two additional blending equations the
can be used bglBlendEquationEXT()These equations are similar to the default blending equation,
but produce the difference of its left— and right—hand sides, rather than the sum. See the reference
for glBlendEquationEXT(jor a detailed description.

Image differences are useful in many image—processing applications; for example, comparing two
pictures that may have changed over time.

SGIS fog_function [The Fog Function Extension

Standard OpenGL defines three fog modes; GL_LINEAR, GL_EXP (exponential), and GL_EXP2
(exponential squared). Visual simulation systems can benefit from more sophisticated atmospheric
effects, such as those provided by the fog function extension.

Note: The fog function extension is supported only on InfiniteReality systems.

The fog function extension, SGIS_fog_function, allows you to define an application—specific fog
blend factor function. The function is defined by a setfooitrol pointsand should be monotonic.

Each control point is represented as a pair of the eye—space distance value and the corresponding
value of the fog blending factor. The minimum number of control points is 1. The maximum numbe
is implementation dependent.

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 3

To specify the function for computing the blending factor, giédbgFuncSGIS(Jith pointspointing

at an array of pairs of floating point values, argkt to the number of value pairsgaints The first

value of each value pair points specifies a value of eye—space distance (should be nonnegative), a
the second value of each value pair specifies the corresponding value of the fog blend factor (shot
be in the [0.0, 1.0] range). If there is more than one point, the order in which the points are specifie
is based on the following requirements:

The distance value of each point is not smaller than the distance value of its predecessor.

The fog factor value of each point is not bigger than the fog factor value of its predecessor.

Then value pairs irpointscompletely specify the function, replacing any previous specification that
may have existed. At least one control point should be specified. The maximum number of control
points is implementation dependent and may be retrievetidst*() commands.

Initially the fog function is defined by a single point (0.0, 1.0). The fog factor function is evaluated
by fitting a curve through the points specifiedghyogFuncSGIS()This curve may be linear

between adjacent points, or it may be smoothed, but it will pass exactly through the points, limited
only by the resolution of the implementation. The value pair with the lowest distance value specifie
the fog function value for all values of distance less than or equal to that pair’s distance. Likewise,
the value pair with the greatest distance value specifies the function value for all values of distance
greater than or equal to that pair’s distance.

If pnameis GL_FOG_MODE angharamis, orparamspoints to an integer GL_FOG_FUNC_SGIS,
then the application—specified fog factor function is selected for the fog calculation.

FogFunc Example Program

The following simple example program for fog—function extension can be executed well only on
those platforms where the extension is supported (currently InfiniteReality only).

#include <stdio.h>
#include <stdlib.h>
#include <GL/gl.h>
#include <GL/glut.h>

/* Simple demo program for fog—function. Will work only on machines
*where SGIS_fog_func is supported (InfiniteReality).

* Press ‘f' key to toggle between fog and no fog

* Pres ESC to quit

*

* cc fogfunc.c —o fogfunc —Iglut -IGLU —-IGL -IXmu —-IX11
*

#define ESC 27
GLint width =512, height = 512;

GLint dofog = 1; [* fog enabled by defaul
t*

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 4

GLfloat fogfunc[] = { /* fog—function profile
*

6.0, 1.0, /* (distance, blend-factor) pairs */

8.0, 0.5,

10.0, 0.1,

12.0, 0.0,

k

void init(void)

{
GLUquadric *q = gluNewQuadric();
GLfloat ambient[] ={0.3, 0.3, 0.2, 1.0};
GLfloat diffuse[] = {0.8, 0.7, 0.8, 1.0};
GLfloat specular[] = {0.5, 0.7, 0.8, 1.0};
GLfloat Ipos|] = {0.0, 10.0, —20.0, 0.0}; /* infinite light */
GLfloat diff_mat[] ={0.1, 0.2, 0.5, 1.0};
GLfloat amb_mat[] = {0.1, 0.2, 0.5, 1.0};
GLfloat spec_mat[] = {0.9, 0.9, 0.9, 1.0};
GLfloat shininess_mat[] = {0.8, 0.0};
GLfloat amb_scene[] ={0.2, 0.2, 0.2, 1.0};
GLfloat fog_color[] = {0.0, 0.0, 0.0, 1.0};

glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

gIMatrixMode(GL_PROJECTION);
glLoadldentity();
glFrustum(-4.0, 4.0, -4.0, 4.0, 4.0, 30.0);

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

[* Setup lighting */

glLightfv(GL_LIGHTO, GL_AMBIENT, ambient);
glLightfv(GL_LIGHTO, GL_SPECULAR, specular);
glLightfv(GL_LIGHTO, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHTO, GL_POSITION, Ipos);
glLightModelfv(GL_LIGHT _MODEL_AMBIENT, amb_scene);

gIMaterialfv(GL_FRONT, GL_DIFFUSE, diff_mat);
glMaterialfv(GL_FRONT, GL_AMBIENT, amb_mat);
glMaterialfv(GL_FRONT, GL_SPECULAR, spec_mat);
gIMaterialfv(GL_FRONT, GL_SHININESS, shininess_mat);

glEnable(GL_LIGHTO);
glEnable(GL_LIGHTING);

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 5

/* Setup fog function */

glFogfv(GL_FOG_COLOR, fog_color);
glFogf(GL_FOG_MODE, GL_FOG_FUNC_SGIS);
glFogFuncSGIS(4, fogfunc);
glEnable(GL_FOG);

[* Setup scene */

glTranslatef(0.0, 0.0, —6.0);
glRotatef(60.0, 1.0, 0.0, 0.0);

gINewList(1, GL_COMPILE);
glPushMatrix();
glTranslatef(2.0, 0.0, 0.0);
glColor3f(1.0, 1.0, 1.0);
gluSphere(q, 1.0, 40, 40);
glTranslatef(-4.0, 0.0, 0.0);
gluSphere(q, 1.0, 40, 40);
glTranslatef(0.0, 0.0, —4.0);
gluSphere(q, 1.0, 40, 40);
glTranslatef(4.0, 0.0, 0.0);
gluSphere(q, 1.0, 40, 40);
glTranslatef(0.0, 0.0, —4.0);
gluSphere(q, 1.0, 40, 40);
glTranslatef(-4.0, 0.0, 0.0);
gluSphere(q, 1.0, 40, 40);
glPopMatrix();

glEndList();

void display(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
(dofog) ? glEnable(GL_FOG) : glDisable(GL_FOG);
glCallList(1);
glutSwapBuffers();
}

void kbd(unsigned char key, int x, int y)

{
switch (key) {
case ‘f’: /* toggle fog ena
ble */
dofog = 1 — dofog;

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 6

glutPostRedisplay();
break;

case ESC: /* quit!! */
exit(0);
}
}

main(int argc, char *argv[])
{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);
glutinitWindowSize(width, height);
glutCreateWindow("Fog Function™);
glutkeyboardFunc(kbd);
glutDisplayFunc(display);

init();

glutMainLoop();
}

New Function

glFogFuncSGIS

SGIS_fog_offset [0 The Fog Offset Extension

The fog offset extension, SGIX_fog_offset, allows applications to make objects look brighter in a
foggy environment.

When fog is enabled, it is equally applied to all objects in a scene. This can create unrealistic effec
for objects that are especially bright (light sources like automobile headlights, runway landing light:
or florescent objects, for instance). To make such objects look brighter, fog offset may be subtractt
from the eye distance before it is used for the fog calculation. This works appropriately because th
closer an object is to the eye, the less obscured by fog it is.

To use fog with a fog offset, follow these steps:
1. CallglEnable()with the GL_FOG argument to enable fog.
2. CallglFog*() to choose the color and the equation that controls the density.

The above two steps are explained in more detail in "Using Fog" on page 24@pEth@L
Programming Guide, Second Edition.

3. CallglEnable()with argument GL_FOG_OFFSET_SGIX.

4. CallglFog*() with apnameof GL_FOG_OFFSET_VALUE_SGIX and foparams The first
three parameters are point coordinates in the eye—-space and the fourth parameter is an offset
distance in the eye-space.

The GL_FOG_OFFSET_VALUE_SGIX parameter specifies point coordinates in eye-space ar

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 7

offset amount toward the viewpoint. It is subtracted from the depth value (to make objects clos
to the viewer) right before fog calculation. As a result, objects look less foggy. Note that these
point coordinates are needed for OpenGL implementations that use z—based fog instead of
eyespace distance. The computation of the offset in the z dimension is accurate only in the
neighborhood of the specified point.

If the final distance is negative as a result of offset subtraction, it is clamped to 0. In the case ¢
perspective projection, fog offset is properly calculated for the objects surrounding the given
point. If objects are too far away from the given point, the fog offset value should be defined
again. In the case of ortho projection, the fog offset value is correct for any object location.

5. CallglDisable()with argument GL_FOG_OFFSET_SGIX to disable fog offset.

SGIS_multisample O The Multisample Extension

The multisample extension, SGIS_multisample, provides a mechanism to antialias all OpenGL
primitives: points, lines, polygons, bitmaps, and images.

This section explains how to use multisampling and explores what happens when you use it. It
discusses the following topics:

"Introduction to Multisampling"
"Using the Multisample Extensioghd"Using Advanced Multisampling Options"

"How Multisampling Affects Different Primitives"

Introduction to Multisampling

Multisampling works by sampling all primitives multiple times at different locations within each
pixel, in effect collecting subpixel information. The result is an image that has fewer aliasing
artifacts.

Because each sample includes depth and stencil information, the depth and stencil functions perfc
equivalently to the single-sample mode. A single pixel can have 4, 8, 16, or even more subsample
depending on the platform.

When you use multisampling and read back color, you get the resolved color value (that is, the
average of the samples). When you read back stencil or depth, you typically get back a single san
value rather than the average. This sample value is typically the one closest to the center of the pi:

When to Use Multisampling

Multisample antialiasing is most valuable for rendering polygons because it correctly handles
adjacent polygons, object silhouettes, and even intersecting polygons. Each time a pixel is update:
the color sample values for each pixel are resolved to a single, displayable color.

For points and lines, the "smooth" antialiasing mechanism provided by standard OpenGL results ir
higher—quality image and should be used instead of multisampling (see "Antialiasing" in Chapter 7
"Blending, Antialiasing, Fog, and Polygon Offset" of DpenGL Programming Guide).

The multisampling extension lets you alternate multisample and smooth antialiasing during the
rendering of a single scene, so it is possible to mix multisampled polygons with smooth lines and

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 8

points. SeéMultisampled Points'and"Multisampled Lines"for more information.

Using the Multisample Extension

To use multisampling in your application, select a multisampling—capable visual by calling
gIXChooseVisual(vith the following items irattr_list:

GLX_SAMPLES_SGISVust be followed by the minimum number of samples required in
multisample bufferggIXChooseVisual(yives preference to visuals with the
smallest number of samples that meet or exceed the specified number. Color
samples in the multisample buffer may have fewer bits than colors in the main
color buffers. However, multisampled colors maintain at least as much color
resolution in aggregate as the main color buffers.

GLX_SAMPLE_BUFFERS_SGIShis attribute is optional. Currently there are no visuals with more
than one multisample buffer, so the returned value is either zero or one. When
GLX_SAMPLES_SGIS is non-zero, this attribute defaults to 1. When specified,
the attribute must be followed by the minimum acceptable number of
multisample buffers. Visuals with the smallest number of multisample buffers
that meet or exceed this minimum number are preferred.

Multisampling is enabled by default.
To query whether multisampling is enabled, call
glisEnabled(MULTISAMPLE_SGIS)
To turn off multisampling, call

gIDisable(MULTISAMPLE_SGIS)

Using Advanced Multisampling Options

Advanced multisampling options provide additional rendering capabilities. This section discusses
using a multisample mask to choose how many samples are writable
using alpha values to feather—blend texture edges

using the accumulation buffer with multisampling

Figure 8—khows how the subsamples in one pixel are turned on and off.

1. First, the primitive is sampled at the locations defined by a sample pattern. If a sample is insidt
the polygon, it is turned on, otherwise, it is turned off. This produces a coverage mask.

2. The coverage mask is then ANDed with a user—defined sample mask, defined by a call to
glSampleMaskSGIS(3€e'Using a Multisample Mask to Fade Levels of Dejail"

3. You may also choose to convert the alpha value of a fragment to a mask and AND it with the
coverage mask from step 2.

Enable GL_SAMPLE_ALPHA TO_MASK_SGIS to convert alpha to the mask. The fragment
alpha value is used to generate a temporary mask, which is then ANDed with the fragment ma

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 9

e

Fird samples AMD with user-defined AMD with opticnal
inside polgon sample mask... alpha-to-mask mask

Figure 8-1 Sample Processing During Multisampling

The two processésusing a multisample mask createdgt§ampleMaskSGISnd using the alpha
value of the fragment as a makkan both be used for different effects.

When GL_SAMPLE_ALPHA_TO_MASK_SGIS is enabled, it is usually appropriate to enable
GL_SAMPLE_ALPHA_TO_ONE_SGIS to convert the alpha values to 1 before blending. Without
this option, the effect would be colors that are twice as transparent.

Note: When you use multisampling, blending reduces performance. Therefore, when possible,
disable blending and instead use GL_SAMPLE_MASK_SGIS or GL_ALPHA_TO_MASK.

Color Blending and Screen—Door Transparency

Multisampling can be used to solve the problem of blurred edges on textures with irregular edges,
such as tree textures, that require extreme magnification. When the texture is magnified, the edge:
the tree look artificial, as if the tree were a paper cutout. To make them look more natural by
converting the alpha to a multisample mask, you can obtain several renderings of the same primiti
each with the samples offset by a specific amount.'Sesumulating Multisampled Image$dr

more information.

The same process can be used to achieve screen-door transparency: If you draw only every othel
sample, the background shines through for all other samples, resulting in a transparent image. Thi
useful because it doesn’t require the polygons to be sorted from back to front. It is also faster beca
it doesn’t require blending.

Using a Multisample Mask to Fade Levels of Detail

You can use a mask to specify a subset of multisample locations to be written at a pixel. This featt
is useful for implementing fade—level-of-detail in visual simulation applications. You can use
multisample masks to perform the blending from one level of detail of a model to the next by
rendering the additional data in the detailed model using a steadily increasing percentage of
subsamples as the viewpoint nears the object.

To achieve this blending between a simpler and a more detailed representation of an object, or to
achieve screen—door transparency (discussed in the previous section), egiearoplleMaskSGIS()
or use the Alpha values of the object and gi8ampleAlphaToMaskSGIS().

Below is the prototype falSampleMaskSGIS()

void glSampleMaskSGIS (GLclampf valug boolean invery)

value specifies coverage of the modification mask clamped to the range [0, 1].
0 implies no coverage, and 1 implies full coverage.

invertshould be GL_FALSE to use the modification mask implied by value or GL_TRUE to use

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 10

the bitwise inverse of that mask.

To define a multisample mask usigisampleMaskSGIS(pllow these steps:
1. Enable GL_SAMPLE_MASK_SGIS.
2. CallglSampleMaskSGISgith, for exampleyalueset to .25 anéhvertset to GL_FALSE.
3. Render the object once for the more complex level of detail.
4. CallglSampleMaskSGIS@gain with, for examplejalueset to .25 anéhvertset to GL_TRUE.
5. Render the object for the simpler level of detail.
This time, the complementary set of samples is used because of the use of the inverted mask.
6. Display the image.

7. Repeat the process for larger sample mask values of the mask as needed (as the viewpoint n¢
the object).

Accumulating Multisampled Images

You can enhance the quality of the image even more by making several passes, adding the result
the accumulation buffer. The accumulation buffer averages several renderings of the same primiti
For multipass rendering, different sample locations need to be used in each pass to achieve high
quality.

When an application uses multisampling in conjunction with accumulation, it should call
glSamplePatternSGIS@ith one of the following patterns as an argument:

GL_1PASS_SGIS is designed to produce a well-antialiased result in a single rendering pass |
is the default).

GL_2PASS 0 _SGIS and GL_2PASS_1 SGIS together specify twice the number of sample
points per pixel. You should first completely render a scene using pattern GL_2PASS 0 _SGil<
then completely render it again using GL_2PASS_1 SGIS. When the two images are average
using the accumulation buffer, the result is as if a single pass had been rendered with
2xGL_SAMPLES_SGIS sample points.

GL_4PASS_0_SGIS, GL_4PASS_1_SGIS, GL_4PASS_2_SGIS, and GL_4PASS_3_SGIS

together define a pattern ok@L_SAMPLES_SGIS sample points. They can be used to
accumulate an image from four complete rendering passes.

Accumulating multisample results can also extend the capabilities of your system. For example, if
you have only enough resources to allow four subsamples, but you are willing to render the image
twice, you can achieve the same effect as multisampling with eight subsamples. Note that you do
need an accumulation buffer, which also takes space.

To query the sample pattern, agliGetintegerv(with pnameset to
GL_SAMPLE_PATTERN_SGIS. The pattern should be changed only between complete rendering
passes.

For more information, see "The Accumulation Buffer," on page 394 @pemGL Programming
Guide.

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 11

How Multisampling Affects Different Primitives

This section briefly discusses multisampled points, lines, polygons, pixels, and bitmaps.

Multisampled Points

If you are using multisampling, the value of the smoothing hint (GL_POINT_SMOOTH_HINT or
GL_LINE_SMOOTH_HINT) is ignored. Because the quality of multisampled points may not be as
good as that of anti—aliased points, remember that you can turn multisampling on and off as neede
achieve multisampled polygons and anti—aliased points.

Note: On RealityEngine and InfiniteReality systems, you achieve higher—quality multisampled
points by setting point smooth hint set to GL_NICEST (though this mode is slower and should be
used with care).

gIHint(GL_POINT_SMOOTH_HINT, GL_NICEST)

The result is round points. Points may disappear or flicker if you use them without this hint. See the
Note:in the next section for caveats on using multisampling with smooth points and lines.

Multisampled Lines

Lines are sampled into the multisample buffer as rectangles centered on the exact zero—area segr
Rectangle width is equal to the current linewidth. Rectangle length is exactly equal to the length of
the segment. Rectangles of colinear, abutting line segments abut exactly, so no subsamples are
missed or drawn twice near the shared vertex.

Just like points, lines on RealityEngine and InfiniteReality systems look better when drawn "smootl
than they do with multisampling.

Note: If you want to draw smooth lines and points by enabling GL_LINE_SMOOTH_HINT or
GL_POINT_SMOOTH_HINT, you need to disable multisampling and then draw the lines and
points. The trick is that you need to do this after you have finished doing all of the multisampled
drawing. If you try to re—enable multisampling and draw more polygons, those polygons will not
necessarily be anti—aliased correctly if they intersect any of the lines or points.

Multisampled Polygons

Polygons are sampled into the multisample buffer much as they are into the standard single-samg
buffer. A single color value is computed for the entire pixel, regardless of the number of subsample
at that pixel. Each sample is then written with this color if and only if it is geometrically within the
exact polygon boundary.

If the depth—buffer is enabled, the correct depth value at each multisample location is computed ai
used to determine whether that sample should be written or not. If stencil is enabled, the test is
performed for each sample.

Polygon stipple patterns apply equally to all sample locations at a pixel. All sample locations are
considered for modification if the pattern bit is 1. None is considered if the pattern bit is O.

Multisample Rasterization of Pixels and Bitmaps

If multisampling is on, pixels are considered small rectangles and are subject to multisampling. WF

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 12

pixels are sampled into the multisample buffer, each pixel is treated as an xzoom-by-yzoom squa
which is then sampled just like a polygon.

For information about fast clears on RealityEngine, see the reference page for
glTagSampleBufferSGIX().

New Functions

glSampleMaskSGIyISamplePatternSGIS

SGIS_point_parameters [The Point Parameters Extension

The point parameter extension, SGIS_point_parameters can be used to render tiny light sources,
commonly referred to as "light points." The extension is useful, for example, in an airport runway
simulation. As the plane moves along the runway, the light markers grow larger as they approach.

Note: This extension is currently implemented on InfiniteReality systems only.

By default, a fixed point size is used to render all points, regardless of their distance from the eye
point. Implementing the runway example or a similar scene would be difficult with this behavior.
This extension is useful in two ways:

It allows the size of a point to be affected by distance attenuation, that is, the point size decree
as the distance of the point from the eye increases.

It increases the dynamic range of the raster brightness of points. In other words, the alpha
component of a point may be decreased (and its transparency increased) as its area shrinks t
a defined threshold. This is done by controlling the mapping from the point size to the raster
point area and point transparency.

The new point size derivation method applies to all points, while the threshold applies to multisamj
points only. The extension makes this behavior available via the following constants:

GL_POINT_SIZE_MIN_SGIS and GL_POINT_SIZE_MAX_SGIS define upper and lower
bounds, respectively, for the derived point size.

GL_POINT_FADE_THRESHOLD_SIZE_SGIS affects only multisample points. If the derived
point size is larger than the threshold size defined by the
GL_POINT_FADE_THRESHOLD_SIZE_SGIS parameter, the derived point size is used as th
diameter of the rasterized point, and the alpha component is intact. Otherwise, the threshold s
is set to be the diameter of the rasterized point, while the alpha component is modulated
accordingly, to compensate for the larger area.

All parameters of thglPointParameterfSGIS@ndglPointParameterfvSGISunctions set various
values applied to point rendering. The derived point size is defined to beepeovided as an
argument talPointSize(Imodulated with a distance attenuation factor.

Using the Point Parameters Extension

To use the point parameter extension, gitbintParameter*SGIS{yith the following arguments:

pnameset to one of the legal arguments:

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 13

- GL_POINT_SIZE_MIN_SGIS
- GL_POINT_SIZE_MAX_SGIS
— GL_POINT_FADE_THRESHOLD_SIZE_SGIS (multisample points only)

paramset to the value you want to set for the minimum size, maximum size, or threshold size
the point.

Note: If you are using the extension in multisample mode, you have to use smooth points to achie'
the desired improvements:

glHint(GL_POINT_SMOOTH_HINT, GL_NICEST)

Point Parameters Example Code

A point parameters example program is available as part of the developer toolbox. It allows you to
change the following attributes directly:

values of the distance attenuation coefficients (Bent Parameters Background Information”
and the point parameters specification)

fade threshold size

minimum and maximum point size

The following code fragment illustrates how to change the fade threshold.

Example 8-1 Point Parameters Example

GLvoid
decFadeSize(GLvoid)
{
#ifdef GL_SGIS_point_parameters
if (pointParameterSupported) {
if (fadeSize > 0) fadeSize -=0.1;
printf("fadeSize = %4.2f\n", fadeSize);
glPointParameterfSGIS(GL_POINT_FADE_THRESHOLD_SIZE SGIS, fa
deSize);
glutPostRedisplay();
}else {
fprintf(stderr,
"GL_SGIS_point_parameters not supported
on this machine\n");
}
#else
fprintf(stderr,
"GL_SGIS_point_parameters not supported
on this machine\n");
#endif

Minimum and maximum point size and other elements can also be changed; see the complete
example program in the Developer Toolbox.

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 14

Point Parameters Background Information

The raster brightness of a point is a function of the point area, point color, and point transparency,
and the response of the display’s electron gun and phosphor. The point area and the point
transparency are derived from the point size, currently provided wiizéparameter of

glPointSize()

This extension defines a derived point size to be closely related to point brightness. The brightnes:
a point is given by the following equation:

1
dist_atten(d) =
atb*d+c*d"2
brightness(Pe) = Brightness * dist_atten(|Pe|)

Peis the point in eye coordinates, aBidghtnesss some initial value proportional to the square of
the size provided witlylPointSize() The raster brightness is simplified to be a function of the
rasterized point area and point transparency:

area(Pe) = brightness (Pe) if brightness(Pe) >= Threshold_Area
area(Pe) = Theshold_Area otherwise

factor(Pe) = brightness(Pe)/Threshold_Area

alpha(Pe) = Alpha * factor(Pe)

Alpha comes with the point color (possibly modified by lightinthreshold_Area isin area
units. Thus, it is proportional to the square of the threshold provided by the programmer through th
extension.

Note: For more background information, see the specification of the point parameters extension.

New Procedures and Functions

glPointParameterfSG|glPointParameterfvSGI

SGIX reference_plane [The Reference Plane Extension

The reference plane extension, SGIX_reference_plane, allows applications to render a group of
coplanar primitives without depth—buffering artifacts. This is accomplished by generating the depth
values for all the primitives from a single reference plane rather than from the primitives themselve
Using the reference plane extension ensures that all primitives in the group have exactly the same
depth value at any given sample point, no matter what imprecision may exist in the original
specifications of the primitives or in the OpenGL coordinate transformation process.

Note: This extension is supported only on InfiniteReality systems.

The reference plane is defined by a four—-component plane equationgWbfarencePlaneSGIX()

is called, the equation is transformed by the adjoint of the composite matrix, the concatenation of
model-view and projection matrices. The resulting clip—coordinate coefficients are transformed by
current viewport when the reference plane is enabled.

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 15

If the reference plane is enabled, a new z coordinate is generated for a fragment (xf, yf, zf). This z
coordinate is generated from (xf, yf); it is given the same z value that the reference plane would he
at (xf, yf).

Why Use the Reference Plane Extension?

Having such an auto—generated z coordinate is useful in situations where the application is dealin(
with a stack of primitives. For example, assume a runway for an airplane is represented by

a permanent texture on the bottom

a runway markings texture on top of the pavement

light points representing runway lights on top of everything
All three layers are coplanar, yet it is important to stack them in the right order. Without a reference
plane, the bottom layers may show through due to precision errors in the normal depth rasterizatio
algorithm.
Using the Reference Plane Extension
If you know in advance that a set of graphic objects will be in the same plane, follow these steps:
1. CallglEnable()with argument GL_REFERENCE_PLANE_SGIX.

2. CallglReferencePlaneyith the appropriate reference plane equation to establish the reference
plane. The form of the reference plane equation is equivalent to that of an equation used by
glClipplane() (see page 137 of tii@penGL Programming Guide, Second Edi}ion

3. Draw coplanar geometry that shares this reference plane.

4. CallglDisable()with argument GL_REFERENCE_PLANE_SGIX.

New Function

glReferencePlaneSGIX

SGIX_shadow, SGIX_depth_texture, and
SGIX_shadow_ambient [0 The Shadow Extensions

This section discusses three extensions that are currently used together to create shadows:

The depth texture extension, SGIX_depth_texture, defines a new depth texture internal formai
While this extension has other potential uses, it is currently used for shadows only.

The shadow extension, SGIX_shadow, defines two operations that can be performed on textu
values before they are passed to the filtering subsystem.

The shadow ambient extension, SGIX_shadow_ambient, allows for a shadow that is not black
but instead has a different brightness.

This section first explores the concepts behind using shadows in an OpenGL program. It then
discusses how to use the extension in the following sections:

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 16

"Shadow Extension Overview"
"Creating the Shadow Map"

"Rendering the Application From the Normal Viewpoint"

Code fragments from an example program are used throughout this section.

Note: A complete example program, shadowmap.c, is available as part of the Developer’'s Toolbo;

Shadow Extension Overview

The basic assumption used by the shadow extension is that an object is in shadow when somethir
else is closer to the light source than that object is.

Using the shadow extensions to create shadows in an OpenGL scene consists of several concepti
steps:

1. The application has to check that both the depth texture extension and the shadow extension i
supported.

2. The application creates a shadow map; an image of the depth buffer from the point of view of 1
light.

The application renders the scene from the point of view of the light source and copies the
resulting depth buffer to a texture with internal format GL_ DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16_SGIX, GL_DEPTH_COMPONENT24_SGIX, or
GL_DEPTH_COMPONENT32_SGIX (the SGIX formats are part of the depth texture
extension).

3. The application renders the scene from the normal viewpoint. In that process, it sets up texture
coordinate generation and the texture coordinate matrix such that for each vertex, the r
coordinate is equal to the distance from the vertex to the plane used to construct the shadow r

Projection depends on the type of light. Normally, a finite light (spot) is most appropriate (in the
case, perspective projection is used). An infinite directional light may also give good results
because it doesn't require soft shadows.

Note that diffuse lights give only soft shadows and are therefore not well suited, although textu
filtering will result in some blurriness. Note that it is theoretically possible to do an ortho
projection for directional infinite lights. The lack of soft shadowing is not visually correct but
may be acceptable.

4. For this second rendering pass, the application then enables the texture parameter
GL_TEXTURE_COMPARE_SGIX, which is part of the shadow extension and renders the scel
once more. For each pixel, the distance from the light (which was generated by interpolating tt
r texture coordinate) is compared with the shadow map stored in texture memory. The results
the comparison show whether the pixel being textured is in shadow.

5. The application can then draw each pixel that passes the comparison with luminance 1.0 and
each shadowed pixel with a luminance of zero, or use the shadow ambient extension to apply
ambient light with a value between 0 and 1 (for example, 0.5).

Creating the Shadow Map

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 17

To create the shadow map, the application renders the scene with the light position as the viewpoi
and saves the depth map into a texture image, as illustrated in the following code fragment:

static void
generate_shadow_map(void)

{
int x, y;
GLfloat log2 = log(2.0);

x =1 << ((int) (log((float) width) / log2));
y =1 << ((int) (log((float) height) / log2));
glViewport(0, 0, X, y);
render_light_view();

/* Read in frame—buffer into a depth texture map */
glCopyTexlmage2DEXT(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16_SGIX,
0,0, x,y, 0);
glViewport(0, 0, width, height);
}

Projection stack

Figure 8—-2 Rendering From the Light Source Point of View

Rendering the Application From the Normal Viewpoint

After generating the texture map, the application renders the scene from the normal viewpoint but
with the purpose of generating comparison data. That igllisggen(}o generate texture

coordinates that are identical to vertex coordinates. The texture matrix then transforms all pixel
coordinates back to light coordinates. The depth—value is now available texhee coordinate.

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 18

Texture stack

Figure 8-3 Rendering From Normal Viewpoint

During the second rendering pass, the r coordinate is interpolated over the primitive to give the
distance from the light for every fragment. Then the texture hardware compares r for the fragment
with the value from the texture. Based on this test, a value of O or 1 is sent to the texture filter. The
application can render shadows as black, or use the shadow ambient extension discussed in the n
section, to use a different luminance value.

Using the Shadow Ambient Extension

The shadow ambient extension allows applications to use reduced luminance instead of the color
black for shadows. To achieve this, the extension makes it possible to return a value other than 0.(
the SGIX_shadow operation in the case when the shadow test passes. With this extension any
floating—point value in the range [0.0, 1.0] can be returned. This allows the (untextured) ambient
lighting and direct shadowed lighting from a single light source to be computed in a single pass.

To use the extension, cgliTexParameter*(with pnameset to GL_ SHADOW_AMBIENT_SGIX
andparamset to a floating—point value between 0.0 and 1.0. After the parameter is set, each pixel "
extension is determined to be in shadow by the shadow extension has a luminance specified by th
extension instead of a luminance of 0.0.

SGIX_sprite [The Sprite Extension

The sprite extension, SGIX_sprite, provides support for viewpoint—dependent alignment of geomei
In particular, geometry that rotates about a point or a specified axis is made to face the eye point ¢
times. Imagine, for example, an area covered with trees. As the user moves around in that area, it
important that the user always view the front of the tree. Because trees look similar from all sides,

makes sense to have each tree face the viewer (in fact, "look at" the viewer) at all times to create t
illusion of a cylindrical object.

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 19

Note: This extension is currently available only on InfiniteReality systems.

Rendering sprite geometry requires applying a transformation to primitives before the current mod:
view transformation is applied. This transformation matrix includes a rotation, which is computed
based on

the current model view matrix

a translation that is specified explicitly (GL_ SPRITE_TRANSLATION_SGIX)

In effect, the model view matrix is perturbed only for the drawing of the next set of objects; it is not
permanently perturbed.

This extension improves performance because the flat object you draw is much less complex than
true three—dimensional object would be. Platform—dependent implementations may need to ensurt
the validation of the perturbed model view matrix has as small an overhead as possible. This is
especially significant on systems with multiple geometry processors. Applications that intend to rur
on different systems benefit from verifying the actual performance improvement for each case.

Available Sprite Modes
Primitives are transformed by a rotation, depending on the sprite mode:

GL_SPRITE_AXIAL_SGIX: The front of the object is rotated aboutais so that it faces the
eye as much as the axis constraint allows. This mode is used for rendering roughly cylindrical
objects (such as trees) in a visual simulation.Figare 8—4or an example.

GL_SPRITE_OBJECT_ALIGNED_SGIX: The front of the object is rotated abpotrd to

face the eye. The remaining rotational degree of freedom is specified by aligning the top of the
object with a specified axis in object coordinates. This mode is used for spherical symmetric
objects (such as clouds) and for special effects such as explosions or smoke which must mair
an alignment in object coordinates for realism. Sigare 8-%or an example.

GL_SPRITE_EYE_ALIGNED_SGIX: The front of the object is rotated about a point to face the
eye. The remaining rotational degree of freedom is specified by aligning the top of the object
with a specified axis in eye coordinates. This is used for rendering sprites that must maintain ¢
alignment on the screen, such as 3D annotationd-i§aee 8—6or an example.

The axis of rotation or alignment, GL_SPRITE_AXIS_SGIX, can be in an arbitrary direction to
support geocentric coordinate frames in which "up" is not along X, y, or z.

Figure 8-4 Sprites Viewed with Axial Sprite Mode

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 20

Figure 8-5 Sprites Viewed With Object Aligned Mode

o Y N]

Figure 8-6 Sprites Viewed With Eye Aligned Mode

Note: The sprite extension specification discusses in more detail how the sprite transformation is
computed. SetExtension Specificationsfor more information.

Using the Sprite Extension

To render sprite geometry, an application applies a transformation to primitives before applying the
current modelview matrix. The transformation is based on the current modelview matrix, the sprite
rendering mode, and the constraints on sprite motion.

To use the sprite extension, follow these steps:
1. Enable sprite rendering by calliggEnable()with the argument GL_SPRITE_SGIX.

2. CallglSpriteParameteriSGIX@vith one of the three possible modes:
GL_SPRITE_AXIAL_SGIX, GL_SPRITE_OBJECT_ALIGNED_SGIX, or
GL_SPRITE_EYE_ALIGNED_SGIX.

3. Specify the axis of rotation and the translation.

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 21

4. Draw the sprite geometry

5. Finally callglDisable()with the argument GL_SPRITE_SGIX and render the rest of the scene.
The following code fragment is from tlsprite.cprogram in the OpenGL course "From the
EXTensions to the SOLutions," which is available through the developer toolbox.

Example 8-2 Sprite Example Program

GLvoid
drawScene(GLvoid)

{
inti, slices=S8;
glClear(GL_COLOR_BUFFER_BIT);

drawObiject();

glEnable(GL_SPRITE_SGIX);
glSpriteParameteriSGIX(GL_SPRITE_MODE_SGIX, GL_SPRITE_AXIAL_SGIX

[* axial mode (clipped geometry) */
glPushMatrix();
glTranslatef(.15, .0, .0);

spriteAxis[0] = .2; spriteAxis[1] = .2; spriteAxis[2] = 1.0;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .0; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans)

drawObiject();
glPopMatrix();

[* axial mode (non—clipped geometry) */
glPushMatrix();
glTranslatef(.3, .1, .0);

spriteAxis[0] = .2; spriteAxis[1] = .2; spriteAxis[2] = 0.5;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .2; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans)

drawObiject();
glPopMatrix();

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 22

[* object mode */
glSpriteParameteriSGIX(GL_SPRITE_MODE_SGIX, GL_SPRITE_OBJECT_ALI
GNED_SGIX);

glPushMatrix();
glTranslatef(.0, .12, .0);

spriteAxis[0] = .8; spriteAxis[1] = .5; spriteAxis[2] = 1.0;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .0; spriteTrans[1] = .3; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans)

drawObiject();
glPopMatrix();

/* eye mode */
glSpriteParameteriSGIX(GL_SPRITE_MODE_SGIX, GL_SPRITE_EYE_ALIGNE
D_SGIX);
glPushMatrix();
glTranslatef(.15, .25, .0);
spriteAxis[0] = .0; spriteAxis[1] = 1.0; spriteAxis[2] = 1.0;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .2; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans)

drawObiject();
glPopMatrix();

glDisable(GL_SPRITE_SGIX);

glutSwapBuffers();
checkError("drawScene");

}

The program uses the different sprite modes depending on user input.

Sprite geometry is modeled in a canonical frame: +Z is the up vector. Y is the front vector which i
rotated to point towards the eye.

New Function

glSpriteParameterSGIX

OpenGL ® on Silicon Graphics ® Systems — Chapter 8, Rendering Extensions — 23

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 24

Chapter 9
Imaging Extensions

This chapter discusses imaging extensions. After some introductory information, it looks at each
extension in some detail. You learn about

"Introduction to Imaging Extensions"

"EXT_abgfl The ABGR Extension"

"EXT_convolutiori] The Convolution Extension™
"EXT_histograni] The Histogram and Minmax Extensions"
"EXT_packed_pixeld The Packed Pixels Extension"
"SGI_color_matrix] The Color Matrix Extension"
"SGI_color_tablél The Color Table Extension"
"SGIX_interlacél The Interlace Extension”

"SGIX_pixel_textur&l The Pixel Texture Extension"

Introduction to Imaging Extensions

This section discusses where extensions are in the OpenGL imaging pipeline; it also lists the
commands that may be affected by one of the imaging extensions.

Where Extensions Are in the Imaging Pipeline

The OpenGL imaging pipeline is shown in thpenGL Programming Guide, Second Editiorthe
illustration "Drawing Pixels with gIDrawPixels*()" in Chapter 8, "Drawing Pixels, Bitmaps, Fonts,
and Images." Th®penGL Reference Manual, Second Edititso includes two overview
illustrations and a detailed fold—out illustration in the back of the book.

Figure 9-1s a high-level illustration of pixel paths.

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 1

Host Memaory

glFPizelStore

qlDrawPixels

gliGet Texlmage dlReadPixels

Texture
AlCopyTexlmage

gl CopyPixels

Figure 9-1 OpenGL Pixel Paths

The OpenGL pixel paths move rectangles of pixels between host memory, textures, and the
framebuffer. Pixel store operations are applied to pixels as they move in and out of host memory.
Operations defined by tigPixelTransfer()Jcommand, and other operations in the pixel transfer
pipeline, apply to all paths between host memory, textures, and the framebuffer.

Pixel Transfer Paths

Certain pipeline elements, such as convolution filters and color tables are used during pixel transfe
to modify pixels on their way to and from user memory, the framebuffer, and textures. The set of
pixel paths used to initialize these pipeline elements is diagramrkéglire 9-2The pixel transfer
pipeline is not applied to any of these paths.

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 2

Host Memory

glPixelStore

[Get
Gor%.rolutbn
Filter

glGet binml s

Hiatograml Ml 2 |

Comyalution
filter

Corialution
Fitter

CalorTable

Framebuffer

Figure 9-2 Extensions that Modify Pixels During Transfer

Convolution, Histogram, and Color Table in the Pipeline

Figure 9-3hows the same path with an emphasis on the position of each extension in the imaging
pipeline itself. After the scale and bias operations and after the shift and offset operations, color
conversion (LUT irFigure 9-delow) takes place with a lookup table. After that, the extension
modules may be applied. Note how the color table extension can be applied at different locations i
the pipeline. Unless the histogram or minmax extensions were called to collect information only,
pixel processing continues, as shown in@pEenGL Programming Guide.

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 3

Ir‘udle:x: RGEA

|-=HGEEA RGBA-=HGBA

Cpenisl

GL_COLOR_TABLE_ =Gl

- |

(] gLl ||l||-l

4-

w[we scale & Dias

GL_PO3RT_COMYOLLITIC ZIH COLOR_TABLE_ SG

::-

=,

trix scale & bias

P ostcolor me

u_.

GL_POST_COLOR_ MATRIX

[(S _BG

T
=

K

[
=
IlL'|
=
o

Mlinmaa

U

Figure 9-3 Convolution, Histogram, and Color Table in the Pipeline

||J||J

Interlacing and Pixel Texture in the Pipeline

Figure 9-4&hows where interlacing (s€8GIX_interlacél The Interlace Extensiopand pixel
texture (seé€SGIX_pixel_textur@él The Pixel Texture Extensiopare applied in the pixel pipeline.

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 4

The steps after interlacing are shown in more detail than the ones before to allow the diagram to
include pixel texture.

ser memory

Final conversion:
clamp [0,1] clamp [0,1] or mask
oy to fixed pt

Corversion to fragment
pixel Zoom
el texture

Conwersionto
internal format

Texture Framebuffer

Figure 9-4 Interlacing and Pixel Texture in the Pixel Pipeline

Merging the Geometry and Pixel Pipeline

The convert—-to—fragment stage of geometry rasterization and of the pixel pipeline each produce
fragments. The fragments are processed by a shared per—fragment pipeline that begins with apply
the texture to the fragment color.

Because the pixel pipeline shares the per—fragment processing with the geometry pipeline, the
fragments it produces must be identical to the ones produced by the geometry pipeline. The parts
the fragment that are not derived from pixel groups are filled with the associated values in the curr
raster position.

Pixel Pipeline Conversion to Fragments

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 5

A fragment consists of x and y window coordinates and its associated color value, depth value, an
texture coordinates. The pixel groups processed by the pixel pipeline do not produce all the
fragment’s associated data, so the parts that are not produced from the pixel group are taken from
raster position. This combination of information allows the pixel pipeline to pass a complete
fragment into the per fragment operations shared with the geometry pipeline, as shuneir®—5

current raster position

teoord

y color

depth

Figure 9-5 Conversion to Fragments

For example, if the pixel group is producing the color part of the fragment, the texture coordinates
and depth value come from the current raster position. If the pixel group is producing the depth pal
of the fragment, the texture coordinates and color come from the current raster position.

The pixel texture extension (s&&GIX_pixel_textur&l The Pixel Texture Extensiopintroduces the
switch highlighted in blue, which provides a way to retrieve the fragment’s texture coordinates from
the pixel group. The pixel texture extension also allows developers to specify whether the color
should come from the pixel group or the current raster position.

Functions Affected by Imaging Extensions

Imaging extensions affect all functions that are affected by the pixel transfer modes (see Chapter ¢
"Drawing Pixels, Bitmaps, Fonts, and Images," of@penGL Programming Guideln general,
commands affected are

all commands that draw and copy pixels or define texture images

all commands that read pixels or textures back to host memory

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 6

EXT_abgrJ The ABGR Extension

The ABGR extension, EXT_abgr, extends the list of host—-memory color formats by an alternative t
the RGBA format that uses reverse component order. The ABGR component order matches the cj
IRIS GL format on big—endian machines. This is the most convenient way to use an ABGR source
image with OpenGL. Note that the ABGR extension provides the best performance on some of the
older graphics systems: Starter, XZ, Elan, XS24, Extreme.

To use this extension, caglDrawPixels() giGetTexImage()glReadPixels()andglTexImage*(with
GL_ABGR_EXT as the value of tiermat parameter.

The following code fragment illustrates the use of the extension:
/*

* draw a 32x32 pixel image at location 10, 10 using an ABGR source

* image. "image" *should* point to a 32x32 ABGR UNSIGNED BYTE imag
e
*/

unsigned char *image;

glRasterPos2f(10, 10);
glDrawPixels(32, 32, GL_ABGR_EXT, GL_UNSIGNED_BYTE, image);

EXT_convolution [0 The Convolution Extension

The convolution extension, EXT_convolution, allows you to filter images, for example to sharpen o
blur them, by convolving the pixel values in a one- or two- dimensional image with a convolution
kernel.

The convolution kernels are themselves treated as one— and two— dimensional images. They can
loaded from application memory or from the framebuffer.

Convolution is performed only for RGBA pixel groups, although these groups may have been
specified as color indexes and converted to RGBA by index table lookup.

Figure 9-&hows the equations for general convolution at the top and for separable convolution at -

bottom.
Kh Kw
Dest[ij] = Z ZKerne.-*[k,.-‘]Saurce[h K, j+i]
=0 k=0
Kh Kw
Dest[ij] = Z Verf[f]z Horiz[k] Source [i+ k, 1+]
{=0 k=0

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 7

Figure 9-6 Convolution Equations

Performing Convolution
Performing convolution consists of these steps:

1. If desired, specify filter scale, filter bias, and convolution parameters for the convolution kernel
For example:

glConvolutionParameteriEXT(GL_CONVOLUTION_2D_EXT,
GL_CONVOLUTION_BORDER_MODE_EXT,
GL_REDUCE_EXT /*nothing else supported at present */);

glConvolutionParameterfyvEXT(GL_CONVOLUTION_2D_ EXT,
GL_CONVOLUTION_FILTER_SCALE_EXT filterscale);

glConvolutionParameterfyvEXT(GL_CONVOLUTION_2D_ EXT,
GL_CONVOLUTION_FILTER_BIAS_EXT, filterbias);

2. Define the image to be used for the convolution kernel.

Use a 2D array for 2D convolution and a 1D array for 1D convolution. Separable 2D filters
consist of two 1D images for the row and the column.

To specify a convolution kernel, caliConvolutionFilter2DEXT()glConvolutionFilterIDEXT()
or glSeparableFilter2DEXT()

The following example defines a 7 x 7 convolution kernel that is in RGB format and is based ol
a 7 x 7 RGB pixel array previously defined as rgbBlurimage7x7:

glConvolutionFilter2DEXT(
GL_CONVOLUTION_2D_EXT, /*has to be this value*/

GL_RGB, [*filter kernel internal format*/

7,7, [*width & height of image pixel array*/

GL_RGB, /*image internal format*/

GL_FLOAT, [*type of image pixel data*/

(const void*)rgbBlurimage7x7 /* image itself*/

)

For more information about the different parameters, see the reference page for the relevant
function.

3. Enable convolution, for example:
glEnable(GL_CONVOLUTION_2D_EXT)
4. Perform pixel operations (for example pixel drawing or texture image definition).

Convolution happens as the pixel operations are executed.

Retrieving Convolution State Parameters

If necessary, you can ugéGetConvolutionParameter*EXT(D retrieve the following convolution
state parameters:

GL_CONVOLUTION_BORDER_MODE_EXT
Convolution border mode. For a list of border modes, see
glConvolutionParameterEXT.()

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 8

GL_CONVOLUTION_FORMAT_EXT
Current internal format. For lists of allowable formats, see
glConvolutionFilter*EXT() andglSeparableFilter2DEXT()

GL_CONVOLUTION_FILTER_{BIAS, SCALE} EXT
Current filter bias and filter scale factopgramsmust be a pointer to an array of
four elements, which receive the red, green, blue, and alpha filter bias terms in
that order.

GL_CONVOLUTION_{WIDTH, HEIGHT}_EXT
Current filter image width.

GL_MAX_CONVOLUTION_{WIDTH, HEIGHT}_EXT
Maximum acceptable filter image width and filter image height.

Separable and General Convolution Filters
A convolution that uses separable filters typically operates faster than one that uses general filters

Special facilities are provided for the definition of two—dimensional separable filters. For separable
filters, the image is represented as the product of two one—dimensional images, not as a full
two—dimensional image.

To specify a two—dimensional separable filter,gi8leparableFilter2DEXT()which has the
following prototype:

void glSeparableFilter2DEXT(GLenum targetGLenum internalformatGLsizei w
idth,
GLsizei heightGLenum formatGLenum type
const GLvoid * row,const GLvoid * column)

targetmust be GL_SEPARABLE_2D_EXT.

internalformatspecifies the formats of two one—dimensional images that are retained; it must b
one of GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_INTENSITY,
GL_RGB, or GL_RGBA.

row andcolumnpoint to two one—dimensional images in memory.
- Therow image, defined bformatandtype iswidth pixels wide.

- Thecolumnimage, defined bjormatandtype is heightpixels wide.

The two images are extracted from memory and processed jugi@erif/olutionFilterLDEXT()

were called separately for each, with the resulting retained images replacing the current 2D separe
filter images, except that each scale and bias are applied to each image using the 2D separable st
and bias vectors.

If you are using convolution on a texture image, keep in mind that the result of the convolution mus
obey the constraint that the dimensions have to be a power of 2. If you use the reduce border
convolution mode, the image shrinks by the filter width minus 1, so you may have to take that into
account ahead of time.

New Functions

glConvolutionFilterADEXT glConvolutionFilter2DEXT glCopyConvolutionFilterIDEXT

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 9

glCopyConvolutionFilter2DEXTglGetConvolutionFilterEXTglSeparableFilter2DEXT
glGetSeparableFilterEXTlConvolutionParameterEXT

EXT_histogram [The Histogram and Minmax Extensions

The histogram extension, EXT_histogram, defines operations that count occurrences of specific cc
component values and that track the minimum and maximum color component values in images tt
pass through the image pipeline. You can use the results of these operations to create a more
balanced, better—quality image.

Figure 9-Tllustrates how the histogram extension collects information for one of the color
components: The histogram has the number of bins specified at creation, and information is then
collected about the number of times the color component falls within each bin. Assuming that the
example below is for the red component of an image, you can see that R values between 95 and 1
occurred least often and those between 127 and 159 most often.

255

Figure 9-7 How the Histogram Extension Collects Information

Histogram and minmax operations are performed only for RGBA pixel groups, though these group
may have been specified as color indexes and converted to RGBA by color index table lookup.

Using the Histogram Extension

To collect histogram information, follow these steps:

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 10

1. CallglHistogramEXT(}o define the histogram, for example:

glHistogramEXT(GL_HISTOGRAM_EXT,

256 /* width (number of bins) */,
GL_LUMINANCE /* internalformat */,
GL_TRUE I* sink */);

width, which must be a power of 2, specifies the number of histogram entries.
internalformatspecifies the format of each table entry.

- sinkspecifies whether pixel groups are consumed by the histogram operation (GL_TRUE)
or passed further down the image pipeline (GL_FALSE).

1. Enable histogramming by calling
glEnable(GL_HISTOGRAM_EXT)

2. Perform the pixel operations for which you want to collect information (drawing, reading,
copying pixels, or loading a texture). Only one operation is sufficient.

For each component represented in the histogram internal format, let the corresponding
component of the incoming pixel (luminance corresponds to red) be of value c (after clamping
[0, 1). The corresponding component of bin nunroend((width—1)*c) is incremented

by 1.
3. CallglGetHistogramEXT(Jo query the current contents of the histogram:

void glGetHistogramEXT(GLenum target GLboolean reset GLenum format,
GLenum type GLvoid *values)

targetmust be GL_HISTOGRAM_EXT.

resetis either GL_TRUE or GL_FALSE. If GL_TRUE, each component counter that is
actually returned is reset to zero. Counters that are not returned are not modified, for
example, GL_GREEN or GL_BLUE counters may not be returned if format is GL_RED
and internal format is GL_RGB.

formatmust be one of GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGBA,
GL_RGB, GL_ABGR_EXT, GL_LUMINANCE, or GL_LUMINANCE_ALPHA.

typemust be GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, or GL_FLOAT.

valuesis used to return a 1D image with the same width as the histogram. No pixel transfe
operations are performed on this image, but pixel storage modes that apply for
glReadPixels(pre performed. Color components that are requested in the specified
formatd but are not included in the internal format of the histodtare returned as zero.

The assignments of internal color components to the components requestedabare as

follows:
internal component resulting component
red red
green green
blue blue
alpha alpha

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 11

luminance red/luminance

Using the Minmax Part of the Histogram Extension

The minmax part of the histogram extension lets you find out about minimum and maximum color
component values present in an image. Using the minmax part of the histogram extension is simile
to using the histogram part.

To determine minimum and maximum color values used in an image, follow these steps:
1. Specify a minmax table by calliggMinmaxEXT()
void gIMinmaxEXT(GLenum target GLenum internalformat GLboolean sinK)

targetis the table in which the information about the image is to be stargét must be
GL_MINMAX_EXT.

internalformatspecifies the format of the table entries. It must be an allowed internal forma
(see the reference page tMinmaxEXT.

sinkis setto GL_TRUE or GL_FALSE. If GL_TRUE, no further processing happens and
pixels or texels are discarded.

The resulting minmax table always has two entries. Entry 0 is the minimum and entry 1 is the
maximum.

2. Enable minmax by calling
glEnable(GL_MINMAX_EXT)
3. Perform the pixel operation, for exampéCopyPixels()

Each component of the internal format of the minmax table is compared to the corresponding
component of the incoming RGBA pixel (luminance components are compared to red).

If a component is greater than the corresponding component in the maximum element, the
the maximum element is updated with the pixel component value.

If a component is smaller than the corresponding component in the minimum element, the
the minimum element is updated with the pixel component value.

4. Query the current context of the minmax table by caljigetMinMaxExt()
void glGetMinMaxEXT (GLenum target GLboolean reset GLenum format,

GLenum type glvoid *valueg

You can also caljlGetMinmaxParameterEXT{) retrieve minmax state information; setttagget
to GL_MINMAX_EXT andpnameto one of the following values:

GL_MINMAX_FORMAT_EXT Internal format of minmax table
GL_MINMAX_SINK_EXT Value ofsinkparameter
Using Proxy Histograms

Histograms can get quite large and require more memory than is available to the graphics subsyst
You can callgiHistogramEXT (with targetset to GL_PROXY_HISTOGRAM_EXT to find out
whether a histogram fits into memory. The process is similar to the one explained in the section

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 12

"Texture Proxy" on page 330 of tipenGL Programming Guide, Second Edition.

To query histogram state values, @gibetHistogramParameter*EXT.(Histogram calls with the
proxy target (like texture and color table calls with the proxy target) have no effect on the histogran
itself.

New Functions

glGetHistogramEXTglGetHistogramParameterEXglGetMinmaxEXT,
glGetMinmaxParameterEXHIHistogramEXT, gIMinmaxEXT, gIResetHistogramEXT
glResetMinmaxEXT

EXT_packed_pixels [0 The Packed Pixels Extension

The packed pixels extension, EXT_packed_pixels, provides support for packed pixels in host
memory. A packed pixel is represented entirely by one unsigned byte, unsigned short, or unsignec
integer. The fields within the packed pixel are not proper machine types, but the pixel as a whole is
Thus the pixel storage modes, such as GL_PACK_SKIP_PIXELS, GL_PACK_ROW_LENGTH, an
so on, and their unpacking counterparts, all work correctly with packed pixels.

Why Use the Packed Pixels Extension?

The packed pixels extension lets you store images more efficiently by providing additional pixel
types you can use when reading and drawing pixels or loading textures. Packed pixels have two
potential benefits:

Save bandwidth Packed pixels may use less bandwidth than unpacked pixels to transfer them
to and from the graphics hardware because the packed pixel types use fewer bytes per pixel.

Save processing timelf the packed pixel type matches the destination (texture or framebuffer)
type, packed pixels save processing time.

In addition, some of the types defined by this extension match the internal texture formats, so less
processing is required to transfer texture images to texture memory. Internal formats are part of
OpenGL 1.1, they were available as part of the texture extension in OpenGL 1.0.

Using Packed Pixels

To use packed pixels, provide one of the types list8hbie 9-hs thelype parameter to
glDrawPixels() glReadPixels()and so on.

Table 9-1 Types That Use Packed Pixels

Parameter Token Value GL Data Type
GL_UNSIGNED_BYTE_3_3 2 EXT GLubyte
GL_UNSIGNED_SHORT 4 4 4 4 EXT GLushort
GL_UNSIGNED_SHORT 5 5 5 1 EXT GLushort
GL_UNSIGNED_INT_8_8_8_8_EXT GLuint
GL_UNSIGNED_INT_10_10_10_2_ EXT GLuint

The already available types fgiReadPixels()glDrawPixels() and so on are listed in Table 8-2
"Data Types for gIReadPixels or glDrawPixels," on page 293 ddffenGL Programming Guide.

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 13

Pixel Type Descriptions

Each packed pixel type includes a base type, for example GL_UNSIGNED_BYTE, and a field widt
(for example, 3_3_2):

The base type, GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT,
determines the type of "container" into which each pixel’s color components are packed.

The field widths, 3 3 2,4 4 4 45 55 1,8 8 8 8,0r10_10_10_ 2, determine the sizes (in
bits) of the fields that contain a pixel’s color components. The field widths are matched to the
components in the pixel format, in left-to-right order.

For example, if a pixel has the type GL_UNSIGNED_BYTE_3_3 2 EXT and the format
GL_RGB, the pixel is contained in an unsigned byte, the red component occupies three bits, tl
green component occupies three bits, and the blue component occupies two bits.

The fields are packed tightly into their container, with the leftmost field occupying the
most-significant bits and the rightmost field occupying the least-significant bits.

Because of this ordering scheme, integer constants (particularly hexadecimal constants) can be us
to specify pixel values in a readable and system—-independent way. For example, a packed pixel w

green == 2, blue == 3, alpha == 4 has the value 0x1234.

The ordering scheme also allows packed pixel values to be computed with system-independent ct
For example, if there are four variables (red, green, blue, alpha) containing the pixel’'s color
component values, a packed pixel of type GL_UNSIGNED_INT_10_10_10_2_ EXT and format
GL_RGBA can be computed with the following C code:

GLuint pixel, red, green, blue, alpha;
pixel = (red << 22) | (green << 12) | (blue << 2) | alpha;

While the source code that manipulates packed pixels is identical on both big—endian and little—en
systems, you still need to enable byte swapping when drawing packed pixels that have been writte
binary form by a system with different endianness.

SGI_color_matrix [The Color Matrix Extension

The color matrix extension, SGI_color_matrix, lets you transform the colors in the imaging pipeline
with a 4 x 4 matrix. You can use the color matrix to reassign and duplicate color components and t
implement simple color-space conversions.

This extension adds a 4 x 4 matrix stack to the pixel transfer path. The matrix operates only on
RGBA pixel groups, multiplying the 4 x 4 color matrix on top of the stack with the components of
each pixel. The stack is manipulated using the OpenGL 1.0 matrix manipulation functions:
glPushMatrix() glPopMatrix() glLoadldentity() glLoadMatrix() and so on. All standard
transformations, for exampigRotate()or glTranslate() also apply to the color matrix.

The color matrix is always applied to all pixel transfers. To disable it, load the identity matrix.
Below is an example of a color matrix that swaps BGR pixels to form RGB pixels:

GLfloat colorMat[16] = {0.0, 0.0, 1.0, 0.0,
0.0, 1.0, 0.0, 0.0,

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 14

1.0, 0.0, 0.0, 0.0,

0.0,0.0,0.0,0.0};
glMatrixMode(GL_COLOR);
glPushMatrix();
glLoadMatrixf(colorMat);

After the matrix multiplication, each resulting color component is scaled and biased by the
appropriate user—defined scale and bias values. Color matrix multiplication follows convolution (an
convolution follows scale and bias).

To set scale and bias values to be applied after the color matriglRia#l Transfer*()with the
following values forpname:

GL_POST_COLOR_MATRIX_{RED/BLUE/GREEN/ALPHA} SCALE_SGI

GL_POST_COLOR_MATRIX_{RED/BLUE/GREEN/ALPHA} BIAS_SGI

SGI_color_table [0 The Color Table Extension

The color table extension, SGI_color_table, defines a new RGBA-format color lookup mechanism
doesn’t replace the color lookup tables provided by the color maps discusse@peti@L
Programming Guiddut provides additional lookup capabilities.

Unlike pixel maps, the color table extension’s download operations go thougtrtkelStore()
unpack operations, the wayDrawPixels()does.

When a color table is applied to pixels, OpenGL maps the pixel format to the color table forma

If the copy texture extension is implemented, this extension also defines methods to initialize the
color lookup tables from the framebuffer.

Why Use the Color Table Extension?

The color tables provided by the color table extension allow you to adjust image contrast and
brightness after each stage of the pixel processing pipeline.

Because you can use several color lookup tables at different stages of the pipekigufse@-3

you have greater control over the changes you want to make. In addition the extension color looku
tables are more efficient than those of OpenGL because you may apply them to a subset of
components (for example, Alpha only).

Specifying a Color Table

To specify a color lookup table, cgliColorTableSGI()

void glColorTableSGI(GLenum target GLenum internalformat GLsizei width,
GLenum format, GLenum typeconst GLvoid *table)

targetmust be GL_COLOR_TABLE_SGil,
GL_POST_CONVOLUTION_COLOR_TABLE_SGiI, or
GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI.

internalformatis the internal format of the color table.

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 15

width specifies the number of entries in the color lookup table. It must be zero or a non—negati
power of two.

format specifies the format of the pixel data in the table.
type specifies the type of the pixel data in the table.

tableis a pointer to a 1D array of pixel data that is processed to build the table.

If no error results from the executiongiColorTableSGI()the following events occur:

1. The specified color lookup table is defined to haigth entries, each with the specified internal
format. The entries are indexed as zero through N-1, where N is the width of the table. The
values in the previous color lookup table, if any, are lost. The new values are specified by the
contents of the one—dimensional imagettiae points to, witiformat as the memory format
andtypeas the data type.

2. The specified image is extracted from memory and processedlBsafvPixels()were called,
stopping just before the application of pixel transfer modes (see the illustration "Drawing Pixels
with glDrawPixels*()" on page 310 of t@penGL Programming Guidle

3. The R, G, B, and A components of each pixel are scaled by the four
GL_COLOR_TABLE_SCALE_SGI parameters, then biased by the four
GL_COLOR_TABLE_BIAS_SGI parameters and clamped to [0,1].

The scale and bias parameters are themselves specified by calling
glColorTableParameterivSGIQr glColorTableParameterfvSGl()

targetspecifies one of the three color tables: GL_COLOR_TABLE_SGl,
GL_POST_CONVOLUTION_COLOR_TABLE_SGil, or
GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI.

pnamehas to be GL_COLOR_TABLE_SCALE_SGI or GL_COLOR_TABLE_BIAS_SGI.
paramspoints to a vector of four values: red, green, blue, and alpha, in that order.

4. Each pixel is then converted to have the specified internal format. This conversion maps the
component values of the pixel (R, G, B, and A) to the values included in the internal format (re
green, blue, alpha, luminance, and intensity).

The new lookup tables are treated as one—-dimensional images with internal formats, like texture
images and convolution filter images. As a result, the new tables can operate on a subset of the
components of passing pixel groups. For example, a table with internal format GL_ALPHA modifie
only the A component of each pixel group, leaving the R, G, and B components unmodified.

Using Framebuffer Image Data for Color Tables

If the copy texture extension is supported, you can define a color table using image data in the
framebuffer. CalhlCopyColorTableSGI(which accepts image data from a color buffer region
(width pixel wide by one pixel high) whose left pixel has window coordingies$f any pixels

within this region are outside the window that is associated with the OpenGL context, the values
obtained for those pixels are undefined.

The pixel values are processed exactly ggdbpyPixels(had been called, until just before the

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 16

application of pixel transfer modes (see the illustration "Drawing Pixels with glDrawPixels*()" on
page 310 of th®penGL Programming Guidle

At this point all pixel component values are treated exactlygl€dlorTableSGI(had been called,
beginning with the scaling of the color components by GL_COLOR_TABLE_SCALE_SGI. The
semantics and accepted values oftérget andinternalformatparameters are exactly equivalent to
their glColorTableSGI(counterparts.

Lookup Tables in the Image Pipeline
The three lookup tables exist at different points in the image pipelin€itgaee 9-8

GL_COLOR_TABLE_SGI is located immediately after index lookup or RGBA to RGBA
mapping, and immediately before the convolution operation.

GL_POST_CONVOLUTION_COLOR_TABLE_SGil is located immediately after the
convolution operation (including its scale and bias operations) and immediately before the colc
matrix operation.

GL_POST_COLOR_MATRIX_COLOR_TABLE_SGil is located immediately after the color
matrix operation (including its scale and bias operations) and immediately before the histograr
operation.

To enable and disable color tables, gifinable()andglDisable()with the color table name passed

as thecapparameter. Color table lookup is performed only for RGBA groups, though these groups
may have been specified as color indexes and converted to RGBA by an index-to—RGBA pixel mg
table.

When enabled, a color lookup table is applied to all RGBA pixel groups, regardless of the commar
that they are associated with.

New Functions

glColorTableSGlglColorTableParameterivSGdlGetColorTableSGI
glGetColorTableParameterivS@lGetColorTableParameterfvSGl

SGIX _interlace [The Interlace Extension

The interlace extension, SGIX_interlace, provides a way to interlace rows of pixels when rasterizin
pixel rectangles or loading texture imadggure 9—4llustrates how the extension fits into the
imaging pipeline

In this context, interlacing means skipping over rows of pixels or texels in the destination. This is
useful for dealing with interlace video data since single frames of video are typically composed of
two fields: one field specifies the data for even rows of the frame, the other specifies the data for o
rows of the frame, as shown in the following illustration:

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 17

[drasten 1 Line 0

:
. __‘____'_‘—\—-_.,
e I X
, nes; L]
no hlanhingi ﬁ‘g | . X
Line . 1
Fleld 2 § e —
(254“;% Hejd . . : 452 \\—1\%—
fobanng JE— | 48 %\;

Figure 9-8 Interlaced Video (NTSC, Component 525)

When interlacing is enabled, all the groups that belong to arave treated as if they belonged to
the row Z. If the source image has a heighthabws, this effectively expands the height of the

image to &n rows.

Applications that use the extension usually first copy the first set of rows, then the second set of ro
as explained in the following sections.

In cases where errors can result from the specification of invalid image dimensions, the resulting
dimension§&! not the dimensions of the source imagee tested. For example, when you use
glTeximage2D(With GL_INTERLACE_SGIX enabled, the source image you provide must be of
height(texture_height + texture_border)/2

Using the Interlace Extension

One application of the interlace extension is to use it together with the copy texture extension: You
can usealCopyTexSublmage2Di) copy the contents of the video field to texture memory and end
up with de—interlaced video. You can interlace pixels from two images as follows:

1. CallglEnable()orglDisable()with thecap parameter GL_INTERLACE_SGIX.
2. Set the current raster position to xr, yr:

glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, 10);
3. Copy pixels into texture memory (usually FO is first).

glCopyTexSublmage2D (GL_TEXTURE_2D, level, xoffset, yoffset, x, y

3

width, height)
4. Set raster position to (xr,yr+zoomy):
glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, I1);
5. Copy the pixels from the second field (usually F1 is next). For this call:

y offset += yzoom
y += geith to get to next field.

This process is equivalent to taking pixel rows (0,2,4,...) of 12 from image 10, and rows (1,3,5,...)

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 18

from image 11, as follows:

glDisable(GL_INTERLACE_SGIX);
[* set current raster position to (xr,yr) */
glDrawPixels(width, 2*height, GL_RGBA, GL_UNSIGNED_BYTE, 12);

SGIX_pixel_texture [The Pixel Texture Extension

The pixel texture extension, SGIX_pixel_texture, allows applications to use the color components «
a pixel group as texture coordinates, effectively converting a color image into a texture coordinate
image. Applications can use the system’s texture—mapping capability as a multidimensional lookug
table for images. Using larger textures will give you higher resolution, and the system will interpola
whenever the precision of the color values (texture coordinates) exceeds the size of the texture.

In effect, the extension supports multidimensional color lookups that can be used to implement
accurate and fast color space conversions for im&ggge 9-4llustrates how the extension fits into
the imaging pipeline.

Note: This extension is experimental and will change.

Texture mapping is usually used to map images onto geometry, and each pixel fragment that is
generated by the rasterization of a triangle or line primitive derives its texture coordinates by
interpolating the coordinates at the primitive’s vertexes. Thus you don’'t have much direct control o
the texture coordinates that go into a pixel fragment.

By contrast, the pixel texture extension gives applications direct control of texture coordinates on &
per—pixel basis, instead of per-vertex as in regular texturing. If the extension is enabled,
glDrawPixels()andglCopyPixels(work differently: For each pixel in the transfer, the color
components are copied into the texture coordinates, as follows:

red becomes thecoordinate
green becomes theoordinate
blue becomes thecoordinate

alpha becomes tleecoordinate (fourth dimension)

To use the pixel texture extension, an application has to go through these steps:

1. Define and enable the texture you want to use as the lookup table (this texture doesn’t have tc
a 3D texture).

glTeximage3DEXT(GL_TEXTURE_3D_EXT, args);
glEnable(GL_TEXTURE_3D_EXT);

2. Enable pixel texture and begin processing images:

glEnable(GL_PIXEL_TEX_GEN_SGIX);
glDrawPixels(args);
glDrawPixels(arg9)

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 19

Each subsequent call ghDrawPixels()uses the predefined texture as a lookup table and uses those
colors when rendering to the screBigure 9-5llustrates how colors are introduced by the extension.

As in regular texture mapping, the texel found by mapping the texture coordinates and filtering the
texture is blended with a pixel fragment, and the type of blend is controlled wighTgxEnv()
command. In the case of pixel texture, the fragment color is derived from the pixel group; thus, usil
the GL_MODULATE blend mode, you could blend the texture lookup values (colors) with the
original image colors. Alternatively, you could blend the texture values with a constant color set wit
theglColor*() commands. To do this, use this command:

void gIPixelTexGenSGIX(GLenum mode);

The valid values aihodedepend on the pixel group and the current raster color, which is the color
associated with the current raster position:

GL_RGBJ If modeis GL_RGB, the fragment red, green, and blue will be derived from the
current raster color, set by tgColor() command. Fragment alpha is derived from the pixel
group.

GL_RGBAL If mode is GL_RGBA, the fragment red, green, blue, and alpha will be derived
from the current raster color.

GL_ALPHAO If mode is GL_ALPHA, the fragment alpha is derived from the current raster
color, and red, green, and blue from the pixel group.

GL_NONHI If modeis GL_NONE, the fragment red, green, blue and alpha are derived from
the pixel group.

Note: See"Platform Issuestor currently supported modes.

When using pixel texture, the format and type of the image do not have to match the internal forme
of the texture. This is a powerful feature; it means, for example, that an RGB image can look up a
luminance result. Another interesting use is to have an RGB image look up an RGBA result, in effe
adding alpha to the image in a complex way.

Platform Issues

At this daté] IRIX 6.50 pixel texture has been implemented only on Indigo2 IMPACT and
OCTANE graphics. The hardware capabilities for pixel texture were created before the OpenGL
specifications for the extension were finalized, so only a subset of the full functionality has been
implemented. Pixel texture can be enabled only with 3D and 4D textures.The only mode supportec
corresponds to callinglPixelTexGenSGIX(GL_RGBA) . The fragment color is limited to white
only. Pixel texture can be enabled fdbrawPixels()only, support foglCopyPixels(will be

provided in future releases.

When you use 4D textures with an RGBA image, the alpha value is used to derive Q, the fourth
dimensional texture coordinate. Currently, the Q interpolation is limited to a default GL_NEAREST
mode, regardless of the minfilter and magfilter settings.

When you work on Indigo IMPACT and OCTANE systems, you can use the Impact Pixel Texture
extension, which allows applications to perform pixel texture operations with 4D textures, and
accomplish the fourth interpolation with a two—pass operation, using the frame-buffer blend. For
information, see the impact_pixel_texture specification andlthizel TexGenSGIlxand

OpenGL ® on Silicon Graphics ® Systems — Chapter 9, Imaging Extensions — 20

glTexParametereference pages.

Note: When working with mipmapped textures, the effective LOD value computed for each
fragment is 0. The texture LOD and texture LOD bias extensions apply to pixel textures as well.
New Functions

glPixelTexGenSGIX

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 21

Chapter 10
Video Extensions

Chapter 6, "Resource Control Extensiomstusses a set of GLX extensions that can be used to
control resources. This chapter provides information on a second set of GLX extension, extension:
that support video functionality. You learn about

"SGI_swap_contral The Swap Control Extension”
"SGI_video_syntl The Video Synchronization Extension"
"SGIX_swap_barridil The Swap Barrier Extension"
"SGIX_swap_group The Swap Group Extension"
"SGIX_video_resizE The Video Resize Extension"

"SGIX_video_sourcE The Video Source Extension”

SGI_swap_control [0 The Swap Control Extension

The swap control extension, SGI_swap_control, allows applications to display frames at a regular
rate, provided the time required to draw each frame can be bounded. The extension allows an
application to set a minimum period for buffer swaps, counted in display retrace periods. (This is
similar to the IRIS GLlswapinterval())

To set the buffer swap interval, cglKSwaplintervalSGI()which has the following prototype:
int gIXSwaplntervalSGI(int interval)

Specify the minimum number of retraces between buffer swaps imténeal parameter. For

example, a value of 2 means that the color buffer is swapped at most every other display retrace.
new swap interval takes effect on the first executiogl¥SwapBuffers(after the execution of
gIXSwaplntervalSGI()

glXSwaplntervalSGl@ffects only buffer swaps for the GLX write drawable for the current context.
Note thagIXSwapBuffers(jnay be called with drawableparameter that is not the current GLX
drawable; in this casgiXSwaplntervalSGl(has no effect on that buffer swap.

New Functions

glXSwaplntervalSGI

SGI_video_sync [The Video Synchronization Extension

The video synchronization extension, SGI_video_sync, allows an application to synchronize drawii
with the vertical retrace of a monitor or, more generically, to the boundary between to video frames
(In the case of an interlaced monitor, the synchronization is actually with the field rate instead).
Using the video synchronization extension, an application can put itself to sleep until a counter
corresponding to the number of screen refreshes reaches a desired value. This enables and applic
to synchronize itself with the start of a new video frame. The application can also query the current
value of the counter.

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 1

The system maintains a video sync counter (an unsigned 32-bit integer) for each screen in a syste
The counter is incremented upon each vertical retrace.

The counter runs as long as the graphics subsystem is running; it is initializedusr/dife/gfxinit
command.

Note: A process can query or sleep on the counter only when a direct context is current; otherwise
an error code is returned. See the reference page for more information.

Using the Video Sync Extension

To use the video sync extension, follow these steps:

1. Create arendering context and make it current.

2. CallglXGetVideoSyncSGl{p obtain the value of the vertical retrace counter.

3. CallgIXWaitVideoSyncSGI{d put the current process to sleep until the specified retrace
counter:

int gIXWaitVideoSyncSGI(int divisor, int remaindey unsigned int * cou
nt)

where

gIXWaitVideoSyncSGlfjuts the calling process to sleep until the value of the vertical
retrace countercoun) modulo divisor equalemainder.

countis a pointer to the variable that receives the value of the vertical retrace counter whel
the calling process wakes up.

New Functions

gIXGetVideoSyncSGlgIXWaitVideoSyncSGl

SGIX_swap_barrier O The Swap Barrier Extension

The swap barrier extension, SGIX_swap_barrier, allows applications to synchronize the buffer swe

of different swap groups. For information on swap groups,$6&X_swap_grouf@ The Swap
Group Extension"

Why Use the Swap Barrier Extension?

The swap barrier extension is useful for synchronizing buffer swaps of different swap groups, that
on different machines.

For example, two Onyx InfiniteReality systems may be working together to generate a single visua
experience. The first Onyx system may be generating an "out the window view" while the second
Onyx system may be generating a sensor display. The swap group extension would work well if th
two InfiniteReality graphics pipelines were in the same system, but a swap group can not span twc
Onyx systems. Even though the two displays are driven by independent systems, you still want the
swaps to be synchronized.

The swap barrier solution requires the user to connect a physical coaxial cable to the "Swap Read
port of each InfiniteReality pipeline. The multiple pipelines should also be genlocked together

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 2

(synchronizing their video refresh rates). Genlocking a system means synchronizing it with anothe
video signal serving as a master timing source.

The OpenGL swap barrier functionality requires special hardware support and is currently supportt
only on InfiniteReality graphics.

Note that most users of the swap barrier extension will likely use the extension through the IRIS
Performer APl and not call the OpenGL GLX extension directly.
Using the Swap Barrier Extension

A swap group is bound tosavap_barrier The buffer swaps of each swap group using that barrier
will wait until every swap group using that barrier is ready to swap (where readiness is defined in
"Buffer Swap Conditiong' All buffer swaps of all groups using that barrier will take place
concurrently when every group is ready.

The set of swap groups using the swap barrier include not only all swap groups on the calling
application’s system, but also any swap groups set up by other systems that have been cabled toc
by their graphics pipeline "Swap Ready" ports. This extension extends the set of conditions that m
be met before a buffer swap can take place.

Applications callgIXBindSwapBarriersSGIX()vhich has the following prototype:

void gIXBindSwapBarrierSGIX(Display * dpy, GLXDrawable drawable int ba
rrier)

gIXBindSwapBarriersSGIX@inds the swap group that contailnawableto barrier. Subsequent
buffer swaps for that group will be subject to this binding until the group is unboundtéirower. If
barrier is zero, the group is unbound from its current barrier, if any.

To find out how many swap barriers a graphics pipeline (an X screen) supports, applications call
gIXQueryMaxSwapbarriersSGIX{vhich has the following syntax:

Bool gIXQueryMaxSwapBarriersSGIX (Display * dpy; int screen int may

gIXQueryMaxSwapBarriersSGIX@turns inrmaxthe maximum number of barriers supported by an
implementation orscreen

gIXQueryMaxSwapBarriersSGIX@turns GL_TRUE if it success and GL_FALSE if it fails. If it
fails, maxis unchanged.

While the swap barrier extension has the capability to support multiple swap barriers per graphics
pipeline, InfiniteReality (the only graphics hardware currently supporting the swap barrier extensiol
provides only one swap barrier.

Buffer Swap Conditions

Before a buffer swap can take place when a swap barrier is used, some new conditions must be
satisfied. The conditions are defined in terms of when a drawable is ready to swap and when a grc
is ready to swap.

Any GLX drawable that is not a window is always ready.
When a window is unmapped, it is always ready.

When a window is mapped, it is ready when both of the following are true:

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 3

— A buffer swap command has been issued for it.

- Its swap interval has elapsed.

A group is ready when all windows in the group are ready.

Before a buffer swap for a window can take place, all of the following must be satisfied:
— The window is ready.

- If the window belongs to a group, the group is ready.

- If the window belongs to a group and that group is bound to a barrier, all groups using tha
barrier are ready.

Buffer swaps for all windows in a swap group will take place concurrently after the conditions are
satisfied for every window in the group.

Buffer swaps for all groups using a barrier will take place concurrently after the conditions are
satisfied for every window of every group using the barrier, if and only if the vertical retraces of the
screens of all the groups are synchronized (genlocked). If they are not synchronized, there is no
guarantee of concurrency between groups.

Both gIXBindSwapBarrierSGIX@ndglXQueryMaxSwapBarrierSGIX@re part of the X stream.

New Functions

glBindSwapBarrierSGIXglQueryMaxSwapBarriersSGIX

SGIX _swap_group [The Swap Group Extension

The swap group extension, SGIX_swap_group, allows applications to synchronize the buffer swap
of a group of GLX drawables.The application creates a swap group and adds drawables to the swi:
group. After the group has been established, buffer swaps to members of the swap group will take
place concurrently.

In effect, this extension extends the set of conditions that must be met before a buffer swap can ta
place.

Why Use the Swap Group Extension?

Synchronizing the swapping of multiple drawables ensures that buffer swaps among multiple
windows (potentially on different screens) swap at exactly the same time.

Consider the following example:
render(left_window;
render(right_window);
glXSwapBuffers(left_window;
glXSwapBuffers(right_window);

Theleft_windowandright_windoware on two different screens (different monitors) but are meant to
generate a single logical scene (split across the two screens). While the programmer intends for tt
two swaps to happen simultaneously, the gixSwapBuffers(¢alls are distinct requests, and buffer

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions - 4

swaps are tied to the monitor’s rate of vertical refresh. Most of the time, thgX8wapBuffers()
calls will swap both windows at the next monitor vertical refresh. But because the two
gIXSwapBuffers(¢alls are not atomic, it is possible that:

the firstgIXSwapBuffers(gall may execute just before a vertical refresh, alloweftgwindow
to swap immediately,

the secondIXSwapBuffers(¢all is made after the vertical refresh, forcright windowto wait

a full vertical refresh (typically a 1/60th orl/72th of a second).

Someone watching the results in the two windows would very briefly see tHefhemindow
contents, but alongside the oight_windowcontents. This "stutter" between the two window swaps
is always annoying and at times simply unacceptable.

The swap group extension allows applications to "tie together" the swapping of multiple windows.

By joining left_windowandright_windowinto a swap group, IRIX ensures that the windows swap
together atomically. This could be done during initialization by calling

gIXJoinSwapGroupSGIX(dpy, left_window right_window;

Subsequent windows can also be added to the swap group. For example, if there was also a midd
window, it could be added to the swap group by calling

gIXJoinSwapGroupSGIX(dpy, middle_window right window);

Swap Group Details

The only routine added by the swap group extensigiXidoinSwapGroupSGIX(vhich has
following prototype:

void gIXJoinSwapGroupSGIX(Display * dpy, GLXDrawable drawable
GLXDrawable membey

Applications can calyjiXJoinSwapGroupSGIX{p adddrawableto the swap group containing
members a member. Hrawableis already a member of a different group, it is implicitly removed
from that group first. limembeiis None drawableis removed from the swap group that it belongs
to, if any.

Applications can reference a swap group by naming any drawable in the group; there is no other w
to refer to a group.

Before a buffer swap can take place, a set of conditions must be satisfied. Both the drawable and 1
group must be ready, satisfying the following conditions:

GLX drawables, except windows, are always ready to swap.

When a window is unmapped, it is always ready.

When a window is mapped, it is ready when bothof the following are true:
— A buffer swap command has been issued for it.

— Its swap interval has elapsed.

A group is ready if all windows in the group are ready.

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions - 5

gIXJoinSwapGroupSGIX({$ part of the X stream. Note that a swap group is limited to GLX
drawables managed by a single X server. If you have to synchronize buffer swaps between monitc
on different machines, you need the swap barrier extensiotSGe¥_swap_barrigrl The Swap

Barrier Extension:

New Function

glJoinSwapGroupSGIX

SGIX_video resize [The Video Resize Extension

The video resize extension, SGIX_video_resize, is an extension to GLX that allows the frame buffe
to be dynamically resized to the output resolution of the video channelghk8wapBufferss

called for the window that is bound to the video channel. The video resize extension can also be u
to minify (reduce in size) a frame buffer image for display on a video output channel (such as NTS(
or PAL broadcast video). For example, a 1280 x 1024 computer—generated scene could be minifie
for output to the InfiniteReality NTSC/PAL encoder channel. InfiniteReality performs bilinear
filtering of the minified channel for reasonable quality.

As a result, an application can draw into a smaller viewport and spend less time performing pixel fi
operations. The reduced size viewport is then magnified up to the video output resolution using the
SGIX video_resize extension.

In addition to the magnify and minify resizing capabilities, the video resize extension allows 2D
panning. By overrendering at swap rates and panning at video refresh rates, it is possible to perfor
video refresh (frame) synchronous updates.

Controlling When the Video Resize Update Occurs

Whether frame synchronous or swap synchronous update is used is set by calling
glIXChannelRectSyncSGIX@hich has the following prototype:

int gIXChannelRectSyncSGIX (Display * dpy; int screenint channel
GLenum synctypg

Thesynctypgarameter can be either GLX_SYNC_FRAME_SGIX or GLX_SYNC_SWAP_SGIX.

The extension can control fill-rate requirements for real-time visualization applications or to suppc
a larger number of video output channels on a system with limited framebuffer memory.

Note: This extension is an SGIX (experimental) extension. The interface or other aspects of the
extension may change. The extension is currently implemented only on InfiniteReality systems.
Using the Video Resize Extension

To use the video resize extensions, follow these steps:

1. Open the display and create a window.

2. CallgIXBindChannelToWindowSGIX{) associate a channel with an X window so that when
the X window is destroyed, the channel input area can revert to the default channel resolution.

The other reason for this binding is that the bound channel updates only when a swap takes pl
on the associated X window (assuming swap sync updatss'Controlling When the Video

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions - 6

Resize Update Occups"
The function has the following prototype:

int gIXBindChannelToWindowSGIX(Display * display; int screen
int channe] Window window)

where
displayspecifies the connection to the X server.
screenspecifies the screen of the X server.
channelspecifies the video channel number.

windowspecifies the window that is to be bounahannel Note that InfiniteReality
supports multiple output channels (two or eight depending on the Display Generator boarc
type). Each channel can melependentlglynamically resized.

3. CallglXQueryChannelDeltasSGIX{) retrieve the precision constraints for any frame buffer
area that is to be resized to match the video resolution. In efféQueryChannelDeltasSGIX()
returns the resolution at which one can place and size a video input area.

The function has the following prototype:

int gIXQueryChannelDeltasSGIX(Display * display; int screenint chan
nel,

int * dx int * dy, int * dw, int* dh)
where

displayspecifies the connection to the X server.
screenspecifies the screen of the X server.
channelspecifies the video channel number.

dx, dy, dw, dhare precision deltas for the origin and size of the area specified by
gIXChannelRectSGIX()

4. Call XSGlvcQueryChannelinfo(an interface to the Silicon Graphics X video control X
extension) to determine the default size of the channel.

5. Open an X window, preferably with no borders.

6. Start a loop in which you perform the following activities:

n Determine the area that will be drawn, based on performance requirements. If the
application is fill limited, make the area smaller. You can make a rough estimate of the fill
rate required for a frame by timing the actual rendering time in milliseconds. On
InfiniteReality, the SGIX_ir_instrumentl OpenGL extension can be used to query the
pipeline performance to better estimate the fill rate.

n CallglViewPort() providing the width and height, to set the OpenGL viewport (the
rectangular region of the screen where the window is drawn). Base this viewport on the
information returned bglXQueryChannelDeltasSGIX()

n CallgIXChannelRectSGIX(p set the input video rectangle that will take effect the next
swap or next frame (based giXChannelRectSyncSGIé§gtting.) The coordinates of the

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 7

input video rectangle are those of the viewport just set up for drawing. This function has th
following prototype:

int gIXChannelRectSGIX(Display *display, int screen,
int channel, Window window)
where
displayspecifies the connection to the X server
screenspecifies the screen of the X server.
channelspecifies the video channel number.

X, Y, w, hare the origin and size of the area of the window that will be converted to the
output resolution of the video channel. (x,y) is relative to the bottom left corner of the
channel specified by the current video combination.

n Draw the scene.

n Call gIXSwapBuffers(for the window in question.

Example

The following example, from the gIxChannelRectSGIX reference page, illustrates how to use the
extension.

Example 10-1 Video Resize Extension Example

XSGlvcChannelinfo *pChaninfo = NULL;

... open display and screen ...
gIXBindChannelToWindowSGIX(display,screen,channel,window);
gIXQueryChannelDeltasSGIX(display,screen,channel, &dx,&dy,&dw,&dh)

’

XSGlvcQueryChannellnfo(display, screen, channel, &pChaninfo);

X = pChanlinfo—>source.x;
Y = pChanlinfo—>source.y;
W = pChanlinfo—>source.width;
H = pChanlinfo—>source.height;

... open an X window (preferably with no borders so will not get ...
... moved by window manager) at location X,Y,W,H (X coord system) ..

while(...)
{

...determine area(width,height) that will be drawn based on...
...requirements. Make area smaller if application is fill limite

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 8

w = width — (width % dw);
h = height - (' height % dh);

glViewport(0,0,w,h);
gIXChannelRectSGIX(display,screen,channel, 0,0,w,h);
... draw scene ...

gIXSwapBuffers(display,window);

New Functions

gIXBindChannelToWindowSGlXgIXChannelRectSGIXgIXChannelRectSyncSGLX
gIXQueryChannelRectSGIX

SGIX video_source [The Video Source Extension

The video source extension, SGIX_video_source, lets you source pixel data from a video stream t
the OpenGL renderer. The video source extension is available only for system configurations that
have direct hardware paths from the video hardware to the graphics accelerator. On other systems
you need to transfer video data to host memory and theglbadiwPixels()or giTex{Sub}image(jo
transfer data to the framebuffer, to texture memory, or to a DMPbuffetS&d¥_pbuffeld The

Pixel Buffer Extension:

The video source extension introduces a new type of GLXDraableXVideoSourceSGIXI that

is associated with the drain node of a Video Library (VL) path. A GLXVideoSourceSGIX drawable
can be used only as thead parameter tglXMakeCurrentReadSGH) indicate that pixel data

should be read from the specified video source instead of the framebuffer.

Note: This extension is an SGIX (experimental) extension. The interface may change, or it may nc
be supported in future releases.

The remainder of this section presents two exampesmple 10—-8emonstrates the video to
graphics capability of the Sirius video board using OperEdample 10-& a code fragment for
how to use the video source extension to load video into texture memory.

Example 10-2 Use of the Video Source Extension

/*

* vidtogfx.c

* This VL program demonstrates the Sirius Video board video—>graph
ics

* ability using OpenGL.

* The video arrives as fields of an interlaced format. It is

* displayed either by interlacing the previous and the current

* field or by pixel-zooming the field in Y by 2.

*/

#include <stdlib.h>

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions - 9

#include <stdio.h>
#include <string.h>
#include <vl/vl.h>
#include <vl/dev_sirius.h>
#include <GL/glx.h>
#include "xwindow.h"
#include <X11/keysym.h>

/* Video path variables */
VLServer svr;

VLPath path;

VLNode src;

VLNode drn;

/* Video frame size info */
VLControlValue size;

int F1_is_first; /* Which field is first */
[* OpenGL/X variables */
Display *dpy;

Window window;
GLXVideoSourceSGIX gIxVideoSource;
GLXContext ctx;
GLboolean interlace = GL_FALSE;
/*
* function prototypes
*/
void usage(char *, int);
void InitGfx(int, char **);
void GrabField(int);
void UpdateTiming(void);
void cleanup(void);
void ProcessVideoEvents(void);
static void loop(void);
int
main(int argc, char **argv)
{
int ¢, insrc = VL_ANY;
int device = VL_ANY;
short dev, val;
/* open connection to VL server */

if (!(svr = viOpenVideo("™))) {

printf("couldn’t open connection to VL server\n®);
exit(EXIT_FAILURE);

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 10

/* Get the Video input */

src = viGetNode(svr, VL_SRC, VL_VIDEO, insrc);
/* Get the first Graphics output */

drn = viGetNode(svr, VL_DRN, VL_GFX, 0);

[* Create path */
path = vICreatePath(svr, device, src, drn);
if (path < 0) {
vIPerror("viCreatePath");
exit(EXIT_FAILURE);
}
/* Setup path */
if (vISetupPaths(svr, (VLPathList)&path, 1, VL_SHARE,
VL_SHARE) < 0) {
vIPerror("vISetupPaths");
exit(EXIT_FAILURE);
}
UpdateTiming();
if (viISelectEvents(svr, path,VLStreamPreemptedMask |
VLControlChangedMask) < 0) {
viPerror("Select Events");
exit(EXIT_FAILURE);
}
/* Open the GL window for gfx transfers */
InitGfx(argc, argv);
/* Begin Transfers */
viBeginTransfer(svr, path, O, NULL);
/* The following sequence grabs each field and displays it in
* the GL window.
*
loop();
}
void
loop()
{

XEvent event;

KeySym key;

XComposeStatus compose;
GLboolean clearNeeded = GL_FALSE;

while (GL_TRUE) {
/* Process X events */
while(XPending(dpy)) {
XNextEvent(dpy, &event);
/* Don't really need to handle expose as video is coming at
* refresh speed.

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 11

*/
if (event.type == case KeyPress) {
XLookupString(&event.xkey, NULL, 0, &key, NULL);
switch (key) {
case XK_Escape:
exit(EXIT_SUCCESS);
case XK _i:
if (haslinterlace) {
interlace = linterlace;
if (linterlace) {
if ('gIXMakeCurrentReadSGI(dpy, window,
glxVideoSource, ctx)) {
fprintf(stderr,
"Can’t make current to video\n");
exit(EXIT_FAILURE);
}
} else if (lgIXMakeCurrent(dpy, window, ctx)) {
fprintf(stderr,
"Can’'t make window current to context\n");
exit(EXIT_FAILURE);
}
printf("Interlace is %s\n", interlace ? "On" : "Off");
* Clear both buffers */
glClear(GL_COLOR_BUFFER_BIT);
glIXSwapBuffers(dpy, window);
glClear(GL_COLOR_BUFFER_BIT);
glIXSwapBuffers(dpy, window);
glRasterPos2f(0, size.xyVal.y — 1);
}else {
printf("Graphics interlacing is not supported\n”);
}
break;
}
}
}

ProcessVideoEvents();
GrabField(0);
gIXSwapBuffers(dpy, window);
GrabField(1);
gIXSwapBuffers(dpy, window);

/*

* Open an X window of appropriate size and create context.
*/

void

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 12

InitGfx(int argc, char **argv)
{
inti;
XSizeHints hints;
int visualAttr[] = {GLX_RGBA, GLX_DOUBLEBUFFER, GLX_RED_SIZE, 12,
GLX_GREEN_SIZE, 12, GLX_BLUE_SIZE, 12,
None};
const char *extensions;

[* Set hints so window size is exactly as the video frame size */

hints.x = 50; hints.y = 0;

hints.min_aspect.x = hints.max_aspect.x = size.xyVal.x;

hints.min_aspect.y = hints.max_aspect.y = size.xyVal.y;

hints.min_width = size.xyVal.x;

hints.max_width = size.xyVal.x;

hints.base_width = hints.width = size.xyVal.x;

hints.min_height = size.xyVal.y;

hints.max_height = size.xyVal.y;

hints.base_height = hints.height = size.xyVal.y;

hints.flags = USSize | PAspect | USPosition | PMinSize | PMaxSize;

createWindowAndContext(&dpy, &window, &ctx, 50, 0, size.xyVal.x,
size.xyVal.y, GL_FALSE, &hints, visualAttr, argv[0

D;
/* Verify that MakeCurrentRead and VideoSource are supported */

glxVideoSource = glXCreateGLXVideoSourceSGIX(dpy, 0, svr, path,
VL_GFX, drn);

if (gIxVideoSource == NULL) {
fprintf(stderr, "Can’t create glxVideoSource\n");
exit(EXIT_FAILURE);

}

if (IgIXMakeCurrentReadSGI(dpy, window, gixVideoSource, ctx)) {
fprintf(stderr, "Can’t make current to video\n");
exit(EXIT_FAILURE);

}

[* Set up the viewport according to the video frame size */

glLoadldentity();

glViewport(0, 0, size.xyVal.x, size.xyVal.y);

glOrtho(0, size.xyVal.x, 0, size.xyValy, -1, 1);

/* Video is top to bottom */

glPixelZoom(1, -2);

glRasterPos2f(0, size.xyVal.y — 1);

glReadBuffer(GL_FRONT);

[* Check for interlace extension. */

haslinterlace = ... /* Interlace is supported or not */

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 13

}
/*
* Grab a field. A parameter of 1 = odd Field, 0 = Even Field.
* Use the global F1_is_first variable to determine how to
* interleave the fields.
*
void
GrabField(int odd_field)
{
[* copy pixels from front to back buffer */
if (interlace) {
/* Restore zoom and transfer mode */
glRasterPos2i(0, 0);
glPixelZzoom(1, 1);
glCopyPixels(0, 0, size.xyVal.x, size.xyVal.y, GL_COLOR);

/* Copy the field from Sirius Video to GFX subsystem */
if (IgIXMakeCurrentReadSGI(dpy, window, glxVideoSource, ctx)) {
fprintf(stderr, "Can’t make current to video\n");
exit(EXIT_FAILURE);
}
if (odd_field) {
if (F1_is_first) {
/* F1 dominant, so odd field is first. */
glRasterPos2f(0, size.xyVal.y — 1);
}else {
/* F2 dominant, so even field is first. */
glRasterPos2f(0, size.xyVal.y — 2);
}
}else {
if (F1_is_first) {
/* F1 dominant, so odd field is first. */
glRasterPos2f(0, size.xyVal.y — 2);
}else {
/* F2 dominant, so even field is first. */
glRasterPos2f(0, size.xyVal.y — 1);
}

}
#ifdef GL_SGIX interlace

if (hasinterlace)
glEnable(GL_INTERLACE_SGIX);
#endif
/* video is upside down relative to graphics */
glPixelZoom(1, -1);
glCopyPixels(0, 0, size.xyVal.x, size.xyVal.y/2, GL_COLOR);
if (IgIXMakeCurrent(dpy, window, ctx)) {
fprintf(stderr, "Can’t make current to original window\n");

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 14

exit(EXIT_FAILURE);
}
#ifdef GL_SGIX_interlace
if (hasinterlace)
glDisable(GL_INTERLACE_SGIX);
#endif
}else {
/* Not deinterlacing */
glPixelZzoom(1, -2);
if (‘odd_field) {
if (IF1_is_first) {
/* F1 dominant, so odd field is first. */
glRasterPos2f(0, size.xyVal.y — 1);
}else {
/* F2 dominant, so even field is first. */
glRasterPos2f(0, size.xyVal.y — 2);
}
} else {
if (IF1_is_first) {
/* F1 dominant, so odd field is first. */
glRasterPos2f(0, size.xyVal.y — 2);
}else {
/* F2 dominant, so even field is first. */
glRasterPos2f(0, size.xyVal.y — 1);

}
}

glCopyPixels(0, 0, size.xyVal.x, size.xyVal.y/2, GL_COLOR);

}
}

/*
* Get video timing info.
*/
void
UpdateTiming(void)
{
intis_525;
VLControlValue timing, dominance;

/* Get the timing on selected input node */

if (viIGetControl(svr, path, src, VL_TIMING, &timing) <0) {
vIPerror("VIGetControl: TIMING");
exit(EXIT_FAILURE);

}

/* Set the GFX Drain to the same timing as input src */

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 15

if (vISetControl(svr, path, drn, VL_TIMING, &timing) <0) {
viPerror("VISetControl: TIMING");
exit(EXIT_FAILURE);
}
if (viGetControl(svr, path, drn, VL_SIZE, &size) <0) {
viPerror("VIGetControl");
exit(EXIT_FAILURE);
}
/*
* Read the video source’s field dominance control setting and
* timing, then set a variable to indicate which field has the fir
st
* line, so that we know how to interleave fields to frames.
*
if (viGetControl(svr, path, src,
VL_SIR_FIELD_DOMINANCE, &dominance) < 0) {
viPerror("GetControl(VL_SIR_FIELD DOMINANCE) on video source
failed");
exit(EXIT_FAILURE);
}

is_525 = ((timing.intVal == VL_TIMING_525_SQ_PIX) ||
(timing.intVal == VL_TIMING_525 CCIR601));

switch (dominance.intVal) {
case SIR_F1 IS DOMINANT:

if (is_525) {

F1 _is_first=0;
}else {

F1_is_first=1,;
}
break;

case SIR_F2 IS DOMINANT:

if (is_525) {

F1 is first=1;
}else {

F1 is first=0;
}

break;

void
cleanup(void)

{

vIEndTransfer(svr, path);

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 16

viDestroyPath(svr, path);
viCloseVideo(svr);
exit(EXIT_SUCCESS);

}

void
ProcessVideoEvents(void)

{
VLEvent ev;

if (viICheckEvent(svr, VLControlChangedMask|
VLStreamPreemptedMask, &ev) == -1) {
return;
}
switch(ev.reason) {
case VLStreamPreempted:
cleanup();
exit(EXIT_SUCCESS);
case VLControlChanged:
switch(ev.vilcontrolchanged.type) {
case VL_TIMING:
case VL_SIZE:
case VL_SIR_FIELD_DOMINANCE:
UpdateTiming();
/* change the gl window size */
XResizeWindow(dpy, window, size.xyVal.x, size.xyVal.y);
gIXWaitX();
glLoadldentity();
glViewport(0, 0, size.xyVal.x, size.xyValy);
glOrtho(0, size.xyVal.x, 0, size.xyVal.y, -1, 1);
break;
default:
break;
}
break;
default:
break;

}
}

Example 10-3 Loading Video Into Texture Memory

Display *dpy;

Window win;

GLXContext cx;
VLControlValue size, texctl;
int tex_width, tex_height;

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 17

VLServer svr;
VLPath path;
VLNode src, drn;

static void init_video_texturing(void)
{
GLXVideoSourceSGIX videosource;
GLenum intfmt;
int scrn;
float s_scale, t_scale;

/* set video drain to texture memory */
drn = viGetNode(svr, VL_DRN, VL_TEXTURE, 0);

[* assume svr, src, and path have been initialized as usual */

[* get the active video area */

if (viGetControl(svr, path, src, VL_SIZE, &size) < 0) {
vIPerror("viGetControl");

}

[* use a texture size that will hold all of the video area */

[* for simplicity, this handles only 1024x512 or 1024x1024 */

tex_width = 1024;
if (size.xyVal.y > 512) {
tex_height = 1024;

}else {
tex_height = 512;

}

/* Set up a texture matrix so that texture coordsin0Oto1 *
/

/* range will map to the active video area. We want *
/

/*s’=s*s scale *
/

[*t' = (1-t) *t_scale (because video is upside down). *

s_scale = size.xyVal.x / (float)tex_width;
t scale = size.xyVal.y / (float)tex_height;
glMatrixMode(GL_TEXTURE);
glLoadldentity();

glScalef(s_scale, —t_scale, 1);
glTranslatef(0, t_scale, 0);

/* choose video packing mode */
texctl.intvVal = SIR_TEX_PACK_RGBA_8;
if (vISetControl(svr, path, drn, VL_PACKING, &texctl) <0) {

OpenGL ® on Silicon Graphics ® Systems — Chapter 10, Video Extensions — 18

vIPerror("VISetControl");
}
/* choose internal texture format; must match video packing mode
*
intfmt = GL_RGBA8_EXT;

glEnable(GL_TEXTURE_2D);
/* use a non—mipmap minification filter */
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)

/* use NULL texture image, so no image has to be sent from host
*/
glTeximage2D(GL_TEXTURE_2D, 0, intfmt, tex_width, tex_height, O,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);

if ((videosource = glXCreateGLXVideoSourceSGIX(dpy, scrn, svr,
path, VL_TEXTURE, drn)) == None
){
fprintf(stderr, "can't create video source\n");
exit(1);
}
gIXMakeCurrentReadSGI(dpy, win, videosource, cx);

static void draw(void)
{
/* load video into texture memory */
glCopyTexSublmage2DEXT(GL_TEXTURE_2D, 0, 0, 0, 0, O,
size.xyVal.x, size.xyVal.y);

/* draw the video frame */

glBegin(GL_POLYGON);

glTexCoord2f(0,0); glVertex2f(0, 0);

glTexCoord2f(1,0); glVertex2f(size.xyVal.x, 0);
glTexCoord2f(1,1); glVertex2f(size.xyVal.x, size.xyVal.y);
glTexCoord2f(0,1); glVertex2f(0, size.xyVal.y);

glEnd();

New Functions

glXCreateGLXVideoSourceSGIXIXDestroyGLXVideoSourceSGIX

OpenGL ® on Silicon Graphics ® Systems — Chapter 11, Miscellaneous OpenGL Extensions — 19

Chapter 11
Miscellaneous OpenGL Extensions

This chapter explains how to use several extensions that are not easily grouped with texturing,
imaging, or GLX extensions, providing example code as needed. You learn about:

"GLU_EXT_NURBS _tessellataér The NURBS Tessellator Extension”
"GLU_EXT_object_spade The Object Space Tess Extension"
"SGIX_instrumentsl The Instruments Extension”

"SGIX_list_priority(] The List Priority Extension”

GLU_EXT _NURBS tessellator [0 The NURBS Tessellator
Extension

The NURBS tessellator extension, GLU_EXT_nurbs_tessellator, is a GLU extension that allows
applications to retrieve the results of a tessellation. The NURBS tessellator is similar to the GLU

polygon tessellator; see "Polygon Tessellation," starting on page 410@p¢m&L Programming
Guide, Second Edition

NURBS tessellation consists of OpenGL Begin, End, Color, Normal, Texture, and Vertex data. Thi
feature is useful for applications that need to cache the primitives to use their own advanced shadi
model, or to accelerate frame rate or perform other computations on the tessellated surface or cur
data.

Using the NURBS Tessellator Extension
To use the extension, follow these steps:

1. Define a set of callbacks for a NURBS object using this command:

void gluNurbsCallback(GLUnurbsObj * nurbsObj GLenum which,
void (¥ fn)Q);

The parametewhichcan be either GLU_ERROR or a data parameter or nondata parameter, on
of the following:

GLU_NURBS_BEGIN_EXT GLU_NURBS_BEGIN_DATA_EXT
GLU_NURBS_VERTEX_EXT GLU_NURBS_VERTEX_DATA_EXT
GLU_NORMAL_EXT GLU_NORMAL_DATA_EXT
GLU_NURBS_COLOR_EXT GLU_NURBS_COLOR_DATA_EXT
GLU_NURBS_TEXTURE_COORD_EXT GLU_NURBS_TEXTURE_COORD_DATA EXT
GLU_END_EXT GLU_END_DATA_EXT

2. CallgluNurbsProperty(with aproperty parameter of GLU_NURBS_MODE_EXT andlue
parameter of GLU_NURBS_TESSELLATOR_EXT or GLU_NURBS_RENDERER_EXT.

In rendering mode, the objects are converted or tessellated to a sequence of OpenGL primitive
such as evaluators and triangles, and sent to the OpenGL pipeline for rendering. In tessellatiol
mode, objects are converted to a sequence of triangles and triangle strips and returned to the
application through a callback interface for further processing. The decomposition algorithms

used for rendering and for returning tessellations are not guaranteed to produce identical resul

OpenGL ® on Silicon Graphics ® Systems — Chapter 11, Miscellaneous OpenGL Extensions - 1

3. Execute your OpenGL code to generate the NURBS curve or surface (see "A Simple NURBS
Example" on page 455 of ti@penGL Programming Guide, Second Edifion.

4. During tessellation, your callback functions are called by OpenGL, with the tessellation
information defining the NURBS curve or surface.

Callbacks Defined by the Extension

There are two forms of each callback defined by the extension: one with a pointer to application
supplied data and one without. If both versions of a particular callback are specified, the callback
with userDatawill be useduserDatais a copy of the pointer that was specified at the last call to
gluNurbsCallbackDataEXT()

The callbacks have the following prototypes:

void begin(GLenum type);

void vertex(GLfloat * vertey;

void normal(GLfloat * normal);
void color(GLfloat * color);

void texCoord(GLfloat * texCoord;

void end(void);
void beginData(GLenum type void* userDat3;

void vertexData(GLfloat * vertex void* userDat3;

void normalData(GLfloat * normal void* userDatg;
void colorData(GLfloat * color, void* userDatg;

void texCoordData(GLfloat * texCoord void* userDatg;
void endData(void* userDatg;

void error(GLenum errno);

The first 12 callbacks allows applications to get primitives back from the NURBS tessellator when
GLU_NURBS_MODE_EXT is setto GLU_NURBS_TESSELLATOR_EXT.

These callbacks are not made when GLU_NURBS_MODE_EXT is set to
GLU_NURBS_RENDERER_EXT.

All callback functions can be set to NULL even when GLU_NURBS_MODE_EXT is set to
GLU_NURBS_TESSELLATOR_EXT. When a callback function is set to NULL, this function will
not be invoked and the related data, if any, will be lost.

Table 11-JProvides additional information on each callback.

Table 11-1 NURBS Tessellator Callbacks and Their Description

Callback Description

GL_NURBS_BEGIN_EXT Indicates the start of a primitive/peis one of GL_LINES, GL_LINE_STRIPS,
GL_NURBS_BEGIN_DAT GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP, GL_TRIANGLES, or GL_QUAD_STRIP.

A_ EXT The defaulbegin()andbeginData()callback functions are NULL.

GL_NURBS_VERTEX_EXT Indicates a vertex of the primitive. The coordinates of the vertex are stored in the parameter

GL_NURBS_VERTEX_DATA__ vertex All the generated vertices have dimension 3, that is, homogeneous coordinates have bee

EXT transformed into affine coordinates.
The defaulvertex()andvertexData()xallback functions are NULL.
GL_NURBS_NORMAL_EXT Is invoked as the vertex normal is generated. The components of the normal are stored in the

GL_NURBS_NORMAL_DATA_ parametenormal In the case of a NURBS curve, the callback function is effective only when

OpenGL ® on Silicon Graphics ® Systems — Chapter 11, Miscellaneous OpenGL Extensions - 2

EXT

the user provides a normal map (GLU_MAP1_NORMAL). In the case of a NURBS surface, if a
normal map (GLU_MAP2_NORMAL) is provided, then the generated normal is computed

from the normal map. If a normal map is not provided, then a surface normal is computed in a
manner similar to that described for evaluators when GL_AUTO_NORMAL is enabled. The
defaultnormal() andnormalData()callback functions are NULL.

GL_NURBS_COLOR_EXT Is invoked as the color of a vertex is generated. The components of the color are stored in the
GL_NURBS_COLOR_DATA_ parametecolor. This callback is effective only when the user provides a color map

EXT

(GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4jolor contains four components: R, G, B, or
A.The defaultcolor() andcolorData() callback functions are NULL.

GL_NURBS_TEXCOORD_EXT Is invoked as the texture coordinates of a vertex are generated. These coordinates are stored in
GL_NURBS_TEXCOORD_ the parametdex_coord The number of texture coordinates can be 1, 2, 3, or 4 depending on

DATA_EXT

which type of texture map is specified (GL_MAP* TEXTURE_COORD_1,
GL_MAP*_TEXTURE_COORD_2, GL_MAP*_TEXTURE_COORD_3,
GL_MAP*_TEXTURE_COORD_4 where * can be either 1 or 2). If no texture map is specified,
this callback function will not be called.

The defaultexCoord()andtexCoordData()callback functions are NULL.

GL_NURBS_END_EXT Is invoked at the end of a primitive. The defauti()andendData()callback functions are
GL_NURBS_END_DATA_EXT NULL.
GL_NURBS_ERROR_EXT Is invoked when a NURBS function detects an error condition. There are 37 errors specific to

NURBS functions. They are named GLU_NURBS_ERROR1 through
GLU_NURBS_ERRORZ3Y7. Strings describing the meaning of these error codes can be retrieved
with gluErrorString()

GLU_EXT object_space [l The Object Space Tess Extension

The object space tess extension, GLU_EXT_object_space_tess, adds two object space tessellatia
methods for GLU nurbs surfaces. NURBS are discussed in the section "The GLU NURBS Interfac
on page 455 of th®penGL Programming Guide, Second Edition

The existing tessellation methods GLU_PATH_LENGTH and GLU_PARAMETRIC_ERROR are
view dependent because the error tolerance is measured in the screen space (in pixels). The extel
provides corresponding object space tessellation methods that are view—-independent in that the el
tolerance measurement is in the object space.

GLU_SAMPLING_METHOD specifies how a NURBS surface should be tessellatedaltiee
parameter may be set to one of GLU_PATH_LENGTH, GLU_PARAMETRIC_ERROR,
GLU_DOMAIN_DISTANCE, GLU_OBJECT_PATH_LENGTH_EXT, or
GLU_OBJECT_PARAMETRIC_ERROR_EXT.

To use the extension, cgluNurbsProperty(with an argument of
GLU_OBJECT_PATH_LENGTH_EXT or GLU_OBJECT_PARAMETRIC_ERROR_EX#ble
11-Zontrasts the methods provided by the extension with the existing methods.

Table 11-2 Tessellation Methods

Method Description

GLU_PATH_LENGTH The surface is rendered so that the maximum length, in pixels,
of edges of the tessellation polygons is no greater than what is
specified by GLU_SAMPLING_TOLERANCE.

GLU_PARAMETRIC_ERROR The surface is rendered in such a way that the value specified by
GLU_PARAMETRIC_TOLERANCE describes the maximum
distance, in pixels, between the tessellation polygons and the
surfaces they approximate.

GLU_DOMAIN_DISTANCE Allows you to specify, in parametric coordinates, how many
sample points per unit length are taken in u, v dimension.

OpenGL ® on Silicon Graphics ® Systems — Chapter 11, Miscellaneous OpenGL Extensions — 3

GLU_OBJECT_PATH_LENGTH_ Similar to GLU_PATH_LENGTH except that it is view

EXT independent; that is, it specifies that the surface is rendered so
that the maximum length, in object space, of edges of the
tessellation polygons is no greater than what is specified by
GLU_SAMPLING_TOLERANCE.

GLU_OBJECT_PARAMETRIC_ Similar to GLU_PARAMETRIC_ERROR except that it is view

ERROR_EXT independent; that is, it specifies that the surface is rendered in
such a way that the value specified by
GLU_PARAMETRIC_TOLERANCE describes the maximum
distance, in object space, between the tessellation polygons and
the surfaces they approximate.

The default value of GLU_SAMPLING_METHOD is GLU_PATH_LENGTH.

GLU_SAMPLING_TOLERANCE specifies the maximum distance, in pixels or in object space whe
the sampling method is set to GLU_PATH_LENGTH or GLU_OBJECT_PATH_LENGTH_EXT.
The default value for GLU_SAMPLING_TOLERANCE is 50.0.

GLU_PARAMETRIC_TOLERANCE specifies the maximum distance, in pixels or in object space
when the sampling method is set to GLU_PARAMETRIC_ERROR or
GLU_OBJECT_PARAMETRIC_ERROR_EXT. The default value for
GLU_PARAMETRIC_TOLERANCE is 0.5.

SGIX_list_priority [The List Priority Extension

The list priority extension, SGIX_list_priority, provides a mechanism for specifying the relative
importance of display lists. This information can be used by an OpenGL implementation to guide tt
placement of display list data in a storage hierarchy, that is, lists that have higher priority reside in
"faster" memory and are less likely to be swapped out to make space for other lists.

Using the List Priority Extension

To guide the OpenGL implementation in determining which display lists should be favored for fast
executions, applications calListParameter*SGIX()which has the following prototype:

glListParameterfSGIX(uint list, enum pname float param3y
where

list is set to the display list.

pnameis set to GL_LIST_PRIORITY_SGIX.

paramsis set to the priority value.

The priority value is clamped to the range [0.0, 1.0] before it is assigned. Zero indicates the lowest
priority, and hence the least likelihood of optimal execution. One indicates the highest priority, and
hence the greatest likelihood of optimal execution.

Attempts to prioritize nonlists are silently ignored. Attempts to prioritize list O generates a
GL_INVALID_VALUE error.

To query the priority of a list, cadliGetListParameterfvSGIX(Which has the following prototype:

glGetListParameterivSGIX(uint list, enum pnameint * param$g

OpenGL ® on Silicon Graphics ® Systems — Chapter 11, Miscellaneous OpenGL Extensions - 4

where:
list is set to the list.

pnameis set to GL_LIST_PRIORITY_SGIX.

If list is not defined, then the value returned is undefined.

Note: On InfiniteReality systems, it makes sense to give higher priority to those display lists that ai
changed frequently.

New Functions

glListParameterSGIl)XglGetListParameterSGIX

SGIX instruments [The Instruments Extension

The instruments extension, SGIX_instruments, allows applications to gather and return performant
measurements from within the graphics pipeline by adding instrumentation.

About SGIX_instruments

There are two reasons for using the instruments extension:

Load monitoring . If you know that the pipeline is stalled or struggling to process the amount of
data passed to it so far, you can take appropriate steps, such as these:

— Reduce the level of detail of the remaining objects in the current frame or the next frame.
- Adjust the framebuffer resolution for the next frame if video resize capability is available.
Tuning. The instrumentation may give you tuning information; for example, it may provide

information on how many triangles were culled or clipped before being rasterized.

Load monitoring requires that the instrumentation and the access of the measurements be efficien
otherwise the instrumentation itself will reduce performance more than any load—management sch
could hope to offset. Tuning does not have the same requirements.

The instruments extension provides a call to set up a measurements return buffer, similar to the
feedback buffer. However, unlike feedback and selectiorg{SetectBuffer(and

glFeedbackBuffer]) the instruments extension provides commands that allow measurements to be
delivered asynchronously, so that the graphics pipeline need not be stalled while measurements a
returned to the client.

Note that the extension provides an instrumentation framework, but no instruments. The set of
available instruments varies between OpenGL implementations, and can be determined by queryil
the GL_EXTENSIONS string returned lgyGetString()for the names of the extensions that
implement the instruments.

Using the Extension

This section discusses using the extension in the following subsections:

"Specifying the Buffer"

OpenGL ® on Silicon Graphics ® Systems — Chapter 11, Miscellaneous OpenGL Extensions — 5

"Enabling, Starting, and Stopping Instruments"
"Measurement Format"

"Retrieving Information”

Specifying the Buffer

To specify a buffer in which to collect instrument measurementggltagtrumentsBufferSGIX()
with sizeset to the size of the buffer as a count of GLints. The function has the following prototype:

void glinstrumentsBufferSGIX(GLsizei size GLint* buffer)

The buffer will be prepared in a way that allows it to be written asynchronously by the graphics
pipeline.

If the same buffer was specified on a previous call, the buffer is reset; that is, measurements taker
after the call taylinstrumentsBufferSGIX@re written to the start of the buffer.

If bufferis zero, then any resources allocated by a previous call to prepare the buffer for writing wil
be freed. Ifbufferis non-zero, but is different from a previous call, the old buffer is replaced by the
new buffer and any allocated resources involved in preparing the old buffer for writing are freed.

The buffer address can be queried vgtBetPointerv(using the argument
GL_INSTRUMENT_BUFFER_POINTER_SGIX (note ttglGetPointerv()is an OpenGL 1.1
function).

Enabling, Starting, and Stopping Instruments

To enable an instrument, cglEnable()with an argument that specifies the instrument. The
argument to use for a particular instrument is determined by the OpenGL extension that supports t
instrument. (Sednstruments Example Pseudo Cagle"

To start the currently enabled instrument(s), gi8tartinstrumentsSGIX(Jo take a measurement,
call glReadInstrumentsSGIX() o stop the currently—enabled instruments and take a final
measurement cadjiStopInstrumentsSGIX(Jhe three functions have the following prototypes:

void glStartinstrumentsSGIX(void)
void glReadInstrumentsSGIX(GLint marker)
void gIStoplinstrumentsSGIX(GLint marker)

Themarkerparameter is passed through the pipe and written to the buffer to ease the task of
interpreting it.

If no instruments are enabled executgi§tartinstrumentsSGIX@IStopinstrumentsSGIX(@r

glReadInstrumentsgyill not write measurements to the buffer.

Measurement Format

The format of any instrument measurement in the buffer obeys certain conventions:
The first word of the measurement is tiEnable()enum for the instrument itself.

The second word of the measurement is the size in GLints of the entire measurement. This
allows any parser to step over measurements with which it is unfamiliar. Currently there are nc

OpenGL ® on Silicon Graphics ® Systems — Chapter 11, Miscellaneous OpenGL Extensions — 6

implementation—-independent instruments to describe.

Implementation—dependent instruments are described in the Machine Dependencies section ¢
the reference page fgtinstrumentsSGIXCurrently, only InfiniteReality systems support any

extensions.

In a single measurement, if multiple instruments are enabled, the data for those instruments can

appear in the buffer in any order.

Retrieving Information

To query the number of measurements taken since the buffer was reggGetf)lusing
GL_INSTRUMENT_MEASUREMENTS_SGIX.

To determine whether a measurement has been written to the buffgiPollhstrumentsSGIX()
which has the following prototype:

GLint glPollinstrumentsSGIX(GLint * markerp)

If a new measurement has appeared in the buffer since the lastgiBbiitnstrumentsSGIX()L is
returned, and the value of marker associated with the measureng8tdgyinstrumentsSGIXQr

glReadInstrumentsSGIXi§ written into the variable referencediarker_p The measurements
appear in the buffer in the order in which they were requested. If the buffer overflows,

glPollinstrumentsSGIX(nay return —1 as soon as the overflow is detected, even if the measuremet
being polled did not cause the overflow. (An implementation may also choose to delay reporting th

overflow until the measurement that caused the overflow is the one being polled.) If no new

measurement has been written to the buffer, and overflow has not ocgifP@tnstrumentsSGIX()

returns 0.

Note that while in practice an implementation of the extension is likely to return markers in order,

this functionality is not explicitly required by the specification for the extension.

To get a count of the number of new valid GLints written to the buffergt@étinstrumentsSGIX()

which has the following prototype:

GLint glGetinstrumentsSGIX(void)

The value returned is the number of GLints that have been written to the buffer since the last call ti
glGetinstrumentsSGIXQr glinstrumentsBufferSGIX()f the buffer has overflowed since the last call

to glGetinstrumentsSGIX()-1 is returned for the count. Note ti&etinstrumentsSGIX@an be
used independently giPollinstrumentsSGIX()

Instruments Example Pseudo Code

Example 11-1 Instruments Example Pseudo Code

#ifdef GL_SGIX_instruments
#define MARKER1 1001
#define MARKER2 1002
{

static GLint buffer[64];
GLvoid *bufp;
int id, countO, countl, r;

OpenGL ® on Silicon Graphics ® Systems — Chapter 11, Miscellaneous OpenGL Extensions - 7

/* define the buffer to hold the measurements */
glinstrumentsBufferSGIX(sizeof(buffer)/sizeof(GLint), b
uffer);

/* enable the instruments from which to take measuremen
ts */
glEnable(<an enum for a supported instrument, such as
GL_IR_INSTRUMENT1_SGIX>);

glStartinstrumentsSGIX();

/* insert GL commands here */
glReadInstrumentsSGIX(MARKERL1);
/* insert GL commands here */
glStoplInstrumentsSGIX(MARKER?2);

/* query the number of measurements since the buffer wa
s specified*/
glGetintegerv(GL_INSTRUMENT _MEASUREMENTS_SGIX,&r);
/* now r should equal 2 */

/* query the pointer to the instrument buffer */
glGetPointervEXT(GL_INSTRUMENT_BUFFER_SGIX,&bufp);
/* now bufp should be equal to buffer */

/*
* we can call glGetinstrumentsSGIX before or after the
calls to
* glPollinstrumentsSGIX but to be sure of exactly what
* measurements are in the buffer, we can use Pollinstr
umentsSGIX.
*
countO = glGetinstrumentsSGIX();
/* Since 0, 1, or 2 measurements might have been return
edto
* the buffer at this point, countO will be 0, 1, or 2
times
* the size in GLints of the records returned from the
* currently—enabled instruments.
* |f the buffer overflowed, countO will be -1.
*/

while (I(r = glPollinstrumentsSGIX(&id))) ;
/*if ris =1, we have overflowed. Ifitis 1, id will
* have the value of the marker passed in with the firs

* measurement request (should be MARKERL1). While it i

OpenGL ® on Silicon Graphics ® Systems — Chapter 11, Miscellaneous OpenGL Extensions — 8

s 0,
* no measurement has been returned (yet).
*/

while (I(r = glPollinstrumentsSGIX(&id))) ;
/* see the note on the first poll; id now should equal
MARKER?2 */

countl = glGetinstrumentsSGIX();
/* the sum of countO and countl should be 2 times the s
ize in GLints
* of the records returned for all instruments that we
have enabled.
*
}
#endif

New Functions

glinstrumentsBufferSGIXglStartinstrumentsSGI)gIStoplnstrumentsSGIX
glReadInstrumentsSGLXIPollinstrumentsSGIXglGetinstrumentsSGIX

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools - 9

Chapter 12
OpenGL Tools

This chapter explains how to work with these OpenGL tools:

"ogldebud] the OpenGL Debuggetéts you use a graphical user interface to trace and examine
OpenGL callsSee page 269

"glcO] the OpenGL Character Renderéats you render characters in OpenGL progré@es.
page 283

"glsd The OpenGL Stream Utilityis a facility for encoding and decoding streams of 8-bit bytes
that represent sequences of OpenGL comm&weispage 283

"gIxInfo O The glx Information Utility"provides information on GLX extensions and OpenGL
capable visuals, and the OpenGL renderer of an X s&eerpage 285

ogldebug LI the OpenGL Debugger

This section explains how to debug graphics applications with the OpenGL debugging tool ogldebt
The following topics are discussed:

"ogldebug Overview"

"Getting Started With ogldebug"

"Creating a Trace File to Discover OpenGL Problems"
"Interacting With ogldebug"

"Using a Configuration File"

"Using Menus to Interact With ogldebug"

ogldebug Overview

The ogldebug tool helps you find OpenGL programming errors and discover OpenGL programmin
style that may slow down your application. After finding an error, you can correct it and recompile
your program.Using ogldebug, you can perform the following actions at any point during program
execution:

Set a breakpoint for all occurrences of a given OpenGL call.
Step through (or skip) OpenGL calls.
Locate OpenGL errors.

For a selected OpenGL context, display information about OpenGL state, current display lists,
and the window that belongs to the application you are debugging.

Create a history ("trace") file of all OpenGL calls made. The history file is a gls file that contain
comments and performance hints. You can convert it to legal C code using ogldebug comman
line options.

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools - 1

Note: If you are debugging a multiwindow or multicontext application, ogldebug starts a new
session (a new window appears) each time the application starts a new process. In each new winc
the process ID is displayed in the title bar.

The OpenGL debugger is not a general-purpose debuggelbxdse related tools such as cvd
(CASEVision/Workshop Debugger) to find problems in the nonOpenGL portions of a program.

How ogldebug Operates
The OpenGL debugger works like this:

You invoke ogldebug for an application using the appropriate command line options (see
"ogldebug Command-Line Optiohs"

A special library Ijbogldebug.sd intercepts all OpenGL calls using the OpenGL streams
mechanism. It interprets calls to OpenGL only and filters GLU, GLC, and GLX calls. GLU calls
are parsed down to their OpenGL calls; the actual GLU calls are lost.

You can run, halt, step, and trace each process in the application separately using the ogldebi
graphical interface.

After ogldebug-related processing, the actual OpenGL calls are made as they would have bet
ogldebug had not been present.

Getting Started With ogldebug

This section discusses how to set up and start ogldebug and lists available command line options.

Setting Up ogldebug

Before you can use ogldebug, you must instalgthdev.sw.ogldebugr gl_dev.sw64.debig
subsystem. You can use the Software Manager from the Toolchest or exangidrom the
command line. Consider also installighg dev.man.ogldebuigp have access to the reference page.

ogldebug Command-Line Options

The ogldebug version that is shipped with IRIX 6.5 has a number of command-line options. (The
options are also listen in tlogldebugreference page).

Table 12-1 Command-Line Options for ogldebug

Option Description

-displaydisplay Set the display for the ogldebug user interface. If -display is not specified,
ogldebug will use $DISPLAY.

-appdisplaydisplay Set the display for the application.

-glsplaygls_trace_file Play back a gls trace file recorded by ogldebug. Note that a gls trace file is
not standard C.

-gls2cgls_trace_file Convert a gls trace file to a C code snippet. Output is to stdout.

-gls2xgls_trace_file Convert a gls trace file to an X Window System program that can be
compiled. Output is to stdout.

-gls2glutgls_trace_file Convert a gls trace file to a GLUT program that can be compiled. Output is
to stdout.

Starting ogldebug

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools - 2

To debug your OpenGL program, type the appropriate command line for your executable format:

032 % ogldebug option®32program_name program_options
n32 % ogldebug32 options32program_name program_options
64 % ogldebug64 option$4program_name program_options
where

optionsare any of the options listed undegldebug Command-Line Options."

program_namaes the name of your (executable) application.

program_optionsre application—specific options, if any.
Note: It is not necessary to compile the application with any special options. The debugger works
with any program compiled witHGL .

ogldebug becomes active when the application makes its first OpenGL call. Each ogldebug main
window represents a different application process. If the application uses fork, sproc, or pthread,
multiple ogldebug windows may appear.

The debugger launches your application and halts execution just before the application’s first
OpenGL call. The main window (s&é&gure 12-)lets you interact with your application’s current
process and displays information about the process.

agiclebrg Commands Information feference

GL context = 1

Halt Continue =tep

Check for GL errar Ereak on GL calls S
Control drawing Ereak on SwapEuffers E

Mo History Skip GL calls Setup
Skip GL trace calls Setup g

Figure 12-1 ogldebug Main Window
The three display areas below the menu bar are:

Context information. Displays the current process for that window (multiple processes have
multiple windows) and the current OpenGL context.

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools - 3

OpenGL call display. Below the status display area is the OpenGL call display area. This area
shows the next OpenGL command to be executed.

Status display.Immediately above the row of buttons is a one-line status display field, where
ogldebug posts confirmation of commands and other status indicators.

Below the row of buttons are checkboxes, discuss&dsing Checkboxes"

Interacting With ogldebug
This section provides more detailed information on working with ogldebug. It explains.
"Commands for Basic Interaction”
"Using Checkboxes"
Additional information is available in the sectidi@eating a Trace File to Discover OpenGL
Problems"and"Using Menus to Interact With ogldebug"

Commands for Basic Interaction

You can perform all basic interaction using the row of buttons just above the check boxes. You car
access the same commands using the Commands menu. This section describes each command,
including the keyboard shortcut (also listed in the Commands menu).

Table 12-2 Command Buttons and Shortcuts

Command Result

Halt Temporarily stops the application at the next OpenGL call. All state and program
Ctrl+H information is retained so you can continue execution if you wish.

Continue Resumes program execution after execution has been stopped (such as after

Ctrl+C encountering a breakpoint or after you used the Halt or Step command). The program

continues running until it reaches another breakpoint or until you explicitly halt it. The
display will only be updated when the application stops again.

Step Continues executing up to the next OpenGL call, then stops before executing that call.
Ctrl

+T

Skip Skips over the current OpenGL call. Useful if you think the current call contains an error
Ctrl or is likely to cause one. The program executes until it reaches the next OpenGL call,
*K then stops.

Using Checkboxes

The checkboxes at the bottom of the ogldebug window allow finer control over how information is
collected. Checkboxes let you determine when a break occurs and which API calls you want to ski

Table 12-2xplains what happens for each of these boxes if it is checked.
Table 12-3 ogldebug Check Boxes

Check box Description

Check for GL error CallsglGetError() after every OpenGL call to check for errors. Note
thatglGetError() cannot be called betwegtBegin()andglEnd() pairs.
glGetError()is called until all errors are clear.

Control drawing Allows the user to inspect drawing in progress (forces front buffer
rendering). Also allows the user to control drawing speed.
No history Does not record history of the OpenGL call. As a result, the program

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools - 4

runs faster but you cannot look at history information.

Break on GL calls Halts on selected Open GL calls. Use the adjacent Setup button to select
which calls to skip (seigure 12-R In the "Break on GL calls" Setup
box, gIFlush() is selected by default but is not active unless the "Break
on GL calls" checkbox is selected.

Break on SwapBuffers Halts ortalls that swap buffers. There is no window system independent
call that swaps buffers; the debugger halts on the appropriate call for
each platform (e.@IxSwapBuffers(jor X Window System
applications).

Skip GL calls Skips selected OpenGL calls. Use the adjaSentipbutton to select
which calls to skip.
Skip GL trace calls Does not write selected OpenGL calls to the trace file. Use the adjacent

Setupbutton to select which calls you don’t want traced.

R v |

Sets

Remember Set 1
Remember Set 2
Hemember 5ef 3

Hecall Set
Aecall Set 2

Recalf Set 3
giFogl

glFogiv
glFrameZoom>GI-
glFrontFace
glFrustum
glGenLists
glGenTextures

Figure 12-2 Setup Panel

Figure 12-2hows a setup panel. Inside any setup panels, you can use the standard Shift, Control,
Shift+Control keystrokes for multiple item selection and deselection.

To save and recall up to three custom selection/deselection areas, use the Sets menu in the setup
panel for Break on OpenGL calls, Skip GL calls, and Skip GL trace calls.

Creating a Trace File to Discover OpenGL Problems

A trace file helps you find bugs in the OpenGL portion of your code without having to worry about
the mechanics of window operations. Here is an example of how to collect one frame of OpenGL
calls:

1. Launch ogldebug:

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools - 5

% ogldebug your_program_name
Be sure to use the appropriate options,'sgklebug Command-Line Options"

2. Run until the application has passed the point of interest. You can do either of these substeps:
n Click the Break on SwapBuffers checkbox
n Click the Break (API calls) checkbox to select it, then click the Setup button next to it and
choosgylFlush()in the Break Selection panel.

3. From the Information menu, select Call History.

ogldebug presents a panel that lets you select which OpenGL context you want to trace.
Depending on the application, more than one context may be available.

4. Select the OpenGL context you want to trace.

A Call History panel appears, showing a list of all OpenGL contexts in the application.
Double—clicking the context will show an additional window with all calls from that context. Yot
can examine the call history in the panel or save it as a gls trace file usBavteitton at the
bottom of the panel.

A gls trace is meant to be pure OpenGL and to be window-system independent. Comments h
however, been added that indicate where GLX, GLU, and GLC calls were made. Any OpenGL
calls made from within these higher—level calls are indented. Performance hints are also incluc
in the trace file, as in the following example:

glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);

glEnable(GL_AUTO_NORMAL);

glEnable(GL_NORMALIZE);

glMaterialfv(GL_FRONT, GL_AMBIENT, {0.1745, 0.01175, 0.01175, 2.5
89596E-29});

glsString("Info", "For best performance, set up material paramete

rs first, then enable lighting.");

5. At this point, you have several options:
n Play back (re—execute) the gls trace file with-tiiieplayoption.
n Convert the gls trace file to a C file by invoking ogldebug with-this2¢—gls2x or
—gls2glutoption. Any comments or performance hints are removed during the conversion.

For larger applications, such as Performer, consider using the No History feature. If you need to ru
the application to a particular point and do not care about the call history until that point, turn on "N
history" to speed things up.

Using a Configuration File

As you work with ogldebug, you will find that certain settings are best suited for certain situations.
You can save and reload groups of ogldebug settings as follows:

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools - 6

To save settings, choose Save Configuration from the File menu, then enter a filename using
dialog.

To load settings, choose Load Configuration from the File menu, then select a file using the
dialog.

Using Menus to Interact With ogldebug

This section describes how you can interact with ogldebug using menus. You learn about
Using the File Menu to Interact With ogldebug
Using the Commands Menu to Interact With Your Program
Using the Information Menu to Access Information

Using the References Menu for Background Information

Using the File Menu to Interact With ogldebug

The File menu (shown iRigure 12-Bgives version information, lets you save and reload a
configuration file, and quits ogldebug.

Abaint egldebing

Save Configuration Saves checkbox sattings in a file.
RBecall Configuration Loads checkbox settings from a fila.
it Crefs Cluits ogldebug.

Figure 12-3 ogldebug File Menu

Using the Commands Menu to Interact With Your Program

The Commands menu gives access to some of the information collected by ogldebug.The comma
are discussed itinteracting With ogldebug"

Halt CirfrH
Continue CirlrC

Step Cirf+ T
Skip CirfrK

Figure 12-4 ogldebug Command menu

Using the Information Menu to Access Information

The following two illustrations show the windows in which ogldebug displays information. A table
that explains the functionality follows each illustration.

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools - 7

Carll Count
Call Hisiery

Whndow

Figure 12-5 Information Menu Commands (First Screen)

Here’s a brief description of the Call Count and Call History menu commands:
Call Count Brings up a window with counts for OpenGL, GLU, GLX, and GLC calls. You

a count for all OpenGL functions or only for functions that were called at leas
(nonzero calls).
Call History Brings up a window with a history of OpenGL calls (as a gls trace).

Caif Cornt

| Caff History

Hsplay list

£ri) e Courmt
Stal
Window

g1Get(GL_PROJECTION MAT
Current Value Default Value

l_. H.8800 8.68000 B
©.8800 B, 8088 B

Figure 12-6 Information Menu Commands (Second Screen)

Here is a brief description of the menu commands:
Display List First prompts for a context, then brings up a window with information about tt

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools - 8

application’s display lists, if any, for that context. You can show all or only no
display lists.

Primitive Count Provides the number of all primitives sent by the application so far (for examj
polygons, and so on). Whether they are clipped or not is not reported.

State Brings up a window that displays information on OpenGL state variables. Yol
all or only nondefault state. Note that you cannot query state beg\&egin()and
glEnd() pairs.

Window (not Brings up window information for the application you are running from ogldek

shown)

Using the References Menu for Background Information

The References menu provides access to the Enumerants menu command only. If you choose
Enumerants, a window displays a list of the symbolic names of OpenGL enumerated constants,
together with the actual number (in hexadecimal and decimal) that each name represéigsi(&See
12-7.

Figure 12—-7 Enumerants Window

glc [0 the OpenGL Character Renderer

The OpenGL Character Renderer (GLC) is a platform—-independent character renderer that offers |
following benefits:

Convenient to use for simple applications
Can scale and rotate text and draw text using lines, filled triangles, or bitmaps)

Supports for international characters

For a basic discussion of glc and a list of notes and known bugs for the current implementation, se
the glcintro reference page.

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools - 9

The most authoritative documentation on GLC is the GLC specification document, which is usually
included in each OpenGL release in PostScript form. If you install the software product
gl_dev.sw.samplethe GLC specification is installed as

lusr/share/src/OpenGL/teach/glc/glcspec.ps

gls 0 The OpenGL Stream Utility

The OpenGL Stream Codec (GLS) is a facility for encoding and decoding streams of 8-bit bytes tt
represent sequences of OpenGL commands. This section starts with an overview of gls, then
discussesglscat Utility", which allows you to concatenate gls streams.

OpenGL Stream Utility Overview

GLS can be used for a variety of purposes, for example:

Scalable OpenGL picturesGLS facilitates resolution—-independent storage, interchange,
viewing, and printing.

Persistent storage of OpenGL commands, display lists, images, and textures.

Communicatioil Command transfer between application processes via byte—stream
connections.

Client-side display lidfisCan contain client data or callbacks.
Tracindd Useful for debugging, profiling, and benchmarking.
Some of these applications require the definition and implementation of higher—level APIs that are

more convenient to use than the GLS API. The GLS API provides only the basic encoding and
decoding services that allow higher—level services to be built on top of it efficiently.

The GLS specification has two components:

A set of three byte—-stream encodings for OpenGL and GLS commands: human-readable text

big—endian binary, and little—endian binary. The three encodings are semantically identical; thi
differ only in syntax. It is therefore possible to convert GLS byte streams freely among the thre
encodings without loss of information.

An API that provides commands for encoding and decoding GLS byte streams. This APl is ho
formally an extension of the OpenGL API. Like the GLU API, the GLS API is designed to be
implemented in an optional, standalone client-side subroutine library that is separate from the
subroutine library that implements the OpenGL API.

The GLS encodings and API are platform independent and window system independent. In
particular, the GLS encodings are not tied to the X Window System protocol encoding used by the
GLX extension. GLS is designed to work equally well in UNIX, Windows, and other environments.

For information, see the glsintro reference page.

glscat Utility

Theglscatutility (/usr/sbin/glscatallows you to concatenate GLS streams. Egirat —-h at the

OpenGL ® on Silicon Graphics ® Systems — Chapter 12, OpenGL Tools — 10

command line for a list of command-line parameters and optiogksfat
In its simplest usageglscatcopies a GLS stream from standard input to standard output:
glscat < streaml.glss stream2.gls

As an alternative to standard input, one or more named input files can be provided on the commar
line. If multiple input streams are provided, GLS will concatenate them:

glscat streaml.glsstream2.gls> stream3.gls
Use the-o outfile option to specify a named output file as an alternative to standard output:
glscat -ostream2.gls< stream1.gls

In all cases, the input stream is decoded and re—encoded, and errors are flagged. By default, the t
of the output stream (GLS_TEXT, GLS_BINARY_MSB_FIRST, or GLS_BINARY_LSB_FIRST) is
the same as the type of the input stream.

The most useful option to glscat is the type which lets you control the type of the output stream.
Thetype parameter is a single-letter code, one of the following:

t Text
b Native binary
S Swapped binary

I Isb—first binary
m msb—first binary
For example, the following command converts a GLS stream of any type to text format:

glscat —tt < streaml.glss stream2.gls

glxInfo O The gIx Information Utility

glxinfo lists information about the GLX extension, OpenGL capable visuals, and the OpenGL
renderer of an X server. The GLX and render information includes the version and extension
attributes. The visual information lists the GLX visual attributes for each OpenGL capable visual (fc
example whether the visual is double buffered, the component sizes, and so on). For more
information, try out the command or see gbeinfo reference page.

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals — 11

Chapter 13
Tuning Graphics Applications: Fundamentals

Tuning your software makes it use hardware capabilities more effectively. This chapter looks at
tuning graphics applications. It discusses pipeline tuning as a conceptual framework for tuning
graphics applications, and introduces some other fundamentals of tuning:

"Debugging and Tuning Your Program"

"General Tips for Debugging Graphics Programs"

"About Pipeline Tuning"

"Tuning Animation"

"Taking Timing Measurements"
Writing high—performance code is usually more complex than just following a set of rules. Most
often, it involves making trade—offs between special functions, quality, and performance for a

particular application. For more information about the issues you need to consider, and for a tuning
example, look at the following chapters in this book:

Chapter 14, "Tuning the Pipeline”

Chapter 15, "Tuning Graphics Applications: Examples"

Chapter 16, "System-Specific Tuning"
After reading these chapters, experiment with the different techniques described to help you decid
where to make these trade—offs.

Note: If optimum performance is crucial, consider using the IRIS Performer rendering toolkit. See
"Maximizing Performance With IRIS Performer"

Debugging and Tuning Your Program

Even the fastest machine can render only as fast as the application can drive it. Simple changes ir
application code can therefore make a dramatic difference in rendering time. In addition, Silicon
Graphics systems let you make tradeoffs between image quality and performance for your
application.

This section sets the foundation for good performance by discussing:

"General Tips for Debugging Graphics Programs"

"Specific Problems and Troubleshooting"

General Tips for Debugging Graphics Programs

This section gives advice on important aspects of OpenGL debugging. Most points apply primarily
graphics programs and may not be obvious to developers who are accustomed to debugging
text—based programs.

Here are some general debugging tips for an OpenGL program:

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals - 1

OpenGL never signals errors but simply records them; determining whether an error occurred

up to the user. During the debugging phase, your program shougd@etError() to look for

errors frequently (for example, once per redraw) wh@etError() returns GL_NO_ERROR.

While this slows down performance somewhat, it helps you debug the program efficiently. Yot
can use ogldebug to automatically agtbetError() after every OpenGL call. See

"ogldebud] the OpenGL Debuggefor more information on ogldebug.

Use an iterative coding process: add some graphics—related code, build and test to ensure
expected results, and repeat as necessary.

Debug the parts of your program in order of complexity: First make sure your geometry is
drawing correctly, then add lighting, texturing, and backface culling.

Start debugging in single—buffer mode, then move on to a double-buffered program.

Here are some areas that frequently result in errors:

Be careful with OpenGL enumerated constants that have similar names. For example,
glBegin(GL_LINES) works;gIBegin(GL_LINE) does not. UsinglGetError() can help
to detect problems like this (it reports GL_INVALID _ENUM for this specific case).

Use only per—vertex operations iglBegin()/glIEnd()sequence. Within gIBegin()/glEnd()
sequence, the only graphics commands that may be used are commands for setting materials
colors, normals, edge flags, texture coordinates, surface parametric coordinates, and vertex
coordinates. The use of any other graphics command is illegal. The exact list of allowable
commands is given in the reference pageyfBegin. Even if other calls appear to work, they

are not guaranteed to work in the future and may have severe performance penalties.

Check for matchinglPushMatrix()andglPopMatrix() calls.

Check matrix mode state information. Generally, an application should stay in
GL_MODELVIEW mode. Odd visual effects can occur if the matrix mode is not right.

Specific Problems and Troubleshooting

This section discusses some specific problems frequently encountered by OpenGL users. Note thi
one generally useful approach is to experiment with an ogldebug trace of the first few frames. See
"Creating a Trace File to Discover OpenGL Problems"

Blank Window

A common problem encountered in graphics programming is a blank window. If you find your
display doesn’'t show what you expected, do the following:

To make sure you are bound to the right window, try clearing the image buffed@lehr().
If you cannot clear, you may be bound to the wrong window (or no window at all).

To make sure you are not rendering in the background color, use an unusual color (instead of
black) to clear the window withlClear().

To make sure you are not clipping everything inadvertently, temporarily move the near and far
clipping planes to extreme distances (such as 0.001 and 1000000.0). (Note that a range like t

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals — 2

is totally inappropriate for actual use in a program.)
Try backing up the viewpoint up to see more of the space.

Check the section "Troubleshooting Transformations" in Chapter 3 @ftéeGL
Programming Guide, Second Edition

Make sure you are using the correct projection matrix.

Remember thaglOrtho() andglPerspective(talls multiply onto the current projection matrix;
they don't replace it.

If you have a blank window in a double-buffered program, check first that something is
displayed when you run the program in single—buffered mode. If yes, make sure you are callin
gIXSwapBuffers()If the program is using depth buffering and that the depth buffer is cleared as
appropriate. See al§Depth Buffering Problems"

Check the aspect ratio of the viewing frustrum. Don’t set up your program using code like the
following:

GLfloat aspect = event.xconfigure.width/event.xconfigure.height
/* 0 by integer division */

Rotation and Translation Problems

Z axis direction. Remember that by default you start out looking down the negative z axis.
Unless you move the viewpoint, objects should have negative z coordinates to be visible.

Rotation. Make sure you have translated back to the origin before rotating (unless you intend 1
rotate about some other point). Rotations are always about the origin of the current coordinate
system.

Transformation order. First translating, then rotating an object yields a different result than
first rotating, then translating. The order of rotation is also important; for example, R(x), R(y),
R(z) is not the same as R(z), R(Y), R(X).

Depth Buffering Problems
When your program uses depth testing, be sure to:

Enable depth testing, usiggEnable()with a GL_DEPTH_TEST argumentdepth testing is off
by default. Set the depth function to the desired function, ugidepthFunc()] the default
function is GL_LESS.

Request a visual that supports a depth buffer. Note that on some platforms a depth buffer is
automatically returned for certain color configuration (for example, RGBA on Indy systems),
while on other platforms a depth buffer is only returned when one is specifically requested
(RealityEngine systems for example). To guarantee that your program is portable, always ask
a depth buffer explicitly.

Animation Problems

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals — 3

Double—-buffering.After drawing to the back buffer, make sure you swap buffers with
gIXSwapBuffers()

Observing the image during drawing.If you have a performance problem and want to see
which part of the image takes the longest to draw, use a single—buffered visual. If you don’t us
resources to control visual selection, ¢glbrawBuffer()with a GL_FRONT argument before
rendering. You can then observe the image as it is drawn. Note that this observation is possib
only if the problem is severe. On a fast system you may not be able to observe the problem.

Lighting Problems

Turn off specular shading in the early debugging stages. It is harder to visualize where speculi
highlights should be than where diffuse highlights should be.

For local light sources, draw lines from the light source to the object you are trying to light to
make sure the spatial and directional nature of the light is right.

Make sure you have both GL_LIGHTING enabled and the appropriate GL_LIGHT#'s enabled.

To see whether normals are being scaled and causing lighting problems, enable
GL_NORMALIZE. This is particularly important if you caidlScale()

Make sure normals are pointing in the right direction.

Make sure the light is actually at the intended position. Positions are affected by the current
model-view matrix. Enabling light without calligtight(GL_POSITION) provides a
headlight if called beforgluLookAt()and so on.

X Window System Problems

OpenGL and the X Window System have different notions of tfieection. OpenGL has it in

the lower left corner of the window; X has the origin (0, 0) in the upper left corner. If you try to
track the mouse but find that the object is moving in the "wrong" direction vertically, this is
probably the cause.

Textures and display lists defined in one context are not visible to other contexts unless they
explicitly share textures and display lists.

gIXUseXFont(reates display lists for characters. The display lists are visible only in contexts
that share objects with the context in which they were created.

Pixel and Texture Write Problems
Make sure the pixel storage mode GL_UNPACK_ALIGNMENT is set to the correct value
depending on the type of data. For example:

GLubyte buff] = {Ox9D, ... 0xA7};
/* a lot of bitmap images are passed as bytes! */
gIBitmap(w, h, x, y, 0, 0, buf);

The default GL_UNPACK_ALIGNMENT is 4. It should be 1 in the case above. If this value is
not set correctly, the image looks sheared.

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals - 4

The same thing applies to textures.

System-Specific Problems

Make sure you don’t exceed implementation—specific resource limits such as maximum
projection stack depth.

When moving an application from a RealityEngine system to a low—end system, make the
system you are targeting supports destination alpha planes. Some low—end machines don't
support them.

About Pipeline Tuning

Traditional software tuning focuses on finding and tuning hot spots, the 10% of the code in which ¢
program spends 90% of its time. Pipeline tuning uses a different approach: it looks for bottlenecks,
overloaded stages that are holding up other processes.

At any time, one stage of the pipeline is the bottleneck. Reducing the time spent in the bottleneck i
the only way to improve performance. Speeding up operations in other parts of the pipeline has na
effect. Conversely, doing work that further narrows the bottleneck, or that creates a new bottlenecl
somewhere else, is the only thing that further degrades performance. If different parts of the hardw
are responsible for different parts of the pipeline, the workload can be increased at other parts of tl
pipeline without degrading performance, as long as that part does not become a new bottleneck. li
this way, an application can sometimes be altered to draw a higher—quality image with no
performance degradation.

The goal of any program is a balanced pipeline; highest—quality rendering at optimum speed.
Different programs stress different parts of the pipeline, so it is important to understand which
elements in the graphics pipeline are a program’s bottlenecks.

Three—Stage Model of the Graphics Pipeline

The graphics pipeline in all Silicon Graphics workstations consists of three conceptual stages (see
Figure 13-}t Depending on the implementation, all parts may be done by the CPU or parts of the
pipeline may be done by an accelerator card. The conceptual model is useful in either case: it helf
you to understand where your application spends its time. These are the stages:

1. The CPU subsystemThe application program running on the CPU, feeding commands to the
graphics subsystem.

2. The geometry subsysteniThe per—polygon operations, such as coordinate transformations,
lighting, texture coordinate generation, and clipping (may be hardware accelerated).

3. The raster subsystemThe per—pixel and per—fragment operations, such as the simple operatic
of writing color values into the framebuffer, or more complex operations like depth buffering,
alpha blending, and texture mapping.

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals - 5

Geometry subsystem

P

Raszter subsystem

Figure 13-1 Three—-Stage Model of the Graphics Pipeline

Note that this three—stage model is simpler than the actual hardware implementation in the various
models in the Silicon Graphics product line, but it is detailed enough for all but the most subtle
tuning tasks.

The amount of work required from the different pipeline stages varies among applications. For

example, consider a program that draws a small number of large polygons. Because there are onl
few polygons, the pipeline stage that does geometry operations is lightly loaded. Because those fe
polygons cover many pixels on the screen, the pipeline stage that does rasterization is heavily loar

To speed up this program, you must speed up the rasterization stage, either by drawing fewer pixe
or by drawing pixels in a way that takes less time by turning off modes like texturing, blending, or
depth-buffering. In addition, because spare capacity is available in the per—polygon stage, you cai
increase the work load at that stage without degrading performance. For example, you can use ar
complex lighting model, or define geometry elements such that they remain the same size but look
more detailed because they are composed of a larger number of polygons.

Note that in asoftware implementatigomll the work is done on the host CPU. As a result, it doesn't
make sense to increase the work in the geometry pipeline if rasterization is the bottleneck: you wo
increase the work for the CPU and decrease performance.

Isolating Bottlenecks in Your Application: Overview

The basic strategy for isolating bottlenecks is to measure the time it takes to execute a program (o
part of a program) and then change the code in ways that do not alter its performance (except by
adding or subtracting work at a single point in the graphics pipeline). If changing the amount of wo
at a given stage of the pipeline does not alter performance noticeably, that stage is not the bottlent
If there is a noticeable difference in performance, you have found a bottleneck.

CPU bottlenecks.The most common bottleneck occurs when the application program does not
feed the graphics subsystem fast enough. Such programs areCélldomited

To see if your application is the bottleneck, remove as much graphics work as possible, while
preserving the behavior of the application in terms of the number of instructions executed and

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals — 6

the way memory is accessed. Often, changing just a few OpenGL calls is a sufficient test. For
example, replacing vertex and normal calls tiRéertex3fv()andgINormal3fv()with color
subroutine calls likglColor3fv() preserves the CPU behavior while eliminating all drawing and
lighting work in the graphics pipeline. If making these changes does not significantly improve
performance, then your application has a CPU bottleneck. For more informatit@Psée

Tuning: Basics"

Geometry bottlenecks.Programs that create bottlenecks in the geometry (per—polygon) stage
are calledransform limited To test for bottlenecks in geometry operations, change the program
so that the application code runs at the same speed and the same number of pixels are filled,
the geometry work is reduced. For example, if you are using lightingylBadlable() with a
GL_LIGHTING argument to turn off lighting temporarily. If performance improves, your
application has a per—polygon bottleneck. For more informatiotifseig the Geometry
Subsystem"

Rasterization bottlenecks.Programs that cause bottlenecks at the rasterization (per—pixel) stac
in the pipeline aréll-rate limited. To test for bottlenecks in rasterization operations, shrink
objects or make the window smaller to reduce the number of active pixels. This technique
doesn’t work if your program alters its behavior based on the sizes of objects or the size of the
window. You can also reduce the work done per pixel by turning off per—pixel operations such
depth—-buffering, texturing, or alpha blending or by removing clear operations. If any of these
experiments speeds up the program, it has a per-pixel bottleneck. For more information, see
"Tuning the Raster Subsystem"

Usually, the following order of operations is most expedient:

1. First determine if your application is host (CPU) limited usingosviewand checking whether
the CPU usage is near 100%. TOneosviewprogram also includes statistics that indicate
whether the performance bottleneck is in the graphics subsystem or in the host.

2. Then check whether the application is fill (per—pixel) limited by shrinking the window.

3. If the application is neither CPU limited nor fill limited, you have to prove that it is geometry
limited.

Note that on some systems you can have a bottleneck just in the transport layer between the CPU
the geometry. To test whether that is the case, try sending less data, for exangpGoaBub()
instead of ¢Color3f().

Many programs draw a variety of things, each of which stresses different parts of the system.
Decompose such a program into pieces and time each piece. You can then focus on tuning the
slowest pieces. For an example of such a proces€hsgster 15, "Tuning Graphics Applications:
Examples."

Factors Influencing Performance

Pipeline tuning is discussed in detailGhapter 14, "Tuning the Pipelin€able 13-Yrovides an
overview of factors that may limit rendering performance and the part of the pipeline they belong tc

Table 13-1 Factors Influencing Performance

Performance Parameter Pipeline Stage

Amount of data per polygon All stages

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals — 7

Time of application overhead CPU subsystem (application)

Transform rate & mode setting for polygon Geometry subsystem

Total number of polygons in a frame Geometry and raster subsystem
Number of pixels filled Raster subsystem

Fill rate for the given mode settings Raster subsystem

Time of color and/or depth buffer clear Raster subsystem

Taking Timing Measurements

Timing, or benchmarking, parts of your program is an important part of tuning. It helps you
determine which changes to your code have a noticeable effect on the speed of your application.

To achieve performance that is close to the best the hardware can achieve, start following the mor
general tuning tips provided in this manual. The next step is, however, a rigorous and systematic
analysis. This section looks at some important issues regarding benchmarking:

"Benchmarking Basics"
"Achieving Accurate Timing Measurements"

"Achieving Accurate Benchmarking Results"

Benchmarking Basics

A detailed analysis involves examining what your program is asking the system to do and then
calculating how long it should take, based on the known performance characteristics of the hardwe
Compare this calculation of expected performance with the performance actually observed and
continue to apply the tuning techniques until the two match more closely. At this point, you have a
detailed accounting of how your program spends its time, and you are in a strong position both to
tune further and to make appropriate decisions considering the speed-versus—quality trade—off.

The following parameters determine the performance of most applications:
total number of polygons in a frame
transform rate for the given polygon type and mode settings
number of pixels filled
fill rate for the given mode settings
time of color and depth buffer clear
time of buffer swap
time of application overhead

number of attribute changes and time per change

Achieving Accurate Timing Measurements
Consider these guidelines to get accurate timing measurements:

Take measurements on a quiet system.

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals — 8

Verify that minimum activity is taking place on your system while you take timing
measurements. Other graphics programs, background processes, and network activity can dis
timing results because they use system resources. For example, do rosMviweyr_osview

or Xclockrunning while you are benchmarking. If possible, turn off network access as well.

Work with local files.

Unless your goal is to time a program that runs on a remote system, make sure that all input a
output files, including the file used to log results, are local.

Choose timing trials that are not limited by the clock resolution.

Use a high-resolution clock and make measurements over a period of time that is at least one
hundred times the clock resolution. A good rule of thumb is to benchmark something that take
at least two seconds so that the uncertainty contributed by the clock reading is less than one
percent of the total error. To measure something that is faster, write a loop in the example
program to execute the test code repeatedly.

Note: Loops like this for timing measurements are highly recommended. Be sure to structure
your program in a way that facilitates this approach.

gettimeofday(provides a convenient interface to IRIX clocks with enough resolution to measur
graphics performance over several frames. §asgi(with SGI_QUERY_CYCLECNTR for
high-resolution timers. If you can repeat the drawing to make a loop that takes ten seconds ol
a stopwatch works fine and you don’t need to alter your program to run the test.

Benchmark static frames.

Verify that the code you are timing behaves identically for each frame of a given timing trial. If
the scene changes, the current bottleneck in the graphics pipeline may change, making your
timing measurements meaningless. For example, if you are benchmarking the drawing of a
rotating airplane, choose a single frame and draw it repeatedly, instead of letting the airplane
rotate and taking the benchmark while the animation is running. Once a single frame has beer
analyzed and tuned, look at frames that stress the graphics pipeline in different ways, analyzir
and tuning each frame.

Compare multiple trials.

Run your program multiple times and try to understand variance in the trials. Variance may be
due to other programs running, system activity, prior memory placement, or other factors.

Call glFinish() before reading the clock at the start and at the end of the time trial.

Graphics calls can be tricky to benchmark because they do all their work in the graphics
pipeline. When a program running on the main CPU issues a graphics command, the commar
is put into a hardware queue in the graphics subsystem, to be processed as soon as the grapt
pipeline is ready. The CPU can immediately do other work, including issuing more graphics
commands until the queue fills up.

When benchmarking a piece of graphics code, you must include in your measurements the tin
it takes to process all the work left in the queue after the last graphics cadlFtash() at the

end of your timing trial, just before sampling the clock. Also giidinish() before sampling the
clock and starting the trial, to ensure no graphics calls remain in the graphics queue ahead of
process you are timing.

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals — 9

To get accurate numbers, you must perform timing trials in single—buffer mode, with no calls t
gIXSwapBuffers()

Because buffers can be swapped only during a vertical retrace, there is a period, between the
time aglXSwapBuffers(¢all is issued and the next vertical retrace, when a program may not

execute any graphics calls. A program that attempts to issue graphics calls during this period i
put to sleep until the next vertical retrace. This distorts the accuracy of the timing measuremer

When making timing measurements, g#iéinish() to ensure that all pixels have been drawn
before measuring the elapsed time.

Benchmark programs should exercise graphics in a way similar to the actual application. In
contrast to the actual application, the benchmark program should perform only graphics
operations. Consider using ogldebug to extract representative OpenGL command sequences
from the program. Séegldebudl the OpenGL Debuggefbr more information.

Achieving Accurate Benchmarking Results
To benchmark performance for a particular code fragment, follow these steps:

1. Determine how many polygons are being drawn and estimate how many pixels they cover on 1
screen. Have your program count the polygons when you read in the database.

To determine the number of pixels filled, start by making a visual estimate. Be sure to include
surfaces that are hidden behind other surfaces, and notice whether or not backface eliminatior
enabled. For greater accuracy, use feedback mode and calculate the actual number of pixels
filled.

2. Determine the transform and fill rates on the target system for the mode settings you are using

Refer to the product literature for the target system to determine some transform and fill rates.
Determine others by writing and running small benchmarks.

3. Divide the number of polygons drawn by the transform rate to get the time spent on per—polyg
operations.

4. Divide the number of pixels filled by the fill rate to get the time spent on per—pixel operations.
5. Measure the time spent executing instructions on the CPU.

To determine time spent executing instructions in the CPU, perform the graphics—stubbing
experiment described itsolating Bottlenecks in Your Application: Overview"

6. On high—end systems where the processes are pipelined and happen simultaneously, the larg
the three times calculated in steps 3, 4, and 5 determines the overall performance. On low—-en
systems, you may have to add the time needed for the different processes to arrive at a good
estimate.

Timing analysis takes effort. In practice, it is best to make a quick start by making some assumptic
then refine your understanding as you tune and experiment. Ultimately, you need to experiment wi
different rendering techniques and perform repeated benchmarks, especially when the unexpectec
happens.

Verify some of the suggestions presented in the following chapter. Try some techniques on a smal

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals — 10

program that you understand and use benchmarks to observe the Effeets13-2hows how you
may actually go through the process of benchmarking and reducing bottlenecks several times. Thi
also demonstrated by the example present&hapter 15, "Tuning Graphics Applications:
Examples.”

Figure 13-2 Flowchart of the Tuning Process

Tuning Animation

Tuning animation requires attention to some factors not relevant in other types of applications. Thi
section first explores how frame rates determine animation speed, then provides some advice for
optimizing an animation’s performance.

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals — 11

Smooth animation requires double buffering. In double buffering, one framebuffer holds the curren
frame, which is scanned out to the monitor by the video hardware, while the rendering hardware is
drawing into a second buffer that is not visible. When the new framebuffer is ready to be displayed
the system swaps the buffers. The system must wait until the next vertical retrace period between
raster scans to swap the buffers, so that each raster scan displays an entire stable frame, rather tr
parts of two or more frames.

How Frame Rate Determines Animation Speed

The smoothness of an animation depends on its frame rate. The more frames rendered per secon
smoother the motion appears. The basic elements that contribute to the time to render each indivic
frame are shown ifiable 13-hbove.

When trying to improve animation speed, consider these points:

A change in the time spent rendering a frame has no visible effect unless it changes the total t
to a different integer multiple of the screen refresh time.

Frame rates must be integral multiples of the screen refresh time, which is 16.7 msec
(milliseconds) for a 60 Hz monitor. If the draw time for a frame is slightly longer than the time
for n raster scans, the system waits untilritvést vertical retrace before swapping buffers and
allowing drawing to continue, so the total frame timenisl{*16.7 msec.

If you want an observable performance increase, you must reduce the rendering time enough
take a smaller number of 16.7 msec raster scans.

Alternatively, if performance is acceptable, you can add work without reducing performance, a
long as the rendering time does not exceed the current multiple of the raster scan time.

To help monitor timing improvements, turn off double buffering, then benchmark how many
frames you can draw. If you don't, it is difficult to know if you are near a 16.7 msec boundary.

Optimizing Frame Rate Performance

The most important aid for optimizing frame rate performance is taking timing measurements in
single—buffer mode only. For more detailed information; Baking Timing Measurements”

In addition, follow these guidelines to optimize frame rate performance:

Reduce drawing time to a lower multiple of the screen refresh time (16.7 msec on a 60 Hz
monitor).

This is the only way to produce an observable performance increase.
Perform non—graphics computation affetSwapBuffers()

A program is free to do non—graphics computation during the wait cycle between vertical
retraces. Therefore, issugiXSwapBuffers(gall immediately after sending the last graphics

call for the current frame, perform computation needed for the next frame, then execute Opent
calls for the next frame, callXSwapBuffers(Jand so on.

Do non-drawing work after a screen clear.

Clearing a full screen takes time. If you make additional drawing calls immediately after a

OpenGL ® on Silicon Graphics ® Systems — Chapter 13, Tuning Graphics Applications: Fundamentals — 12

screen clear, you may fill up the graphics pipeline and force the program to stall. Instead, do
some non-drawing work after the clear.

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 13

Chapter 14
Tuning the Pipeline

This chapter discusses tuning the graphics pipeline. It presents a variety of techniques for optimizi
the different parts of the pipeline, providing code fragments and examples as appropriate. You lea
about

"CPU Tuning: Basics"

"CPU Tuning: Immediate Mode Drawing"
"CPU Tuning: Display Lists"

"CPU Tuning: Advanced Techniques"
"Tuning the Geometry Subsystem"
"Tuning the Raster Subsystem"”

"Tuning the Imaging Pipeline"

CPU Tuning: Basics

The first stage of the rendering pipeline is traversal of the data and sending of the current renderin
data to the rest of the pipeline. In theory, the entire rendering database (scene graph) must be
traversed in some fashion for each frame because both scene content and viewer position can be
dynamic.

To get the best possible CPU performance, follow these two overall guidelines:
Compile your application for optimum speed.

Compile all object files with at leastD2 Note that the compiler option for debugging,turns
off all optimization. If you must run the debugger on optimized code, you cagaméh —-O2
with limited success. If you are not compiling witkansi(the default) or-ansiyou may need to
include-float for faster floating—point operations.

On certain platforms, other compile—time options (suctmaps3or —mips4 are available.

If you aren’t concerned about backward compatibility, compile for the n32 abi instead of
compiling for 032. The default on IRIX 6.5 is n32.

Use a simple data structure and a fast traversal method.

The CPU tuning strategy focuses on developing fast database traversal for drawing with a
simple, easily accessed data structure. The fastest rendering is achieved with an inner loop th
traverses a completely flattened (non-hierarchical) database. Most applications cannot achiev
this level of simplicity for a variety of reasons. For example, some databases occupy too muct
memory when completely flattened. Note also that you run a greater risk of cache misses if yo
flatten the data.

When an application is CPU limited, the entire graphics pipeline may be sitting idle for periods of
time. The following sections describe techniques for structuring application code so that the CPU
doesn’t become the bottleneck.

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 1

Immediate Mode Drawing Versus Display Lists

When deciding whether you want to use display list or immediate mode drawing, consider the
amount of work you do in constructing your databases and using them for purposes other than
graphics. Here are three cases to consider:

If you create models that never change, and are used only for drawing, then OpenGL display
lists are the right representation.

Display lists can be optimized in hardware-specific ways, loaded into dedicate display list
storage in the graphics subsystem, downloaded to on—board dlist RAM, and sd'GRL5ee
Tuning: Display Lists'for more information on display lists.

If you create models that are subject to infrequent change, but are rarely used for any purpose
other than drawing, then vertex arrays are the right representation.

Vertex Arrays are relatively compact and have modest impact on cache. Software renderers ¢
process the vertices in batches; hardware renderers can trickle triangles out a few at a time to
maximize parallelism. As long as the vertex arrays can be retained from frame to frame, so yo
do not incur a lot of latency by building them afresh each frame, they are the best solution for
this case. Se&Jsing Vertex Arrays'for more information.

If you create very dynamic models, or if you use the data for heavy computations unrelated to
graphics, then thglVertex(}-style interface (immediate mode drawing) is the best choice.

Immediate mode drawing allows you to maximize parallelism for hardware renderers and to
optimize your database for the other computations you need to perform, and it reduces cache
thrashing. Overall, this will result in higher performance than forcing the application to use a
graphics—oriented data structure like a vertex array. Use immediate—mode drawing for large
databases (which might have to be paged into main memory) and dynamic databases, for
example for morphing operations where the number of vertices is subject to change, or for
progressive refinement. S&8PU Tuning: Immediate Mode Drawindgr tuning information.

If you are still not sure whether to choose display lists or immediate mode drawing, consider the
following advantages and disadvantages of display lists.
Display lists have the following advantages:

You don’t have to optimize traversal of the data yourself; display list traversal is well-tuned an
more efficient than user programs.

Display lists manage their own data storage. This is particularly useful for algorithmically
generated objects.

Display lists are significantly better for remote graphics over a network. The display list can be
cached on the remote CPU so that the data for the display list does not have to be re—sent ev
frame. Furthermore, the remote CPU handles much of the responsibility for traversal.

Display lists are preferable for direct rendering if they contain enough primitives (a total of
about ten) because display lists are stored efficiently. If the lists are short, the setup performar
cost is not offset by the more efficient storage or saving in CPU time.

For information on display lists on Indigo2 IMPACT systems,"&tsng Display Lists

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 2

Effectively".

Display lists do have drawbacks that may affect some applications:

The most troublesome drawback of display lists is data expansion. To achieve fast, simple
traversal on all systems, all data is copied directly into the display list. Therefore, the display li:
contains an entire copy of all application data plus additional overhead for each command. If tl
application has no other need for the data then drawing, it can release the storage for its copy
the data and the penalty is negligible.

If vertices are shared in structures more complex than the OpenGL primitives (line strip, triang
strip, triangle fan, quad strip), they are stored more than once.

If the database becomes sufficiently large, paging eventually hinders performance. Therefore,

when contemplating the use of OpenGL display lists for really large databases, consider the
amount of main memory.

Compiling display lists may take some time.

CPU Tuning: Display Lists

In display-list mode, pieces of the database are compiled into static chunks that can then be sent
the graphics pipeline. In this case, the display list is a separate copy of the database that can be st
in main memory in a form optimized for feeding the rest of the pipeline.

For example, suppose you want to apply a transformation to some geometric objects and then dra
the result. If the geometric objects are to be transformed in the same way each time, it is better to

store the matrix in the display list. The database traversal task is to hand the correct chunks to the
graphics pipeline. Display lists can be recreated easily with some additional performance cost.

Tuning for display lists focuses mainly on reducing storage requirements. Performance improves il
the data fit in the cache because this avoids cache misses when the data is t traversed again.This
section explains how to optimize display lists.

Follow these rules to optimize display lists:

If possible, compile and execute a display list in two steps instead of using
GL_COMPILE_AND_EXECUTE.

Call glDeleteLists()to delete display lists that are no longer needed.

This frees storage space used by the deleted display lists and expedites the creation of new
display lists.

Avoid duplication of display lists.

For example, if you have a scene with 100 spheres of different sizes and materials, generate «
display list that is a unit sphere centered about the origin. Then for each sphere in the scene,
follow these steps:

1. Set the material for the current sphere.

2. Issue the necessary scaling and translation commands for sizing and positioning the
spheré&] watch out for scaling of normals.

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 3

3. InvokeglCallList() to draw the unit sphere display list.

In this way, a reference to the unit sphere display list is stored instead of all of the sphere
vertices for each instance of the sphere.

Make the display list as flat as possible, but be sure not to exceed the cache size.

Avoid using an excessive hierarchy with many invocatiorngd@élIList(). EachglCallList()
invocation results in a lookup operation to find the designated display list. A flat display list
requires less memory and yields simpler and faster traversal. It also improves cache coherenc

Display lists are best used for static objects. Do not put dynamic data or operations in display lists.
Instead, use a mixture of display lists for static objects and immediate mode for dynamic operation

Note: SeeChapter 16, "System—Specific Tuninfpf’ potential display list optimizations on the
system you are using.

CPU Tuning: Immediate Mode Drawing

Immediate mode drawing means that OpenGL commands are executed when they are called, ratr
than from a display list. This style of drawing provides flexibility and control over both storage
management and drawing traversal. The trade—off for the extra control is that you have to write yo!
own optimized subroutines for data traversal. Tuning therefore has two parts:

"Optimizing the Data Organization"

"Optimizing Database Rendering Code"

While you may not use each technique in this section, minimize the CPU work done at the per—vel
level and use a simple data structure for rendering traversal.

There is no recipe for writing a peak—performance immediate mode renderer for a specific
application. To predict the CPU limitation of your traversal, design potential data structures and
traversal loops and write small benchmarks that mimic the memory demands you expect. Experim
with optimizations and benchmark the effects. Experimenting on small examples can save time in-
actual implementation.

Optimizing the Data Organization

It is common for scenes to have hierarchical definitions. Scene management techniques may rely
specific hierarchical information. However, a hierarchical organization of the data raises several
performance concerns:

The time spent traversing pointers to different sections of a hierarchy can create a CPU
bottleneck.

This is partly because of the number of extra instructions executed, but it is also a result of the
inefficient use of cache and memory. Overhead data not needed for rendering is brought throt
the cache and can push out needed data, causing subsequent cache misses.

Traversing hierarchical structures can cause excessive memory paging.

Hierarchical structures can be distributed throughout memory. It is difficult to be sure of the
exact amount of data you are accessing and of its exact location; traversing hierarchical

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 4

structures can therefore access a costly number of pages.

Complex operations may need access to both the geometric data and other scene information
complicating the data structure.

Caching behavior is often difficult to predict for dynamic hierarchical data structures.
For these reasons, hierarchy should be used with care. In general, store the geometry data used fi
rendering in static, contiguous buffers, rather than in the hierarchical data structures.

Do not interlace data used to render frames and infrequently used data in memory. Instead,
include a pointer to the infrequently used data and store the data itself elsewhere.

Flatten your rendering data (minimize the number of levels in the hierarchy) as much as cache
and memory considerations and your application constraints permit.

The appropriate amount of flattening depends on the system on which your application will rur

Balance the data hierarchy. This makes application culling (the process of eliminating objects
that don’t fall within the viewing frustum) more efficient and effective.

Optimizing Database Rendering Code
This section includes some suggestions for writing peak—performance code for inner rendering loo

During rendering, an application ideally spends most of its time traversing the database and sendii
data to the graphics pipeline. Instructions in the display loop are executed many times every frame
creating hot spots. Any extra overhead in a hot spot is greatly magnified by the number of times it
executed.

When using simple, high—performance graphics primitives, the application is even more likely to b¢
CPU limited. The data traversal must be optimized so that it does not become a bottleneck.

During rendering, the sections of code that actually issue graphics commands should be the hot sy
in application code. These subroutines should use peak-performance coding methods. Small
improvements to a line that is executed for every vertex in a database accumulate to have a notice
effect when the entire frame is rendered.

The rest of this section looks at examples and technigues for optimizing immediate—mode renderir
"Examples for Optimizing Data Structures for Drawing"
"Examples for Optimizing Program Structure”
"Using Specialized Drawing Subroutines and Macros"
"Preprocessing Drawing Data: Introduction”
"Preprocessing Meshes Into Fixed-Length Strips"

"Preprocessing Vertex Loops"

Examples for Optimizing Data Structures for Drawing

Follow these suggestions for optimizing how your application accesses data:

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline - 5

One-Dimensional Arrays Use one—dimensional arrays traversed with a pointer that always
holds the address for the current drawing command. Avoid array—element addressing or
multidimensional array accesses.

bad: glVertex3fv(&data[i][jl[K]);
good: glVertex3fv(dataptr);

Adjacent structures. Keep all static drawing data for a given object together in a single
contiguous array traversed with a single pointer. Keep this data separate from other program
data, such as pointers to drawing data, or interpreter flags.

Flat structures. Use flat data structures and do not use multiple pointer indirection when

rendering:

Good glVertex3fv(object—>data—>vert) ;
OK glVertex3fv(dataptr—>vert);

Bad glVertex3fv(dataptr);

The following code fragment is an example of efficient code to draw a single smooth—shaded,
polygon. Notice that a single data pointer is used. It is updated once at the end of the polygon
after theglEnd()call.

glBegin(GL_QUADS);
gINormal3fv(ptr);
glVertex3fv(ptr+3);
gINormal3fv(ptr+6);
glVertex3fv(ptr+9);
gINormal3fv(ptr+12);
glVertex3fv(ptr+15);
gINormal3fv(ptr+18);
glVertex3fv(ptr+21);
glEnd();

ptr += 24,

Examples for Optimizing Program Structure

Loop unrolling (1). Avoid short, fixed—length loops, especially around vertices. Instead, unroll

these loops:

Bad for(i=0; i < 4; i++){
glColor4ubv(poly_colorsJi]);
glVertex3fv(poly_vert_ptrfi]);
}

Good glColor4ubv(poly_colors[0]);

glVertex3fv(poly_vert_ptr[0]);
glColor4ubv(poly_colors[1]);
glVertex3fv(poly_vert_ptr[1]);
glColor4ubv(poly_colors[2]);
glVertex3fv(poly_vert_ptr[2]);
glColor4ubv(poly_colors[3]);
glVertex3fv(poly_vert_ptr[3]);

Loop unrolling (2). Minimize the work done in a loop to maintain and update variables and
pointers. Unrolling can often assist in this:

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 6

Bad glNormal3fv(*(ptr++));
glVertex3fv(*(ptr++));
or

glNormal3fv(ptr); ptr += 4;
glVertex3fv(ptr); ptr += 4;

Good gINormal3fv(*(ptr));
glVertex3fv(*(ptr+1));
gINormal3fv(*(ptr+2));
glVertex3fv(*(ptr+3));
or
gINormal3fv(ptr);
glVertex3fv(ptr+4);
gINormal3fv(ptr+8);
glVertex3fv(ptr+12);

Note: On some processors, such as the R8000 and R10000, loop unrolling may hurt
performance more than it helps, so use it with caution. In fact, unrolling too far hurts on any
processor because the loop may use an excessive portion of the cache. If it uses a large enot
portion of the cache, it may interfere with itself; that is, the whole loop won't fit (not likely) or it
may conflict with the instructions of one of the subroutines it calls.

Loops accessing bufferavlinimize the number of different buffers accessed in a loop:

Bad gINormal3fv(normaldata);
glTexCoord2fv(texdata);
glVertex3fv(vertdata);

Good glNormal3fv(dataptr);
glTexCoord2fv(dataptr+3);
glVertex3fv(dataptr+5);

Loop end conditions.Make end conditions on loops as trivial as possible; for example, compar
the loop variable to a constant, preferably zero. Decrementing loops are often more efficient tt
their incrementing counterparts:

Bad

for (i = 0; i < (end-beginning)/size; i++)
{--}

Better

for (i = beginning; i < end; i += size)
{-}
Good

for (i = total; i > O; i—-)

{.}
Conditional statements.
— Useswitchstatements instead of multipleelse—i€ontrol structures.
- Avoid if tests around vertices; use duplicate code instead.

Subroutine prototyping. Prototype subroutines in ANSI C style to avoid runtime typecasting of
parameters:

void drawit(float f, int count)

{

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 7

Multiple primitives. Send multiple primitives betwegiBegin()/gIEnd()whenever possible:

glBegin(GL_TRIANGLES)
/* many triangles */
glEnd
gIBegin(GL_QUADS)
/* many quads */
glEnd
Using Specialized Drawing Subroutines and Macros

This section looks at several ways to improve performance by making appropriate choices about
display modes, geometry, and so on.

Geometry display choicesMake decisions about which geometry to display and which modes
to use at the highest possible level in the program organization.

The drawing subroutines should be highly specialized leaves in the program’s call tree.
Decisions made too far down the tree can be redundant. For example, consider a program the
switches back and forth between flat—-shaded and smooth—shaded drawing. Once this choice
been made for a frame, the decision is fixed and the flag is set. For example, the following coc
is inefficient:
[* Inefficient way to toggle modes */
draw_object(float *data, int npolys, int smooth) {
int i;
glBegin(GL_QUADS);
for (i = npolys; i > 0; i——) {

if (smooth) glColor3fv(data);

glVertex3fv(data + 4);

if (smooth) glColor3fv(data + 8);

glVertex3fv(data + 12);

if (smooth) glColor3fv(data + 16);

glVertex3fv(data + 20);

if (smooth) glColor3fv(data + 24);

glVertex3fv(data + 28);

}
glEnd();

Even though the program chooses the drawing mode before enterthhgih@bject()routine,
the flag is checked for every vertex in the scene. A siifipdst may seem innocuous; however,
when done on a per—-vertex basis, it can accumulate a noticeable amount of overhead.

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 8

Compare the number of instructions in the disassembled code for agi@lbtor3fv(), first
without, and then with, thié test.

Assembly code for a call withoittest (six instructions):

Iw a0,32(sp)

Iw t9,glColor3fv
addiu a0,a0,32
jalr ra,t9

nop

lw gp,24(sp)

Assembly code for a call with ahtest (eight instructions):

Iw t7,40(sp)

beql t7,zero,0x78
nop

Iw t9,glColor3fv
Iw a0,32(sp)

jalr ra,t9

addiu a0,a0,32

Iw gp,24(sp)

Notice the two extra instructions required to implementfthest. The extr# test per vertex
increases the number of instructions executed for this otherwise optimal code by 33%. These
effects may not be visible if the code is used only to render objects that are always graphics
limited. However, if the process is CPU-limited, then moving decision operations suclifas this
test higher up in the program structure improves performance.

Preprocessing Drawing Data: Introduction

Putting some extra effort into generating a simpler database makes a significant difference when
traversing that data for display. A common tendency is to leave the data in a format that is good fo
loading or generating the object, but not optimal for actually displaying it. For peak performance, d
as much of the work as possible before rendering.

Preprocessing turns a difficult database into a database that is easy to render quickly. This is typic
done at initialization or when changing from a modeling to a fast-rendering mode. This section
discusse$Preprocessing Meshes Into Fixed-Length Stepd"Preprocessing Vertex Loop&)

illustrate this point.

Preprocessing Meshes Into Fixed-Length Strips
Preprocessing can be used to turn general meshes into fixed-length strips.

The following sample code shows a commonly used, but inefficient, way to write a triangle strip
render loop:

float* dataptr;

while (!done) switch(*dataptr) {
case BEGINSTRIP:

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 9

glBegin(GL_TRIANGLE_STRIP);
dataptr++;
break;

case ENDSTRIP:
glEnd();
dataptr++;
break;

case EXIT:
done = 1;
break;

default: /* have a vertex !l */
glNormal3fv(dataptr);
glVertex3fv(dataptr + 4);
dataptr += 8;

}

This traversal method incurs a significant amount of per—vertex overhead. The loop is evaluated fc
every vertex and every vertex must also be checked to make sure that it is not a flag. These check
waste time and also bring all of the object data through the cache, reducing the performance
advantage of triangle strips. Any variation of this code that has per-vertex overhead is likely to be
CPU limited for most types of simple graphics operations.

Preprocessing Vertex Loops
Preprocessing is also possible for vertex loops:

glBegin(GL_TRIANGLE_STRIP);

for (i=num_verts; i > 0; i——) {
gINormal3fv(dataptr);
glVertex3fv(dataptr+4);
dataptr += 8;
}

glEnd();

For peak immediate mode performance, precompile strips into specialized primitives of fixed lengtl
Only a few fixed lengths are needed. For example, use strips that consist of 12, 8, and 2 primitives

Note: The optimal strip length may vary depending on the hardware the program runs on. For mor
information, se€hapter 16, "System-Specific Tuning."

The specialized strips are sorted by size, resulting in the efficient loop shown in this sample code:

/* dump out N 8-triangle strips */

for (i=N; i>0;i——) {
glBegin(GL_TRIANGLE_STRIP);
gINormal3fv(dataptr);
glVertex3fv(dataptr+4);
gINormal3fv(dataptr+8);
glVertex3fv(dataptr+12);
gINormal3fv(dataptr+16);
glVertex3fv(dataptr+20);

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 10

gINormal3fv(dataptr+24);
glVertex3fv(datatpr+28);

glEnd();
dataptr += 64;
}

A mesh of length 12 is about the maximum for unrolling. Unrolling helps to reduce the overall
cost-per—loop overhead, but after a point, it produces no further gain.

Over-unrolling eventually hurts performance by increasing code size and reducing effectiveness o
the instruction cache. The degree of unrolling depends on the processor; run some benchmarks to
understand the optimal program structure on your system.

Optimizing Cache and Memory Use

This section first provides some background information about the structure of the cache and abot
memory lookup. It then gives some tips for optimizing cache and memory use.

Memory Organization

On most systems, memory is structured as a hierarchy that contains a small amount of faster, mor
expensive memory at the top and a large amount of slower memory at the base. The hierarchy is
organized from registers in the CPU at the top down to the disks at the bottom. As memory locatio
are referenced, they are automatically copied into higher levels of the hierarchy, so data that is
referenced most often migrates to the fastest memory locations.

Here are the areas you should be most concerned about:
The cache feeds data to the CPU, and cache misses can slow down your program.

Each processor has instruction caches and data caches. The purpose of the caches is to feed
and instructions to the CPU at maximum speed. When data is not found in the cache, a cache
miss occurs and a performance penalty is incurred as data is brought into the cache.

The translation—lookaside buffer (TLB) keeps track of the location of frequently used pages of
memory. If a page translation is not found in the TLB, a delay is incurred while the system loo}
up the page and enters its translation.

The goal of machine designers and programmers is to maximize the chance of finding data as higl
in the memory hierarchy as possible. To achieve this goal, algorithms for maintaining the hierarchy
embodied in the hardware and the operating system, assume that programs have locality of refere
in both time and space; that is, programs keep frequently accessed locations close together.
Performance increases if you respect the degree of locality required by each level in the memory
hierarchy.

Even applications that appear not to be memory intensive, in terms of total number of memory
locations accessed, may suffer unnecessary performance penalties for inefficient allocation of thes
resources. An excess of cache misses, especially misses on read operations, can force the most
optimized code to be CPU limited. Memory paging causes almost any application to be severely C
limited.

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 11

Minimizing Paging
This section provides some guidelines for minimizing memory paging. You learn about:
"Minimizing Lookup"

"Minimizing Cache Misses"

"Measuring Cache—-Miss and Page—Fault Overhead

Minimizing Lookup
To minimize page lookup, follow these guidelines:

Keep frequently used data within a minimal number of pages. Starting with IRIX 6.5, each pag
consists of 16 KB. In earlier versions of IRIX, each page consists of 4 KB (16 KB in high—end
systems). Minimize the number of pages referenced in your program by keeping data structurt
within as few pages as possible. ldsgiewto verify that no TLB misses are occurring.

Store and access data in flat, sequential data structures, particularly for frequently referenced
data. Every pointer indirection could result in the reading of a new page. This is guaranteed to
cause performance problems with CPUs like R10000 that try to do instructions in parallel.

In large applications (which cause memory swapping)mma() to lock important memory
into RAM.

Minimizing Cache Misses

Each processor may have first-level instruction and data caches on chip and have second-level
cache(s) that are bigger but somewhat slower. The sizes of these caches vary; you cdrinyse the
command to determine the sizes on your system. The first-level data cache is always a subset of
data in the second-level cache.

Memory access is much faster if the data is already loaded into the first-level cache. When your
program accesses data that is not in one of the caches, a cache miss results. This causes a cache
of several bytes, including the data you just accessed, to be read from memory and stored in the
cache. The size of this transaction varies from machine to machine. Caches are broken down into
lines, typically 32-128 bytes. When a cache miss occurs, the corresponding line is loaded from the
next level down in the hierarchy.

Because cache misses are costly, try to minimize them by following these steps:

Keep frequently accessed data together. Store and access frequently used data in flat, sequel
files and structures and avoid pointer indirection. This way, the most frequently accessed data
remains in the first-level cache wherever possible.

Access data sequentially. If you are accessing words sequentially, each cache miss brings in
or more words of needed data; if you are accessing every 32nd word, each cache miss brings
one needed word and 31 unneeded words, degrading performance by up to a factor of 32.

Avoid simultaneously traversing several large independent buffers of data, such as an array ot
vertex coordinates and an array of colors within a loop. There can be cache conflicts between
buffers. Instead, pack the contents into one interleaved buffer when possible. If this packing

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 12

forces a big increase in the size of the data, it may not be the right optimization for that progra
If you are using vertex arrays, try using interleaved arrays.

Second-level data cache misses also increase bus traffic, which can be a problem in a
multi-processing application. This can happen with multiple processes traversing very large data ¢
See'Immediate Mode Drawing Versus Display Listst additional information.

Measuring Cache—-Miss and Page—Fault Overhead

To find out if cache and memory usage are a significant part of your CPU limitation, follow these
guidelines:

Useosviewto monitor your application.

A more rigorous way to estimate the time spent on memory access is to compare the executic
profiling results collected with PC sampling with those of basic block counting, performing eac
test with and without calls tglVertex3fv()

— PC sampling in Speedshop gives a real-time estimate of the time spent in different sectiol
of the code.

— Basic block counting, from Speedshop, gives an ideal estimate of how much time should t
spent, not including memory references.

See thespeedshopeference page or ttf8peedshop User's Guidier more information.

PC sampling includes time for system overhead, so it always predicts longer execution than
basic block counting. However, your PC sample time should not be more than 1.5 times the tir
predicted by Speedshop.

The CASEVision/WorkShop tools, in particular the performance analyzer, can also help with
those measuremeniBhe WorkShop Overviemtroduces the tools.

CPU Tuning: Advanced Techniques

After you have applied the technigues discussed in the previous sections, consider using these
advanced techniques to tune CPU-limited applications:

"Mixing Computation With Graphics"
"Examining Assembly Code"
"Using Additional Processors for Complex Scene Management"

"Modeling to the Graphics Pipeline"

Mixing Computation With Graphics

When you are fine-tuning an application, interleaving computation and graphics can make it bette!
balanced and therefore more efficient. Key places for interleaving argvapBuffers()

glClear(), and drawing operations that are known to be fill limited (such as drawing a backdrop or a
ground plane or any other large polygon).

A gIXSwapBuffers(gall creates a special situation. After callgiSwapBuffers(Jan application

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 13

may be forced to wait for the next vertical retrace (in the worst case, up to 16.7 msecs) before it ce
issue more graphics calls. For a program drawing 10 frames per second, 15% of the time (worst ci
can be spent waiting for the buffer swap to occur.

In contrast, non—graphic computation is not forced to wait for a vertical retrace. Therefore, if there
a section of computation that must be done every frame that includes no graphics calls, it can be ¢
after theglIXSwapBuffers(nstead of causing a CPU limitation during drawing.

Clearing the screen is a time—consuming operation. Doing non—graphics computation immediately
after the clear is more efficient than sending additional graphics requests down the pipeline and be
forced to wait when the pipeline’s input queue overflows.

Experimentation is required to
determine where the application is reliably graphics limited

ensure that inserting the computation does not create a new bottleneck

For example, if a new computation references a large section of data that is not in the data cache,
data for drawing may be swapped out for the computation, then swapped back in for drawing,
resulting in worse performance than the original organization.

Examining Assembly Code

When tuning inner rendering loops, examining assembly code can be helpfdistésdisassemble
optimized code for a given procedure, and correlate assembly code lines with line numbers from tt
source code file. This correlation is especially helpful for examining optimized codeSdh#don to

cc produces asfile of assembly output, complete with your original comments.

You need not be an expert in MIPS assembly code to interpret the results. Just looking at the num
of extra instructions required for an apparently innocuous operation is informative. Knowing some
basics about MIPS assembly code can be helpful for finding performance bugs in inner loops. See
MIPS RISC Architectureby Gerry Kane, listed itBackground Readingfor additional information.

Using Additional Processors for Complex Scene Management

If your application is running on systems with multiple processors, consider supplying an option for
doing scene management on additional processors to relieve the rendering processor from the bui
of expensive computation.

Using additional processors may also reduce the amount of data rendered for a given frame.
Simplifying or reducing rendering for a given scene can help reduce bottlenecks in all parts of the
pipeline, as well as the CPU. One example is removing unseen or backfacing objects. Another
common technique is to use an additional processor to determine when objects are going to appe:
very far away and use a simpler model with fewer polygons and less expensive modes for distant
objects.

Modeling to the Graphics Pipeline

The modeling of the database directly affects the rendering performance of the resulting applicatio
and therefore has to match the performance characteristics of the graphics pipeline and make
trade—offs with the database traversals. Graphics pipelines that support connected primitives, suct

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 14

triangle meshes, benefit from having long meshes in the database. However, the length of the mes
affects the resulting database hierarchy, and long strips through the database do not cull well with
simple bounding geometry.

Model objects with an understanding of inherent bottlenecks in the graphics pipeline:

Pipelines that are severely fill limited benefit from having objects modeled with cut polygons
and more vertices and fewer overlapping parts, which decreases depth complexity.

Pipelines that are easily geometry— or host-limited benefit from modeling with fewer polygons

There are several other modeling tricks that can reduce database complexity:

Use textured polygons to simulate complex geometry. This is especially useful if the graphics
subsystem supports the use of textures where the alpha component of the texture marks the
transparency of the object. Textures can be used as cut-outs for objects like fences and trees

Use textures for simulating particles, such as smoke.

Use textured polygons as single—polygon billboards. Billboards are polygons that are fixed at «
point and rotated about an axis, or about a point, so that the polygon always faces the viewer.
Billboards are useful for symmetric objects such as light posts and trees, and also for volume
objects such as smoke. Billboards can also be used for distant objects to save geometry.
However, the managing of billboard transformations can be expensive and affect both the cull
and the draw processes.

In OpenGL 1.1, the sprite extension can be used for billboards on certain platforms; see
"SGIX_spritd] The Sprite Extension”

Tuning the Geometry Subsystem

The geometry subsystem is the part of the pipeline in which per—polygon operations, such as
coordinate transformations, lighting, texture coordinate generation, and clipping are performed. Th
geometry hardware may also be used for operations that are not strictly transform operations, sucl
convolution.

This section presents techniques that you can use to tune the geometry subsystem, discussing the
following topics:

"Using Peak Performance Primitives for Drawing"
"Using Vertex Arrays"

"Using Display Lists as Appropriate"

"Optimizing Transformations"

"Optimizing Lighting Performance"

"Choosing Modes Wisely"

"Advanced Transform-Limited Tuning Techniques"

Using Peak Performance Primitives for Drawing

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 15

This section describes how to draw geometry with optimal primitives. Consider these guidelines to
optimize drawing:

Use connected primitives (line strips, triangle strips, triangle fans, and quad strips). Put at leas
primitives in a sequence, 12 to 16 if possible.

Connected primitives are desirable because they reduce the amount of data sent to the graph
subsystem and the amount of per—polygon work done in the pipeline. Typically, about 12
vertices peglBegin()/gIEnd(are required to achieve peak rates (but this can vary depending or
the hardware you are running on). For lines and points, it is especially beneficial to put as mar
vertices as possible ingdBegin()/glIEnd()sequence. For information on the most efficient vertex
numbers for the system you are using,Geapter 16, "System—-Specific Tuning."

Use "well-behaved" polygdigonvex and planar, with only three or four vertices.

If you use concave and self-intersecting polygons, they are broken down into triangles by
OpenGL. For high—quality rendering, you must pass the polygons to GLU to be tessellated. Tt
can make them prohibitively expensive. Nonplanar polygons and polygons with large numbers
of vertices are more likely to exhibit shading artifacts.

If your database has polygons that are not well-behaved, perform an initial one-time pass ove
the database to transform the troublemakers into well-behaved polygons and use the new
database for rendering. Using connected primitives results in additional gains.

Minimize the data sent per vertex.

Polygon rates can be affected directly by the number of normals or colors sent per polygon.
Setting a color or normal per vertex, regardless oftfBradeModel(psed, may be slower than
setting only a color per polygon, because of the time spent sending the extra data and resettin
the current color. The number of normals and colors per polygon also directly affects the size
a display list containing the object.

Group like primitives and minimize state changes to reduce pipeline revalidation.

Using Vertex Arrays
Vertex arrays are available in OpenGL 1.1. They offer the following benefits:
The OpenGL implementation can take advantage of uniform data formats.

TheglinterleavedArrays(tall lets you specify packed vertex data easily. Packed vertex formats
are typically faster for OpenGL to process.

TheglDrawArrays()call reduces subroutine call overhead.

TheglDrawElements(rall reduces subroutine call overhead and also reduces per-vertex
calculations because vertices are reused.

Using Display Lists as Appropriate

You can often improve geometry performance by storing frequently—used commands in a display |
If you plan to redraw the same geometry multiple times, or if you have a set of state changes that :
applied multiple times, consider using display lists. Display lists allow you to define the geometry o

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 16

state changes once and execute them multiple times. Some graphics hardware stores display lists
dedicated memory or stores data in an optimized form for rendering (sé€RI$d uning: Display
Lists").

Storing Data Efficiently

Putting some extra effort into generating a more efficient database makes a significant difference
when traversing the data for display. A common tendency is to leave the data in a format that is gc
for loading or generating the object, but not optimal for actually displaying the data. For peak
performance, do as much work as possible before rendering. Preprocessing of data is typically
performed at initialization time or when changing from a modeling mode to a fast rendering mode.

Minimizing State Changes

Your program will almost always benefit if you reduce the number of state changes. A good way tc
do this is to sort your scene data according to what state is set and render primitives with the same
state settings together. Primitives should be sorted by the most expensive state settings first.
Typically it is expensive to change texture binding, material parameters, fog parameters, texture fil
modes, and the lighting model. However, some experimentation will be required to determine whic
state settings are most expensive on the system you are running on. For example, on systems tha
accelerate rasterization, it may not be very expensive to disable or enable depth testing or to chan
rasterization controls such as the depth test function. But if you are running on a system with
software rasterization, this may cause the graphics pipeline to be revalidated.

It is also important to avoid redundant state changes. If your data is stored in a hierarchical databa
make decisions about which geometry to display and which modes to use at the highest possible
level. Decisions that are made too far down the tree can be redundant.

Optimizing Transformations

OpenGL implementations are often able to optimize transform operations if the matrix type is know
Follow these guidelines to achieve optimal transform rates:

Call glLoadldentity()to initialize a matrix rather than loading your own copy of the identity
matrix.

Use specific matrix calls such gikotate*() glTranslate*() andglScale*()rather than
composing your own rotation, translation, or scale matrices and cgllingdMatrix() or
gIMultMatrix().

If possible, use single precision suctgfgotatef() glTranslatef() andglScalef().(On most
systems, this may not be critical because the CPU converts doubles to floats).

Optimizing Lighting Performance

OpenGL offers a large selection of lighting features: Some are virtually "free" in terms of
computational time, others offer sophisticated effects with some performance penalty. For some
features, the penalties may vary depending on the hardware the application is running on. Be
prepared to experiment with the lighting configuration.

As a general rule, use the simplest possible lighting model, a single infinite light with an infinite

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 17

viewer. For some local effects, try replacing local lights with infinite lights and a local viewer.

You normally won't notice a performance degradation when using one infinite light, unless you use
lit textures or color index lighting.

Use the following settings for peak performance lighting:
Single infinite light.
- GL_LIGHT _MODEL_LOCAL_VIEWER set to GL_FALSE iglLightModel()(the
default).
- GL_LIGHT_MODEL_TWO_SIDE set to GL_FALSE iglLightModel()(the default).

— Local lights are noticeably more expensive than infinite lights. Avoid lighting where the
fourth component of GL_LIGHT_POSITION is nonzero.

- There may be a sharp drop in lighting performance when switching from one light to two
lights, but the drop for additional lights is likely to be more gradual.

RGB mode.
GL_COLOR_MATERIAL disabled.

GL_NORMALIZE disabled! Because this is usually necessary when the model-view matrix
includes a scaling transformation, consider preprocessing the scene to eliminate scaling.

Lighting Operations With Noticeable Performance Costs
Follow these additional guidelines to achieve peak lighting performance:
Don’'t change material parameters frequently.

Changing material parameters can be expensive. If you need to change the material paramete
many times per frame, consider rearranging the scene traversal to minimize material changes
Also consider usinglColorMaterial() to change specific parameters automatically, rather than
usingglMaterial() to change parameters explicitly.

The following code fragment illustrates how to change ambient and diffuse material parametetr
at every polygon or at every vertex:

glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);

/* Draw triangles: */

glBegin(GL_TRIANGLES);

[* Set ambient and diffuse material parameters: */

glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);

glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);

glEnd();

Disable two-sided lighting unless your application requires it.

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 18

Two-sided lighting illuminates both sides of a polygon. This is much faster than the alternative
of drawing polygons twice. However, using two-sided lighting is significantly slower than
one-sided lighting for a single rendering object.

Disable GL_NORMALIZE.

If possible, provide unit-length normals and don’t giltale*()to avoid the overhead of
GL_NORMALIZE. On some OpenGL implementations it may be faster to simply rescale the
normal, instead of renormalizing it, when the modelview matrix contains a uniform scale matri

Avoid scaling operations if possible.

Avoid changing the GL_SHININESS material parameter if possible. Setting a new
GL_SHININESS value requires significant computation each time.

Choosing Modes Wisely

OpenGL offers many features that create sophisticated effects with excellent performance. For ear
feature, consider the trade—off between effects, performance, and quality.

Turn off features when they are not required.

Once a feature has been turned on, it can slow the transform rate even when it has no visible
effect.

For example, the use of fog can slow the transform rate of polygons even when the polygons :
too close to show fog, and even when the fog density is set to zero. For these conditions, turn
fog explicitly with

glDisable(GL_FOG)

Minimize expensive mode changes and sort operations by the most expensive mode.
Specifically, consider these tips:

— Use small numbers of texture maps to avoid the cost of switching between textures. If you
have many small textures, consider combining them into a single larger, tiled texture. Ratt
than switching to a new texture before drawing a textured polygon, choose texture
coordinates that select the appropriate small texture tile within the large texture.

— Avoid changing the projection matrix or changgifepthRange(parameters.
— When fog is enabled, avoid changing fog parameters.

— Turn fog off for rendering with a different projection (for example, orthographic) and turn it
back on when returning to the normal projection.

Use flat shading whenever possible. This reduces the number of lighting computations from ol
per vertex to one per primitive, and also reduces the amount of data that must be passed frorr
CPU through the graphics pipeline for each primitive. This is particularly important for
high-performance line drawing.

Beware of excessive mode changes, even mode changes considered cheap, such as change:
shade model, depth buffering, and blending function.

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 19

Advanced Transform-Limited Tuning Techniques

This section describes advanced techniques for tuning transform-limited drawing. Follow these
guidelines to draw objects with complex surface characteristics:

Use textures to replace complex geometry.

Textured polygons can be significantly slower than their non—textured counterparts. However,
texture can be used instead of extra polygons to add detail to a geometric object. This can gre
simplify geometry, resulting in a net speed increase and an improved picture, as long as it doe
not cause the program to become fill limited. Texturing performance varies across the product
line, so this technique might not be equally effective on all systems. Experimentation is usually
necessary.

UseglAlphaFunc()in conjunction with one or more textures to give the effect of rather complex
geometry on a single polygon.

Consider drawing an image of a complex object by texturing it onto a single polygon. Set alphi
values to zero in the texture outside the image of the object. (The edges of the object can be
antialiased by using alpha values between zero and one.) Orient the polygon to face the viewe
To prevent pixels with zero alpha values in the textured polygon from being drawn, call

glAlphaFunc(GL_NOTEQUAL, 0.0)

This effect is often used to create objects like trees that have complex edges or many holes
through which the background should be visible (or both).

Eliminate objects or polygons that will be out of sight or too small.
Use fog to increase visual detail without drawing small background objects.

Use culling on a separate processor to eliminate objects or polygons that will be out of sight ol
too small to see.

Use occlusion culling: draw large objects that are in front first, then read back the depth buffer
and use it to avoid drawing objects that are hidden.

Tuning the Raster Subsystem

In the raster system, per—pixel and per—fragment operations take place. The operations include wr
color values into the framebuffer or more complex operations like depth buffering, alpha blending,
and texture mapping.

An explosion of both data and operations is required to rasterize a polygon as individual pixels.
Typically, the operations include depth comparison, Gouraud shading, color blending, logical
operations, texture mapping, and possibly antialiasing. This section discusses the following
techniques for tuning fill-limited drawing:

"Using Backface/Frontface Removal”
"Minimizing Per—Pixel Calculations"
"Using Clear Operations"

"Optimizing Texture Mapping"

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 20

Using Backface/Frontface Removal

To reduce fill-limited drawing, use backface and frontface removal. For example, if you are drawin
a sphere, half of its polygons are backfacing at any given time. Backface and frontface removal is
done after transformation calculations but before per-fragment operations. This means that backfe
removal may make transform-limited polygons somewhat slower, but make fill-limited polygons
significantly faster. You can turn on backface removal when you are drawing an object with many
backfacing polygons, then turn it off again when drawing is completed.

Minimizing Per—Pixel Calculations

One way to improve fill-limited drawing is to reduce the work required to render fragments. This
section discusses several ways you can do this:

"Avoiding Unnecessary Per—-Fragment Operations"
"Using Expensive Per—Fragment Operations Efficiently"
"Using Depth—-Buffering Efficiently”

"Balancing Polygon Size and Pixel Operations"

"Other Considerations"

Avoiding Unnecessary Per-Fragment Operations

Turn off per—fragment operations for objects that do not require them, and structure the drawing
process to minimize their use without causing excessive toggling of modes.

For example, if you are using alpha blending to draw some patrtially transparent objects, make surt
that you disable blending when drawing the opaque objects. Also, if you enable alpha testing to
render textures with holes through which the background can be seen, be sure to disable alpha te:
when rendering textures or objects with no holes. It also helps to sort primitives so that primitives
that require alpha blending or alpha testing to be enabled are drawn at the same time. Finally, you
may find it faster to render polygons such as terrain data in back—-to—front order.

Organizing Drawing to Minimize Computation

Organizing drawing to minimize per—pixel computation can significantly enhance performance. For
example, to minimize depth buffer requirements, disable depth buffering when drawing large
background polygons, then draw more complex depth—-buffered objects.

Using Expensive Per—Fragment Operations Efficiently

Use expensive per—-fragment operations with care. Per—fragment operations, in rough order of
increasing cost (with flat—shading being the least expensive and multisampling the most expensive
are as follows:

1. flat-shading

2. Gouraud shading

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 21

3. depth buffering
4. alpha blending
5. texturing

6. multisampling

Note: The actual order depends on the system you are running on.

Each operation can independently slow down the pixel fill rate of a polygon, although depth
buffering can help reduce the cost of alpha blending or multisampling for hidden polygons.

Some of this information depends on the particular system the program is running on:
Texturing is less expensive than alpha blending on new-generation hardware only.
Alpha blending is less expensive than depth buffering on Indy systems.

Beware of fill operations that are executed on the host for your graphics platform (for example
texturing on Extreme or Elan graphics).

Using Depth—-Buffering Efficiently

Any rendering operation can become fill limited for large polygons. Clever structuring of drawing
can eliminate the need for certain fill operations. For example, if large backgrounds are drawn first
they do not need to be depth buffered. It is better to disable depth buffering for the backgrounds ar
then enable it for other objects where it is needed.

For example, flight simulators use this technique. Depth buffering is disabled and the sky and grou
then the polygons lying flat on the ground (runway and grid) are drawn without suffering a
performance penalty. Then depth buffering is enabled for drawing the mountains and airplanes.

There are other special cases in which depth buffering might not be required. For example, terrain
ocean waves, and 3D function plots are often represented as height fields (X-Y grids with one hei
value at each lattice point). It is straightforward to draw height fields in back—to—front order by
determining which edge of the field is furthest away from the viewer, then drawing strips of triangle
or quadrilaterals parallel to that starting edge and working forward. The entire height field can be
drawn without depth testing provided it doesn’t intersect any piece of previously—drawn geometry.
Depth values need not be written at all, unless subsequently—drawn depth buffered geometry migt
intersect the height field; in that case, depth values for the height field should be written, but the
depth test can be avoided by calling

glDepthFunc(GL_ALWAYS)

Balancing Polygon Size and Pixel Operations

The pipeline is generally optimized for polygons that are 10 pixels on a side. However, you may ne
to work with polygons larger or smaller than that depending on the other operations going on in the
pipeline:

If the polygons are too large for the fill rate to keep up with the rest of the pipeline, the
application is fill-rate limited. Smaller polygons balance the pipeline and increase the polygon
rate.

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 22

If the polygons are too small for the rest of the pipeline to keep up with filling, then the
application is transform limited. Larger and fewer polygons, or fewer vertices, balance the
pipeline and increase the fill rate.

If you are drawing very large polygons such as backgrounds, performance will improve if you use
simple fill algorithms. For example, don't sgf§hadeModel(jo GL_SMOOQOTH if smooth shading is
not required. Also, disable per—fragment operations such as depth buffering, if possible. If you nee
texture the background polygons, consider using GL_REPLACE as the texture environment.

Other Considerations
Use alpha blending with discretion.

Alpha blending is an expensive operation. A common use of alpha blending is for transparenc
where the alpha value denotes the opacity of the object. For fully opague objects, disable alph
blending withglDisable(GL_BLEND)

Avoid unnecessary per—-fragment operations.

Turn off per—fragment operations for objects that do not require them, and structure the drawir
process to minimize their use without causing excessive toggling of modes.

Using Clear Operations
When considering clear operations, consider these points:

If possible, avoid clear operations. For example, you can avoid clearing the depth buffer by
setting the depth test to GL_ALWAYS.

Avoid clearing the color and depth buffers independently.

The most basic per—frame operations are clearing the color and depth buffers. On some syste
there are optimizations for common special cases of these operations.

Whenever you need to clear both the color and depth buffers, don't clear each buffer
independently. Instead call:

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

Be sure to disable dithering before clearing.

Optimizing Texture Mapping

Follow these guidelines when rendering textured objects:
Avoid frequent switching between texture maps. If you have many small textures, consider
combining them into a single larger, mosaic texture. Rather than switching to a new texture

before drawing a textured polygon, choose texture coordinates that select the appropriate sme
texture tile within the large texture.

Use texture objects to encapsulate texture data. Place glT#sdmage*()calls (including
mipmaps) required to completely specify a texture and the assogifieadParameter*(calls
(which set texture properties) into a texture object and bind this texture object to the rendering

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 23

context. This allows the implementation to compile the texture into a format that is optimal for
rendering and, if the system accelerates texturing, to efficiently manage textures on the graphi
adapter.

When using texture objects, cglAreTexturesResident{) make sure that all texture objects are
resident during rendering. (On systems where texturing is done on the host,
glAreTexturesResidentg)ways returns GL_TRUE.) If necessary, reduce the size or internal
format resolution of your textures until they all fit into memory. If such a reduction creates
intolerably fuzzy textured objects, you may give some textures lower priority.

If possible, usglTexSublmage*D(jo replace all or part of an existing texture image rather than
the more costly operations of deleting and creating an entire new image.

Avoid expensive texture filter modes. On some systems, trilinear filtering is much more
expensive than nearest or linear filtering.

Tuning the Imaging Pipeline

This section briefly lists some ways in which you can improve pixel proce&stagiple 15-1
provides a code fragment that shows how to set the OpenGL state so that subsequent calls to
glDrawPixels()or glCopyPixels(will be fast.

To improve performance in the imaging pipeline, follow these guidelines:
Disable all per—fragment operations.
Define images in the native hardware format so type conversion is not necessary.
For texture download operations, match the internal format of the texture with that on the host

Byte—sized components, particularly unsigned byte components, are fast. Use pixel formats
where each of the components (red, green, blue, alpha, luminance, or intensity) is 8 bits long.

Use fewer components, for example, use GL_LUMINANCE_ALPHA or GL_LUMINANCE.

Use color matrix and color mask to store four luminance values in the RGBA framebuffer. Use
color matrix and color mask to work with one component at a time If one component is being
processed, convolution is much more efficient. Then process all four images in parallel.
Processing four images together is usually faster than processing them individually as
single—component images.

The following code fragment uses the green component as the data source and writes the res
of the operation into some (possibly all) of the other components:

[* Matrix is in column major order */
GLfloat smearGreenMat[16] = {
0,0,0,0,
1,1,1,1,
0,0,0,0,
0,0,0,0,
3
[* The variables update R/G/B/A indicate whether the

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 24

* corresponding component would be updated.
*/
GLboolean updateR, updateG, updateB, updateA,

/* Check for availability of the color matrix extension */

[* Set proper color matrix and mask */
glMatrixMode(GL_COLOR);
glLoadMatrixf(smearGreenMat);
glColorMask(updateR, updateG, updateB, updateA);

[* Perform the imaging operation */
glEnable(GL_SEPARABLE_2D_EXT);
glCopyTexSublmage2DEXT(...);

/* Restore an identity color matrix. Not needed when the same
* smear operation is to used over and over

*/

glLoadldentity();

/* Restore previous matrix mode (assuming it is modelview) */
glMatrixMode(GL_MODELVIEW);

Load the identity matrix into the color matrix to turn the color matrix off.

When using the color matrix to broadcast one component into all others, avoid manipulating tF
color matrix with transformation calls suchglRotate() Instead, load the matrix explicitly
usingglLoadMatrix().

Know where the bottleneck is.

Similar to polygon drawing, there can be a pixel-drawing bottleneck due to overload in host
bandwidth, processing, or rasterizing. When all modes are off, the path is most likely limited b
host bandwidth, and a wise choice of host pixel format and type pays off tremendously. This is
also why byte components are sometimes faster. For example, use packed pixel format
GL_RGB5_A1 to load texture with an GL_RGB5_A1 internal format.

When either many processing modes or a several expensive modes such as convolution are ¢
the processing stage is the bottleneck. Such cases benefit from one—component processing, \
is much faster than multicomponent processing.

Zooming up pixels may create a raster bottleneck.

A big pixel rectangle has a higher throughput (that is, pixels per second) than a small rectangl
Because the imaging pipeline is tuned to trade off a relatively large setup time with a high pixe
transfer efficiency, a large rectangle amortizes the setup cost over many pixels, resulting in
higher throughput.

Having no mode changes between pixel operations results in higher throughput. New high-en

OpenGL ® on Silicon Graphics ® Systems — Chapter 14, Tuning the Pipeline — 25

hardware detects pixel mode changes between pixel operations: When there is no mode chan
between pixel operations, the setup operation is drastically reduced. This is done to optimize f
image tiling where an image is painted on the screen by drawing many small tiles.

On most systemglCopyPixels()Js faster thaglDrawPixels()

Tightly packing data in memory (for example row length=0, alignment=1) is slightly more
efficient for host transfer.

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 26

Chapter 15
Tuning Graphics Applications: Examples

This chapter first presents a code fragment that helps you draw pixels fast. The second section ste
through an example of tuning a small graphics program, showing changes to the program and
discussing the speed improvements that result. The chapter discusses these topics:

"Drawing Pixels Fast"

"Tuning Example"

Drawing Pixels Fast

The code fragment iBxample 15-1llustrates how to set an OpenGL state so that subsequent calls t
glDrawPixels()or glCopyPixels(will be fast.

Example 15-1 Drawing Pixels Fast

/*

* Disable stuff that's likely to slow down

* glDrawPixels.(Omit as much of this as possible,
* when you know in advance that the OpenGL state is
* already set correctly.)

*/

glDisable(GL_ALPHA_TEST);
glDisable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glDisable(GL_DITHER);

glDisable(GL_FOGQG);

glDisable(GL_LIGHTING);
glDisable(GL_LOGIC_OP);
glDisable(GL_STENCIL_TEST);
glDisable(GL_TEXTURE_1D);
glDisable(GL_TEXTURE_2D);
glPixelTransferi(GL_MAP_COLOR, GL_FALSE);
glPixelTransferi(GL_RED_SCALE, 1);
glPixelTransferi(GL_RED_BIAS, 0);
glPixelTransferi(GL_GREEN_SCALE, 1);
glPixelTransferi(GL_GREEN_BIAS, 0);
glPixelTransferi(GL_BLUE_SCALE, 1);
glPixelTransferi(GL_BLUE_BIAS, 0);
glPixelTransferi(GL_ALPHA_SCALE, 1);
glPixelTransferi(GL_ALPHA_BIAS, 0);

/*

* Disable extensions that could slow down

* glDrawPixels.(Actually, you should check for the
* presence of the proper extension before making
* these calls.| omitted that code for simplicity.)

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 1

*/

#ifdef GL_EXT_convolution
glDisable(GL_CONVOLUTION_1D_EXT);
glDisable(GL_CONVOLUTION_2D_EXT);
glDisable(GL_SEPARABLE_2D_EXT);

#endif

#ifdef GL_EXT _histogram
glDisable(GL_HISTOGRAM_EXT);
glDisable(GL_MINMAX_EXT);

#endif

#ifdef GL_EXT _texture3D
glDisable(GL_TEXTURE_3D_EXT);
#endif

/*

* The following is needed only when using a
* multisample—capable visual.

*/

#ifdef GL_SGIS_multisample
glDisable(GL_MULTISAMPLE_SGIS);
#endif

Tuning Example

This section steps you through a complete example of tuning a small program using the technique
discussed ilChapter 14, "Tuning the PipelineConsider a program that draws a lighted sphere,
shown inFigure 15-1

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 2

Figure 15-1 Lighted Sphere Created by perf.c

You can use the benchmarking frameworlppendix B, "Benchmarksfor window and timing
services. All you have to do is set up the OpenGL rendering contBxinimest()and perform the
drawing operations iffest() The first version renders the sphere by drawing strips of quadrilaterals

parallel to the sphere’s lines of latitude. On a 100 MHz Ir%i@areme system, this program
renders about 0.77 frames per second.

Example 15-2 Performance Tuning Example Program

/***
*kkkkkhkkhk

cc —o perf -O perf.c -IGLU -IGL -IX11
R S S e i e e R R S S S B T T T e

**/

#include <GL/glx.h>
#include <GL/glu.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/time.h>
#include <math.h>

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples - 3

char* ApplicationName;

double Overhead = 0.0;

int VisualAttributes[] = { GLX_RGBA, GLX_RED_SIZE, 1, GLX_GREEN_SIZE
1, GLX_BLUE_SIZE, 1, GLX_DEPTH_SIZE, 1, None };

int WindowWidth;

int WindowHeight;

/***

*kk

* GetClock — get current time (expressed in seconds)

**/

double

GetClock(void) {
struct timeval t;

gettimeofday(&t);
return (double) t.tv_sec + (double) t.tv_usec * 1E-6;

}

/Aa *% *kkkkk *% *kkkkk *kkkkk *% *kkkkk *% *kkkkk
*kk
* ChooseRunTime - select an appropriate runtime for benchmarking
kkkkkkkhkhkkkhkhkkhhkkkhhkkkhkhkkkhkhkkkhkkkhhkkkhhkkkhkhkkkhkhkkkkhkkkkkkkx
**/
double
ChooseRunTime(void) {
double start;
double finish;
double runTime;

start = GetClock();

/* Wait for next tick: */
while ((finish = GetClock()) == start)

/* Run for 100 ticks, clamped to [0.5 sec, 5.0 sec]: */
runTime = 100.0 * (finish - start);
if (runTime < 0.5)
runTime = 0.5;
else if (runTime > 5.0)
runTime = 5.0;

return runTime;

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 4

[FRAAFKIK kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhhhhhkkkkkkkkkkkkkkkhhkhhkhkkkx

* FinishDrawing — wait for the graphics pipe to go idle

*

* This is needed to make sure we're not including time from some
* previous uncompleted operation in our measurements. (It's not
* foolproof, since we can’t eliminate context switches, but we can
* assume our caller has taken care of that problem.) x*** ki

kkkkkkkkkkkkkkkkhkkk *kkk *kkkkkkkkhkk kkkkkkkkkhkkkkkk /

void
FinishDrawing(void) {
glFinish();

*kk

* WaitForTick — wait for beginning of next system clock tick; retur
n
* the time

*kkk *kkkkkkkkhkhk kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhhhkkkkkkkkkkkk

**/

double

WaitForTick(void) {
double start;
double current;

start = GetClock();

/* Wait for next tick: */
while ((current = GetClock()) == start)

/* Start timing: */
return current;

}

[FRAAFKIK kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhhhhhhkkkkkkkkkkkkkkkhhhhkkkx

*k%

* InitBenchmark — measure benchmarking overhead

*

* This should be done once before each risky change in the
* benchmarking environment. A "risky" change is one that might

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 5

* reasonably be expected to affect benchmarking overhead. (For

* example, changing from a direct rendering context to an indirect

* rendering context.) If all measurements are being made on a sing
le

* rendering context, one call should suffice.

kkhkkkkkkkkkkkhkkkhkkkkkkkkkkhhkkhkkkkkkkkkhkkkkhkkkkkkhhkkkhkkkkhkkkkkkhkkkk

**/

void

InitBenchmark(void) {
double runTime;
long reps;
double start;
double finish;
double current;

/* Select a run time appropriate for our timer resolution: *
runTime = ChooseRunTime();

/* Wait for the pipe to clear: */
FinishDrawing();

/* Measure approximate overhead for finalization and timing
* routines: */
reps = 0;
start = WaitForTick();
finish = start + runTime;
do {
FinishDrawing();
++reps;
} while ((current = GetClock()) < finish);

/* Save the overhead for use by Benchmark(): */
Overhead = (current — start) / (double) reps;

}

/***

*kk

* Benchmark——measure number of caller operations performed per seco
nd

*

* Assumes InitBenchmark() has been called previously, to initialize

* the estimate for timing overhead.

*kkkkkkkkkkkkhkkkhkkkkkkkkkkhhkkkkkkkkkkkkhkkkkhkkkkkkhhkkkhkkkkhkkkkkkhkkkk

**/

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 6

double
Benchmark(void (*operation)(void)) {
double runTime;
long reps;
long newReps;
long i;
double start;
double current;

if (loperation)
return 0.0;
/* Select a run time appropriate for our timer resolution: *

/
runTime = ChooseRunTime();
/*
* Measure successively larger batches of operations until w
e
* find one that's long enough to meet our runtime target:
*/
reps =1;
for (3;) {
/* Run a batch: */
FinishDrawing();
start = WaitForTick();
for (i=reps;i>0; —i)
(*operation)();
FinishDrawing();
[* If we reached our target, bail out of the loop: *
/
current = GetClock();
if (current >= start + runTime + Overhead)
break;
/*
* Otherwise, increase the rep count and try to reac
h
* the target on the next attempt:
*
if (current > start)
newReps = reps *(0.5 + runTime /
(current — start — Overhead
)

else
newReps = reps * 2;

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 7

if (newReps == reps)
reps += 1,

else
reps = newReps;

/* Subtract overhead and return the final operation rate: */
return (double) reps / (current — start — Overhead);

}

/***

*k%k

* Test — the operation to be measured

*

* Will be run several times in order to generate a reasonably accur
ate

* result.

**/

void

Test(void) {
float latitude, longitude;
float dToR = M_PI/ 180.0;

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

for (latitude = —90; latitude < 90; ++latitude) {
gIBegin(GL_QUAD_STRIP);
for (longitude = 0; longitude <= 360; ++longitude) {
GLfloat x, y, z;
X = sin(longitude * dToR) * cos(latitude * dTo

R);
y = sin(latitude * dToR);
z = cos(longitude * dToR) * cos(latitude * dTo
R);
glNormal3f(x, y, z);
glVertex3f(x, y, z);
x = sin(longitude * dToR) * cos((latitude+1) *
dTo
R);
y = sin((latitude+1) * dToR);
z = cos(longitude * dToR) * cos((latitude+1)
dTo
R);

gINormal3f(x, y, z);
glVertex3f(x, vy, 2);

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 8

OpenGL ® on Silicon Graphics ® Systems — Chapter 15,

[** *% *kkkkk *% * *% *% * *% *% * *% *% *

*kk

* RunTest - initialize the rendering context and run the test

*kkk *kkkkkkkkk kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhhhhkkkkkkkkkkkk

**/

void

RunTest(void) {
static GLfloat diffuse[] = {0.5, 0.5, 0.5, 1.0};
static GLfloat specular[] ={0.5, 0.5, 0.5, 1.0};
static GLfloat direction[] = {1.0, 1.0, 1.0, 0.0}
static GLfloat ambientMat[] = {0.1, 0.1, 0.1, 1.0};
static GLfloat specularMat[] ={0.5, 0.5, 0.5, 1.0},

if (Overhead == 0.0)
InitBenchmark();

glClearColor(0.5, 0.5, 0.5, 1.0);

glClearDepth(1.0);
glEnable(GL_DEPTH_TEST);

glLightfv(GL_LIGHTO, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHTO, GL_SPECULAR, specular);
glLightfv(GL_LIGHTO, GL_POSITION, direction);
glEnable(GL_LIGHTO);

glEnable(GL_LIGHTING);

gIMaterialfv(GL_FRONT, GL_AMBIENT, ambientMat);
glMaterialfv(GL_FRONT, GL_SPECULAR, specularMat);
gIMateriali(GL_FRONT, GL_SHININESS, 128);

glEnable(GL_COLOR_MATERIAL);
glShadeModel(GL_SMOQOTH);

gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(45.0, 1.0, 2.4, 4.6);

gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(0,0,3.5, 0,0,0, 0,1,0);

Tuning Graphics Applications

: Examples - 9

printf("%.2f frames per second\n", Benchmark(Test));

}

[** *% *kkkkk *% *kkkkk *kkkkk *% *kkkkk *% *kkkkk

*kk

* ProcessEvents — handle X11 events directed to our window

*

* Run the measurement each time we receive an expose event.

* Exit when we receive a keypress of the Escape key.

* Adjust the viewport and projection transformations when the windo
w

* changes size.

kkkkkkkhkhkkkhkhkkhhkhkkkhhkkkhkhkkkhkhkkhhkhkkkhkhkkkhkhkkkkhkhkkkhkhkkkkhkkkkkkkx
**/
void
ProcessEvents(Display* dpy) {
XEvent event;
Bool redraw = 0;

do {
char buf[31];
KeySym keysym;

XNextEvent(dpy, &event);
switch(event.type) {
case Expose:
redraw = 1;
break;
case ConfigureNotify:
glViewport(0, 0,
WindowWidth =
event.xconfigure.width

WindowHeight =
event.xconfigure.heigh
t);
redraw = 1;
break;
case KeyPress:
(void) XLookupString(&event.xkey, bu

sizeof(buf), &keysym, NULL);
switch (keysym) {
case XK_Escape:
exit(EXIT_SUCCESS);
default:

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 10

OpenGL ® on Silicon Graphics ® Systems — Chapter 15,

break;

}
break;
default:
break;
}

} while (XPending(dpy));

if (redraw) RunTest();

*kk

* Error — print an error message, then exit

**/

void

Error(const char* format, ...) {
va_list args;

fprintf(stderr, "%s: ", ApplicationName);
va_start(args, format);
viprintf(stderr, format, args);

va_end(args);

exit(EXIT_FAILURE);
}

[** *% *kkkkk *% * *% *% * *% *% * *% *% *

*kk

* main — create window and context, then pass control to ProcessEve
nts

**/

int

main(int argc, char* argv[]) {
Display *dpy;
XVisuallnfo *vi;
XSetWindowAttributes swa;
Window win;
GLXContext cx;

ApplicationName = argv|[0];

/* Get a connection: */

Tuning Graphics Applications: Examples — 11

dpy = XOpenDisplay(NULL);
if (!dpy) Error("can’t open display");

/* Get an appropriate visual: */

vi = gIXChooseVisual(dpy, DefaultScreen(dpy),
VisualAttributes);

if (vi) Error("no suitable visual);

/* Create a GLX context: */
cx = gIXCreateContext(dpy, vi, 0, GL_TRUE);

/* Create a color map: */
swa.colormap = XCreateColormap(dpy, RootWindow(dpy,
vi—>screen), vi->visual, AllocNone

)i
/* Create a window: */
swa.border_pixel = 0;
swa.event_mask = ExposureMask | StructureNotifyMask |
KeyPressMa
sk;
win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, O,
300, 300, 0, vi->depth, InputOutput, vi—>visu
al,

CWBorderPixel| CWColormap|CWEventMask, &swa);
XStoreName(dpy, win, "perf");
XMapWindow(dpy, win);

/* Connect the context to the window: */
glXMakeCurrent(dpy, win, cx);

/* Handle events: */
while (1) ProcessEvents(dpy);

}

Testing for CPU Limitation

An application may be CPU limited, geometry limited, or fill limited. Start tuning by checking for a
CPU bottleneck. Replace th@/ertex3f() gINormal3f() andglClear() calls inTest()with
glColor3f() calls. This minimizes the number of graphics operations while preserving the normal
flow of instructions and the normal pattern of accesses to main memory.
void
Test(void) {

float latitude, longitude;

float dToR = M_PI/ 180.0;

glColor3f(0, 0, 0);

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 12

for (latitude = —90; latitude < 90; ++latitude) {
glBegin(GL_QUAD_STRIP);
for (longitude = 0; longitude <= 360; ++longitude) {
GLfloat x, y, z;
x = sin(longitude * dToR) * cos(latitude * dToR);
y = sin(latitude * dToR);
z = cos(longitude * dToR) * cos(latitude * dToR);
glColor3f(x, y, 2);
glColor3f(x, y, 2);
x = sin(longitude * dToR) * cos((latitude+1) * dTo
R);
y = sin((latitude+1) * dToR);
z = cos(longitude * dToR) * cos((latitude+1) * dTo
R);
glColor3f(x, y, 2);
glColor3f(x, y, 2);
}
glEnd();

}

Using the Profiler

The program still renders less than 0.8 frames per second. Because eliminating all graphics outpu
had almost no effect on performance, the program is clearly CPU limited. Use the profiler to
determine which function accounts for most of the execution time.

% cc —o perf —O —p perf.c -IGLU -IGL -IX11
% perf
% prof perf

Profile listing generated Wed Jul 19 17:17:03 1995
with: prof perf

samples time CPU FPU Clock N-cpu S-interval Countsize
219 2.2s R4000 R4010 100.0MHz 0 10.0ms O(bytes)
Each sample covers 4 bytes for every 10.0ms (0.46% of 2.1900sec)

—p[rocedures] using pc-sampling.

Sorted in descending order by the number of samples in each procedur
e.

Unexecuted procedures are excluded.

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 13

samples time(%) cumtime(%) procedure (file)

112 1.1s(51.1) 1.1s(51.1) _ sin
(/usr/lib/libm.so:trig.s)
29 0.29s(13.2) 1.4s(64.4) Test (perf:perf.c)
18 0.18s(8.2) 1.6s(72.6) __ cos (/usr/lib/libm.so:trig
.S)

16 0.16s(7.3) 1.8s(79.9) Finish

(/usr/lib/libGLcore.so:../EXPRESS/gr2_context
.C)

15 0.15s(6.8) 1.9s(86.8) _ glexpim_Color3f
(/usr/lib/libGLcore.so:../EXPRESS/gr2_vapi.c)

14 0.14s(6.4) 2s(93.2) _BSD_getime
(usr/lib/libc.so0.1:BSD_getime.s)

3 0.03s(1.4) 2.1s(94.5) _ glim_Finish
(/usr/lib/libGLcore.so:../soft/so_finish.c)

3 0.03s(1.4) 2.1s(95.9) _gettimeofday
(/usr/lib/libc.so.1:gettimeday.c)

2 0.02s(0.9) 2.1s(96.8) InitBenchmark (perf:perf.c)

1 0.01s(0.5) 2.1s(97.3) __ glMakeldentity
(/usr/lib/libGLcore.so:../soft/so_math.c)

1 0.01s(0.5) 2.1s(97.7) _ioctl
(/usr/lib/libc.so.1:ioctl.s)

1 0.01s(0.5) 2.1s(98.2) __glinitAccum64
(/usr/lib/libGLcore.so:../soft/so_accumop .C)

1 0.01s(0.5) 2.2s5(98.6) _bzero
(/usr/lib/libc.so.1:bzero.s)

1 0.01s(0.5) 2.2s(99.1) GetClock (perf:perf.c)

1 0.01s(0.5) 2.2s(99.5) strncpy
(/usr/lib/libc.so.1:strncpy.c)

1 0.01s(0.5) 2.2s(100.0) _select
(/usr/lib/libc.so.1:select.s)

219 2.2s(100.0) 2.2s(100.0) TOTAL
Almost 60% of the program’s time for a single frame is spent computing trigonometric functions
(__sinand __cos).

There are several ways to improve this situation. First consider reducing the resolution of the quad
strips that model the sphere. The current representation has over 60,000 quads, which is probably
more than is needed for a high—quality image. After that, consider other changes. For example:

Consider using efficient recurrence relations or table lookup to compute the regular grid of sint
and cosine values needed to construct the sphere.

The current code computes nearly every vertex on the sphere twice (once for each of the two
guad strips in which a vertex appears), so you could achieve a 50% reduction in trigonometric
operations just by saving and re-using the vertex values for a given line of latitude.

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 14

Because exactly the same sphere is rendered in every frame, the time required to compute the spl
vertices and normals is redundant for all but the very first frame. To eliminate the redundancy,
generate the sphere just once, and place the resulting vertices and surface normals in a display lis
You still pay the cost of generating the sphere once, and eventually may need to use the other
technigues mentioned above to reduce that cost, but at least the sphere is rendered more efficient

void

Test(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glCallList(1);
}

void
RunTest(void){...
gINewList(1, GL_COMPILE);
for (latitude = —90; latitude < 90; ++latitude) {
glBegin(GL_QUAD_STRIP);
for (longitude = 0; longitude <= 360; ++longitude) {
GLfloat x, y, z;
X = sin(longitude * dToR) * cos(latitude * dToR);
y = sin(latitude * dToR);
z = cos(longitude * dToR) * cos(latitude * dToR);
gINormal3f(x, y, z);
glVertex3f(x, y, z);
x = sin(longitude * dToR) * cos((latitude+1) * dTo
R);
y = sin((latitude+1) * dToR);
z = cos(longitude * dToR) * cos((latitude+1) * dTo
R);
gINormal3f(x, y, z);
glVertex3f(x, y, z);
}
glEnd();

}
glEndList();

printf("%.2f frames per second\n", Benchmark(Test));

}

This version of the program achieves a little less than 2.5 frames per second, a noticeable
improvement.

When theglClear(), gINormal3f() andglVertex3f()calls are again replaced wighColor3f(), the
program runs at roughly 4 frames per second. This implies that the program is no longer CPU
limited, so you need to look further to find the bottleneck.

Testing for Fill Limitation

To check for afill limitation, reduce the number of pixels that are filled. The easiest way to do that i

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 15

to shrink the window. If you try that, you see that the frame rate doesn’t change for a smaller
window, so the program must now be geometry-limited. As a result, it is necessary to find ways to
make the processing for each polygon less expensive, or to render fewer polygons.

Working on a Geometry—Limited Program

Previous tests determined that the program is geometry—limited. The next step is therefore to pinp
the most severe problems and to change the program to alleviate the bottleneck.

Since the purpose of the program is to draw a lighted sphere, you cannot eliminate lighting
altogether. The program is already using a fairly simple lighting model (a single infinite light and a
nonlocal viewer), so there is not much performance to be gained by changing the lighting model.

Smooth Shading Versus Flat Shading

Smooth shading requires more computation than flat shading, so consider changing
glShadeModel(GL_SMOOTH);

to

glShadeModel(GL_FLAT);

This increases performance to about 2.75 frames per second. Since this is not much better than 2.
frames per second, this discussion continues to use smooth shading.

Reducing the Number of Polygons

Since a change in lighting and shading does not improve performance significantly, the best optior
to reduce the number of polygons the program is drawing.

One approach is to tesselate the sphere more efficiently. The simple sphere model used in the
program has very large numbers of very small quadrilaterals near the poles, and comparatively lar
quadrilaterals near the equator. Several superior models exist, but to keep things simple, this
discussion continues to use the latitude/longitude tesselation.

A little experimentation shows that reducing the number of quadrilaterals in the sphere causes a
dramatic performance increase. When the program places vertices every 10 degrees, instead of e
degree, performance skyrockets to nearly 200 frames per second:

for (latitude = —90; latitude < 90; latitude += 10) {

glBegin(GL_QUAD_STRIP);

for (longitude = 0; longitude <= 360; longitude += 10) {
GLfloat x, y, z;
x = sin(longitude * dToR) * cos(latitude * dToR);
y = sin(latitude * dToR);
z = cos(longitude * dToR) * cos(latitude * dToR);
glNormal3f(x, y, z);
glVertex3f(x, y, z);
x = sin(longitude * dToR) * cos((latitude+10) * dToR);
y = sin((latitude+10) * dToR);
z = cos(longitude * dToR) * cos((latitude+10) * dToR);
glNormal3f(x, y, z);

OpenGL ® on Silicon Graphics ® Systems — Chapter 15, Tuning Graphics Applications: Examples — 16

glVertex3f(x, y, 2);
}
glEnd()

}

Of course, this yields a less smooth-looking sphere. When tuning, you often need to make such
trade—offs between image quality and drawing performance, or provide controls in your application
that allow end users to make the trade—offs.

In this particular case, the improvement up to 200 frames per second becomes apparent only bece
the program is single—buffered. If the program used double-buffering, performance wouldn't incre:
beyond the frame rate of the monitor (typically 60 or 72 frames per second), so there would be no
performance penalty for using a higher—quality sphere.

If performance is truly critical and sphere intersections are not likely, consider rendering more
vertices at the edge of the silhouette and fewer at the center.

Testing Again for Fill Limitation

If you now shrink the window, performance increases again. This indicates that the program is age
fill-limited. To increase performance further, you need to fill fewer pixels, or make pixel-fill less
expensive by changing the pixel-drawing mode.

This particular application uses just one special per—fragment drawing mode: depth buffering. Dep
buffering can be eliminated in a variety of special cases, including convex objects, backdrops, grot
planes, and height fields.

Fortunately, because the program is drawing a sphere, you can eliminate depth buffering and still
render a correct image by discarding quads that face away from the viewer (the "front" faces, givel
the orientation of quads in this model):

glDisable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);

This pushes performance up to nearly 260 frames per second. Further improvements are possible
The program’s performance is still far from the upper limit determined by the peak fill rate. Note th:
you can sometimes improve face culling by performing it in the application; for example, for a sphe
you would see just the hemisphere closest to you, and therefore you only have to compute the bot
on latitude and longitude.

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 17

Chapter 16
System-Specific Tuning

This chapter first discusses some general issues regarding system-specific tuning, then provides

tuning information that is relevant for particular Silicon Graphics systems. Use these techniques as
needed if you expect your program to be used primarily on one kind of system, or a group of syste
The chapter discusses:

"Introduction to System-Specific Tuning"

"Optimizing Performance on Low—End Graphics Systems"
"Optimizing Performance on Q2Systems"

"Optimizing Performance on Mid—Range Systems"

"Optimizing Performance on Indigo2 IMPACT and OCTANE Systems"
"Optimizing Performance on RealityEngine Systems"

"Optimizing Performance on InfiniteReality Systems"

Some points are also discussed in earlier chapters but repeated here because they result in partic
noticeable performance improvement on certain platforms.

Note: To determine your particular hardware configuration,/usggfx/gfxinfo See the reference
page forgfxinfofor more information. You can also cgliGetString()with a GL_RENDERER
argument. See the reference page for information about the renderer strings for different systems.

Introduction to System—Specific Tuning

Many of the performance tuning techniques discussed in the previous chapters (such as minimizin
the number of state changes and disabling features that are not required) are a good idea ho matt
what system you are running on. Other tuning techniques need to be customized for a particular
system. For example, before you sort your database based on state changes, you need to determi
which state changes are the most expensive for each system you are interested in running on.

In addition, you may want to modify the behavior of your program depending on which modes are
fast. This is especially important for programs that must run at a particular frame rate. To maintain
the frame rate on certain systems, you may need to disable some features. For example, if a partic
texture mapping environment is slow on one of your target systems, you have to disable texture
mapping or change the texture environment whenever your program is running on that platform.

Before you can tune your program for each of the target platforms, you have to do some performal
measurements. This is not always straightforward. Often a particular device can accelerate certain
features, but not all at the same time. It is therefore important to test the performance for
combinations of features that you will be using. For example, a graphics adapter may accelerate
texture mapping but only for certain texture parameters and texture environment settings. Even if ¢
texture modes are accelerated, you have to experiment to see how many textures you can use at !
same time without causing the adapter to page textures in and out of the local memory.

A more complicated situation arises if the graphics adapter has a shared pool of memory that is
allocated to several tasks. For example, the adapter may not have a framebuffer deep enough to

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning - 1

contain a depth buffer and a stencil buffer. In this case, the adapter would be able to accelerate bc
depth buffering and stenciling but not at the same time. Or perhaps, depth buffering and stenciling
can both be accelerated but only for certain stencil buffer depths.

Typically, per—platform testing is done at initialization time. You should do some trial runs through
your data with different combinations of state settings and calculate the time it takes to render in e
case. You may want to save the results in a file so your program does not have to do this test eact
time it starts up. You can find an example of how to measure the performance of particular OpenG
operations and save the results using the isfast program from the OpenGL web site.

Optimizing Performance on Low—End Graphics Systems

This section discusses how you can get the best results from your application on low—end graphic:

systems, such as the Indy, Indigo, and Inaigo systems (but not other Indiésystems);
discussing the following topics:

"Choosing Features for Optimum Performance"
"Using the Pipeline Effectively"
"Using Geometry Operations Effectively"

"Using Per—Fragment Operations Effectively"

Choosing Features for Optimum Performance

By emphasizing features implemented in hardware, you can significantly influence the performanc
of your application. As a rule of thumb, consider the following:

Hardware—supported featuresLines, filled rectangles, color shading, alpha blending, alpha
function, antialiased lines (color-indexed and RGB), line and stippling patterns, color plane
masks, color dithering, logical operations selected glitbgicOp() pixel reads and writes,
screen to screen copy, and scissoring.

Software—supported featuresAll features not in hardware, such as stencil and accumulation
buffer, fogging and depth queuing, transforms, lighting, clipping, depth buffering, and texturing
Triangles and polygons are partially software supported.

Using the Pipeline Effectively

The low—-end graphics systems’ FIFO allows the CPU and the graphics subsystem to work in paral
For optimum performance, follow these guidelines:

Make sure the graphics subsystem always has enough in the queue.

Let the CPU perform preprocessing or non—graphic aspects of the application while the graph
hardware works on the commands in the FIFO.

For example, a full screen clear takes about 3 ms. Let the application do something else
immediately after a clear operation; the FIFO otherwise fills up and forces a stall.

Note that FIFOs in low—end systems are much smaller than those in high—end systems. Not all

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 2

graphics processing happens in hardware, and the time spent therefore differs greatly. To detect
imbalances between the CPU and the graphics FIFO, execgte tiswiewcommand and observe
gfxf in the CPU bar and fiwt and finowt in the gfx bar.

ofxf: Time spent waiting for the graphics FIFO to drain.
fiwt: FIFO filled up and host went to sleep waiting for it to drain.

finowt: FIFO filled up but drained fast enough that host continued.

Using Geometry Operations Effectively

If your application seems transform limited on a low end system, you can improve it by considering
the tips in this section. The section starts with some general points, then discusses optimizing line
drawing and using triangles and polygons effectively.

To improve performance in the geometry subsystem, follow these guidelines:
Use single—precision floating—point parametepscept where memory size is critical.
— Use single—precision floats for vertices, normals, and colors.

— Transform paths use single—precision fldatgs fastest to usglVertex3fv()and
glVertex2fv()

UseglOrtho() and a modelview matrix without rotation for best performance. Perspective
transforms that require multiplication by 1/w or division by w are much slower.

Don’'t enable normalizing of normals if the modelview matrix doesn't include scaling and if you
have unit-length normals.

Optimizing Line Drawing
Even on low—end systems, lines can provide real-time interactivity. Consider these guidelines:

Use line drawing while the scene is changing and solid rendering when the scene becomes st

Shaded lines and antialiased lines that are one pixel wide are supported by the hardware.
Patterned lines generated wifthineStipple()are as fast as solid lines.

Wide lines are drawn as multiple parallel offset lines.
Depth—queued lines are about as fast as shaded lines.

The hardware can usually draw lines faster than the software can produce commands, though
long or antialiased lines can cause a backup in the graphics pipeline.

Avoid depth buffering for lines; incorrect depth—sorting artifacts are usually not noticeable.

Optimizing Triangles and Polygons

When rendering triangles and polygons, keep in mind the following:

Maximize the number of vertices betwegiBegin()andglEnd().

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 3

Decompose quads and polygons into triangle strips. The GL_TRIANGLE_STRIP primitive has
the fastest path.

Use connected primitives (triangle, quad, and line strips). Use triangle strips wherever possibl
and draw as many triangles as possiblegfiegin(YglEnd() pair.

When rendering solid triangles, consider the following:

— Color shading and alpha blending are performed in hardware on Indy andzlmﬂjgo
systems. Consult system-specific documentation for information on other low—-end systen

— Larger triangles have a better overall fill rate than smaller ones because CPU setup per
triangle is independent of triangle size.

Using Per—Fragment Operations Effectively

This section looks at some things you can do if your application is fill limited on a low—end system.
provides information about getting the optimum fill rates and about using pixel operations
effectively.

Getting the Optimum Fill Rates

To achieve the fastest fill rates possible, consider the following:

Clear operations and screen-aligg&ect()calls that don’t use the depth or stencil buffer have
a maximum fill rate of 400 MBps.

The hardware accelerates drawing rectangles that have their vertical and horizontal edges
parallel to those of the window. The Open@lRect()calll] as opposed to IRIS GL
rect() specifies rectangles, but depending on the matrix transformations they may not be

screen—aligned. If the matrices are such that the rectangle drgiRebt()is screen—aligned,
OpenGL detects that and uses the accelerated mode for screen—aligned rectangles.

UseglShadeModel(jvith GL_FLAT whenever possible, especially for lines.

Using dithering, shading, patterns, logical operations, writemasks, stencil buffering, and depth
buffering (and alpha blending on some systems) slows down an application.

UseglEnable() with GL_CULL_FACE to eliminate backfacing polygons, especially in modes
that have slow fill rates, such as depth buffering and texturing (alpha blending on some systen

In any OpenGL matrix mode, low—end systems check for transforms that only scale, and have
rotations or perspective. The system looks at the specified matrices, and if they only scale anc
have no rotation or perspective, performs optimizations that speed up transformation of vertice
to device coordinates. One way to specify this is as follows:

gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D(0,xsize,0,ysize);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glShadeModel(GL_FLAT);

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 4

You also have to usegVertex2fv()call to specify 2D vertices.

Starting with IRIX 6.2, texture mapping speed is increased by about 10 times (compared to
previous releases) when texture parameters are specified as follows:

glEnable(GL_TEXTURE_2D);
glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)

glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)

glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
gIHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);

In addition, follow these guidelines:

- For RGB textures, make sure the texture environment mode, sejlR&kENV(),s either
GL_REPLACE or GL_DECAL.

— For RGBA textures, make sure the texture environment mode is GL_REPLACE.

Note that the above fast path does not work when stencil is enabled and when depth
buffering and alpha testing are both on.

Note: Avoid using depth buffering whenever possible, because the fill rates for depth buffering are
slow. In particular, avoid using depth-buffered lines. The depth buffer is as large as the window, st
use the smallest possible window to minimize the amount of memory allocated to the depth buffer.
The same applies for stencil buffers.

Using Pixel Operations Effectively

Write your OpenGL program to use the combinations of pixel formats and types liStelolén16-1
for which the hardware can use DMA. The CPU has to reformat pixels in other format and type
combinations.

Table 16-1 Pixel Formats and Types Using DMA on Low—-End Systems

Format Type

GL_RGBA GL_UNSIGNED_BYTE
GL_ABGR_EXT GL_UNSIGNED_BYTE
GL_COLOR_INDEX GL_UNSIGNED_BYTE
GL_COLOR_INDEX GL_UNSIGNED_SHORT

Note that GL_ABGR_EXT provides better performance than GL_RGBA on Indigo systems but not

on Indy or Indig3 XL systems, where the two formats perform about the same.
Here are some additional guidelines for optimizing pixel operations:
Scrolling. When scrolling scenes, ugéCopyPixels(Xo copy from one scene to the next.

When you scroll something, such as a teleprompter text scroll or an EKG display, use
glCopyPixels(to shift the part of the window in the scrolling direction, and draw only the area
that is newly exposed. UsingdCopyPixels()s much faster than completely redrawing each
frame.

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning - 5

Minimizing calls. Make each pixel operation draw as much data as possible. For each call, a
certain amount of setup is required; you cut down on that time if you minimize the number of
calls.

Zooming. Zoomed pixels cannot use DMA. A 2 x 2 zoom is faster than other zoom operations.

Depth and scissoringLow-end systems use an accelerated algorithm that makes clearing the
depth buffer virtually free. However, this has slowed enabling and disabling scissoring and
changing the scissor rectangle. The larger the scissor rectangle, the longer the delay. As a res

- Rendering while scissoring is turned on is fast.

— Calling glEnable()andglDisable() with GL_SCISSOR, callinglScissor(Jand pushing and
popping attributes that cause a scissor change are slow.

Low—-End Specific Extensions

For Indy and Indig% XL systems, an extension has been developed that increases fill rate by drawil
pixels adN x N rectangles (effectively lowering the window resolution). This "framezoom" extension
SGIX_framezoom, is available as a separate patch under both IRIX 5.3 and IRIX 6.2 (and later).

Note: This extension is experimental. The interface and supported systems may change in the futt
When using the extension, consider the following performance tips:

The extension works best when texturing is enabled. When pixels are zoomedNjp/by can

expect the fill rate to go up by abduf/2. This number is an estimate; a speed-up of this
magnitude occurs only if texturing performance has been optimized as explained in the last
bullet of "Getting the Optimum Fill Rates"

When texturing is not enabled, performance, although faster than the texture map case, is
relatively slow compared to the non—-framezoomed case. Actually, a framezoom value of 2 is
slower than if framezoom was not enabled. The reason is that the graphics hardware in low-e
systems is optimized for flat or interpolated spans, and not for cases where the color changes
from pixel to pixel (as with texturing). When pixels are bigger (as with the framezoom
extension), this benefit cannot be used.

The framezoom factor can be changed on a frame-to—frame basis, so you can render with
framezoom set to a larger value when you are moving around a scene, and lower the value, o
turn framezoom off, when there are no changes in the scene.

For more detailed information, see the reference paggfcameZoomSGIX(pr those systems that
have the patch installed.

Optimizing Performance on O2 [Systems

An O2 system is similar to previous low—end systems in that it divides operations in the OpenGL
pipeline between the host CPU and dedicated graphics hardware. However, unlike previous systel
graphics hardware on the O2 handles more of the graphics pipeline in hardware. In particular, it is
capable of rasterizing triangle—based primitives directly without the host having to split them into
spans, and it performs all of the OpenGL per—fragment operations. The CPU is still responsible for

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 6

vertex and normal transformation, clipping, lighting, and primitive—level set-up.

In addition to using the CPU for geometry operations and the Graphics Rendering Engine (GRE) f
per—fragment operations, a number of imaging extensions and pixel transfer operations are
accelerated by the Imaging and Compression Engine (ICE).

Optimizing Geometry Operations
The section'Optimizing Performance on Low—End Graphics Systdists"recommendations in

"Using Geometry Operations EffectivelyMany of these recommendations apply to the O2 system
as well. There are, however, some differences worth mentioning:

Generic 3D transformations with perspective are comparable in speed to 2D transformations
because the floating—point pipeline in the R5000 and R10000 CPUs is much faster than
previous—generation CPUs. However, always put perspective in the projection matrix and not
the modelview matrix to allow for faster normal transformation.

Minimize attribute setup; attribute setup for each primitive is performed on the CPU. For
example:

— Use flat shading if the color of the model changes rarely or not within the same primitives
that make up the model.

- Don’t enable depth-buffering when rendering lines.
— Turn off polygon offset when not in use.
— Choose a visual with no destination alpha planes if destination alpha blending is not used.

When using fog, set thmramargument to GL_LINEAR instead of GL_EXP or GL_EXP2.
GL_LINEAR uses vertex fogging, which is hardware accelerated on O2 systems, instead of
per—pixel fogging, which is not.

When continuously rendering a large amount of static geometry elements, consider storing the
geometry elements in display lists. When vertices and vertex attributes are stored in display lis
the R10000 CPU can prefetch the data in anticipation of its use and thus reduce read latency
data that cannot fit in the caches.

The n32 version of the OpenGL is somewhat faster than the 032 version due to the more
efficient parameter passing convention and the larger number of floating— point registers that t
n32 compilation mode offers. Furthermore, using n32 can improve application speed because
compiler can generate MIPS IV code and schedule instructions optimally for the R5000 or the
R10000 CPU.

Lighting on O2 systems is faster than on previous low—end systems because of the better
floating—point performance of its CPUs. However, the larger the number or the more complex
the lights (local lights, for instance), the larger the amount of work the CPU has to perform.
Two-sided lighting is not a "free" operation, so consider using single—sided lighting, if possible

Optimizing Line Drawing

Line drawing for low—end systems is discussed in some det@ptimizing Line Drawing. On O2
systems, almost all line rendering (rasterization) modes are hardware supported.

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 7

The following kinds of lines need to be rasterized by the CPU and will perform signifiskovtigr.
anti—aliased RGB lines that are either wide (line width greater than 1) or stippled

all types of anti—aliased color-index lines

Optimizing Triangle Drawing

Triangle drawing for low—end systems is discussed in some dé@jtimizing Triangles and
Polygons' Note the following points:

Triangle strips are the most optimal triangle path through the OpenGL pipeline. Maximize the
number of vertices betwegtBegin()andglEnd()

Polygon stippling is not hardware supported. Because a stippled polygon has to be rasterized
the CPU, enabling polygon stippling will cause a significant performance degradation.

If the application is using polygon stippling for screen—door transparency effects, consider
instead using alpha blending to emulate transparency. If using alpha blending is not possible,
consider setting the GLCRMSTIPPLEOPT environment variable. Setting this variable enables
an optimization that uses the stencil planes to emulate polygon stippling if the application does
not use the stencil planes. However, note that if the stipple pattern changes often during the
rendering of a frame, the performance benefits may be lost to the time spent repainting the
stencil planes with the different patterns.

Using Per—Fragment Operations Effectively

This section discusses how to use per—fragment operations effectively on O2 systems.

Getting Optimum Fill Rates

The rasterization hardware has the same fill rates whether the shading model is smooth or flat. If ti
application is rendering very large areas, there should be little difference in the performance betwe
smooth and flat shading. However, remember that setting up smooth—shaded primitives is more
expensive on the CPU side.

Framebuffer Configurations

The framebuffer on O2 systems can be configured four different ways (16, 16+16, 32, 32+32) to
allow applications to trade off memory usage and rendering speed for image quality. Apart from pi;
depth, the other main difference between these framebuffer types is where the back-buffer pixels
double-buffered visual reside. For the 16— and 32-bit framebuffer, the front and back buffers shar
same pixel with each buffer taking half of the pixel. For the 16+16 and 32+32 framebuffers, the bac
buffer is allocated as needed in a different region from the main framebuffer. As a result, 16+16 an
32+32 buffers can have visuals with the same color depth for single-buffered and double-bufferec
visuals but will need more memory in that case.

The framebuffer's configuration (size and depth) affects fill rate performance. In general, the deepe
the framebuffer, the more data the GRE (graphics rendering engine) needs to write to memory to

update the framebuffer and the more data the graphics back—end needs to read from the framebut
to refresh the screen. Note that for double—buffered applications, better fill rates can be achieved v

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 8

the split 16+16 framebuffer than with the 32-bit framebuffer. This is because the new color
information can be written to the pixels directly instead of having to be combined with what is in the
framebuffer. This is especially important for fill-rate limited texture mapping operations, buffer
clears and pixel DMAs.

Texture Mapping

An O2 system stores texture maps in system memory. The amount of texture storage is therefore
limited only by the amount of physical memory on the system. Texture memory is partitioned into ¢
KB tiles. Texture memory is made available on a tile basis; the actual memory usage for a texture
rounded up to 64 KB and the memory usage will be higher than if the same texture were to be pac
optimally in memory.

Tile—based texture memory also means that the minimum memory usage for any texture is one tile
and the amount of "wasted" texture memory can quickly add up if the application uses a large numr
of small textures. In that case, consider combining small textures into larger ones and using differe
texture coordinates to access different sections of the larger texture map.

The following texture formats are supported directly by the graphics hardware and require no
conversion when specified by the application:

8 bit luminance or intensity

16 bit luminance-alpha (8:8 format)
16-bit RGBA (5:5:5:1 format)

16 bit RGBA (4:4:4:4 format)

32 bit RGBA (8:8:8:8 format)

Applications that use more than one texture should use texture objects, now part of OpenGL 1.1, f
faster switching between multiple textures. Although fast, binding a texture is not a free operation
and judicious minimization of its use during frame rendering will increase performance. This can bt
achieved by rendering all the primitives that use the same texture object at the same time.

The texture filters GL_NEAREST and GL_LINEAR result in the best texture fill rates, whereas
GL_LINEAR_MIPMAP_LINEAR results in the worst fill rate. In cases where texture maps are
being minified and only bilinear filtering is required, consider using mipmaps with the minification
filter set to GL_LINEAR_MIPMAP_NEAREST. This filter gives the graphics engine better cache
locality and better fill rates.

The 3D texture mapping, texture color table, and texture scale bias extensions are supported by tt
02 OpenGL implementation, but are not hardware accelerated. Enabling one of these extensions
therefore result in significantly slower rendering.

Front and Back Buffer Rendering

The graphics rendering engine does not allow updating both the front and back buffers at the sam«
time (gIDrawBuffer(GL_FRONT_AND_BACK)). In order to support this functionality, the
OpenGL needs to specify the primitive being rendered to the graphics hardware twice, once for bo
the front and back buffer. This is an expensive operation and applications should try to avoid using
concurrent updates to both front and back buffers.

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 9

Getting Optimum Pixel DMA Rates

The following is a table of pixel types and formats for which hardware DMA can be used.

Table 16-2 Pixel Formats and Types That Work With DMA on O2 Systems

Format Type

GL_COLOR_INDEX GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT
GL_STENCIL_INDEX GL_UNSIGNED_INT

GL_DEPTH_COMPONENT GL_UNSIGNED_INT

GL_RGB GL_UNSIGNED_BYTE, GL_UNSIGNED_BYTE_3_3_2 EXT
GL_RGBA GL_UNSIGNED_BYTE, GL_UNSIGNED_INT_8 8 8_8 EXT
GL_ABGR_EXT GL_UNSIGNED_BYTE, GL_UNSIGNED_INT_8_8_8_8_EXT
GL_LUMINANCE GL_UNSIGNED_BYTE

GL_YCRCB_422_SGIX GL_UNSIGNED_BYTE

The pixel DMA paths support stencil, depth, and alpha tests, fogging, blending, and texturing.

Stencil indices can be sent via DMA as 32-bit unsigned int values, where the most significant
bits are transferred, using a stencil shift value of -24 for draw operations and 24 for read
operations.

Depth components can be sent via DMA as 24-bit unsigned int values, using a depth scale of
for draw operations and 1/256.0 for read operations. For draw operations, the depth test must
enabled with a function of GL_ALWAYS, and the color buffer must be set to GL_NONE.

Pixel zooms are accelerated for whole integer factors from -16 to 16, and integer fractions fro
-1/16 to 1/16 on all DMA paths.

Most read pixel operations on O2 will be significantly faster when the destination buffer and row
lengths are 32—-byte aligned.

Imaging Pipeline Using ICE

02 systems contain a multi-purpose compute ASIC called the Imaging and Compression Engine
(ICE) which serves both the needs of DCT-based compression algorithms and of OpenGL image
processing. All the elements in the OpenGL imaging pipeline (that is the pixel transfer modes) are
implemented on ICE, but some functions (such as convolution and color matrix multiplication)
benefit a lot while others (like histogram and color table) don’t benefit as much. This section
discusses the support provided by ICE and gives some programming tips.

Pixel Formats. ICE supports the 8-bit GL_RGBA, GL_RGB, and GL_LUMINANCE pixel
formats. Because the O2 graphics hardware does not support an RGB framebuffer type, RGB
pixels have to be converted to RGBA before they can be displayed. Instead of using the CPU
perform this conversiorglDrawPixels()uses the wide loads and stores and DMA engine on
ICE. It is possible to use other pixel formats such as luminance-alpha or color index, but for
those formats, the CPU performs all image processing calculations.

64 KB Tiles. The memory system natively allocates memory for the framebuffer and pbuffers it
64 KB tiles. ICE takes advantage of this by having a translation look-aside buffer (TLB) in the
DMA engine that maps 64 KB tiles.

Buffer to buffer fast pattBecause ICE can directly map tiles without further manipulation, it is

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 10

fastest to go buffer to buffer (i.glCopyPixels() for the imaging pipeline on O2. While not
explicitly an imaging operation, ICE supports span conversion between GL_RGBA and
GL_LUMINANCE on the pixel transfer path includirggCopyPixels()glDrawPixel()is the
next fastest path.

Image Width. Any image width up to 2048 pixels is permitted, but image widths that are
modulo 16 pixels are optimal. If the image is not modulo 16, the CPlbuepy() to pad the

image to closest modulo 16 width. Note that setting row pack, row unpack, and certain clipping
and zoom combinations can cause the internal image width to change from what was modulo
pixels.

Number Formats. The vector processor on ICE dictates to a large extent the numerical
representation of coefficients that can be used. There are two number formats on ICE: integer
and fixed point (s.15). Therefore values should be either [-1.0, 1.0) or strictly integer. Number:
outside this range force the library to perform the calculations on the CPU. Developers have n
found this to be too restricting as a multiplication; by 1.9, for example, can also be expressed :
a multiplication of 0.95 followed by a multiplication of 2.0. OpenGL allows this trick through
use of the post color scale functions.

Memory. Some programming restrictions arise from the need to balance the amount of state
kept on the chip and the amount of memory available for image data. The 6 KB of data RAM
organized into 3 banks. Bank C is 2 KB and is used for storing color tables, histogram,
convolution coefficients, and 256 bytes of internal state. In order to remain on the fast path, thi
total bytes used for items in Bank C must be less than 2 KB. Because of that limitation, two
color tables specified as GLbyte and GL_RGBA will not be hardware accelerated. This is not ¢
problem if the application can specify the color tables as GL_LUMINANCE or
GL_LUMINANCE_ALPHA.

Color Tables The number, type, and format of color tables is important to keep the application
on the fast path. Up to two color tables or one color table and one histogram can be acceleratt
on the O2 imaging fast path. The internal format of the color table can be luminance,
luminance-alpha, or rgba. The color table type must be GL_BYTE. While the texture color tab
is not supported, using the color table extension on texture load is an alternative.

Convolution. Both general and separable convolutions are hardware accelerated on O2.
Convolution kernel sizes that are accelerated are 3x3, 5x5, and 7x7. Applications can gain
further performance improvement by specifying the kernel as GL_INTENSITY (note that this is
different than GL_LUMINANCE). O2 systems cannot accelerate convolutions and histograms
the same time. SEEXT_convolutior] The Convolution Extensiorfor more information.

Separating ComponentsOn other graphics architectures, there is a significant advantage to
processing image components one at a time. Some OpenGL implementations use the color
matrix multiply function to separate out components. There is no advantage to separating out
component on O2 by using the color matrix multiply function. The intent was to use the matrix
multiply for color correction. Unlike the color scale and bias and convolution, matrix multiply
values should be in the [-1.0, 1.0) range for hardware acceleration.

Histograms Histograms are internal calculated with 16-bit bins, and the internal format is only
GL_RGBA. While an application can ask for different formats, the histogram is always
calculated as RGBA.

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 11

Extensions Supported by O2 Systems
02 systems currently support the following extensions:
Pixel Extensions: EXT_abgr, EXT_packed_pixels, SGIX_interlace

Blending Extensions: EXT_blend_color, EXT_blend_logic_op, EXT_blend_minmax,
EXT_blend_subtract

Imaging extensions:. EXT_convolution, EXT_histogram, SGI_color_matrix, SGI_color_table

Buffer and Pbuffer extensions: EXT_import_context, EXT_visual_info, EXT_visual_rating,
SGIX_dm_pbuffer, SGIX_fbconfig, SGIX_pbuffer

Texture extensions: EXT_texture3D, SGIS_texture_border_clamp, SGIS_texture_color_table,
SGIS_texture_edge_clamp,

Supported only on O2 systems: SGIS_generate_mipmap, SGIS_texture_scale_bias. These tv
extensions are not discussed in this manual.

Video and swap control extensions: SGI_swap_control, SGI_video_sync, SGIX_video_source

Optimizing Performance on Mid—Range Systems

This section discusses optimizing performance for two of the Silicon Graphics mid-range systems
Elan graphics and Extreme graphics. For information on Indigo2 IMPACT systeni§serizing
Performance on Indigo2 IMPACT and OCTANE Systems"

General Performance Tips

The following general performance tips apply to mid—-range graphics systems:

Data size.Mid-range graphics systems are optimized for word-sized and word-aligned data (i
word is four bytes). Pixel read and draw operations are fast if the data is word aligned and eac
row is an integral number of words.

Extensions.The ABGR extension is hardware accelerated"@¥a& abgi] The ABGR
Extension).

Other available extensions are implemented in software.

Flushing. Too many flushes, implicit or explicit, can adversely affect performance:

- In single buffer mode, you may need to cgiflush() after the last of a series of primitives
to force the primitives through the pipeline and expedite graphics processing (explicit
flushing).

- In double buffer mode, it is not necessary to ghtlush() thegIXSwapBuffers(gall
automatically flushes the pipeline (implicit flushing).

Optimizing Geometry Operations on Mid—Range Systems

Consider the following points when optimizing geometry operations for a mid-range system:

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 12

Antialiasing. Mid-range graphics systems support hardware—accelerated lines of width 1.

Clipping. Minimize clipping for better performance.

Optimizing Per—-Fragment Operations on Mid—Range Systems
Consider the following issues when optimizing per—fragment operations for a mid-range system:

Alpha Blending. Mid-range graphics systems support alpha blending in hardware. All
primitives can be blended, with the exception of antialiased lines and points, which use the
blending hardware to determine pixel coverage. The alpha value is ignored for these primitive:
Pixel blends work best in 24-bit, single-buffered RGB mode. In double-buffered RGB mode,
blend quality degrades.

Dithering. Dithering is used to expand the range of colors that can be created from a group of
color components and to provide smooth color transitions. Disabling dither can improve the
performance oflClear(). Dithering is enabled by default. To change that, call

glDisable(GL_DITHER)

Fog. Mid-range graphics systems do not accelerate per—fragment fog modes. To select a
hardware—accelerated fog mode, call

glHint (GL_FOG_HINT, GL_FASTEST)
Lighting. Mid-range graphics systems accelerate all lighting features.

Pixel formats. The GL_ABGR_EXT pixel format is much faster than the GL_RGBA pixel
format. For details, se&XT_abgrd] The ABGR Extension"

The combinations of types and formats showmable 16—-are the fastest.

Table 16-3 Pixel Formats and Types That Are Fast on Mid—-Range Systems

Format Type

GL_RGBA GL_UNSIGNED_BYTE
GL_ABGR_EXT GL_UNSIGNED_BYTE
GL_COLOR_INDEX GL_UNSIGNED_SHORT
GL_COLOR_INDEX GL_UNSIGNED_BYTE

Texture Mapping. All texture mapping is performed in software. As a result, textured
primitives run with reduced performance.

Elan Graphics accelerates depth buffer operations on systems that have depth buffer hardwar

installed (default on Elan, optional on XS and XS24, not available on I%djgnems).

Fast Clear Operations.The hardware performs combined color and depth clear under the
following conditions:

— depth buffer is cleared to 1 and the depth test is GL_LEQUAL

— depth buffer is cleared to 0 and the depth test is GL_GEQUAL

Optimizing Performance on Indigo2 IMPACT and OCTANE

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 13

Systems

This section provides performance tips for Indigo2 IMPACT and OCTANE graphics systems. All
information applies to all Indigo2 IMPACT and OCTANE systems, except sections on texture
mapping, which do not apply to the Indigo2 Solid IMPACT and the OCTANE SI (without hardware
texture mapping). You learn about these topics

"General Tips for Performance Improvement"
"Achieving Peak Geometry Performance"
"Using Textures”

"Using Images"

"Accelerating Color Space Conversion"
"Using Display Lists Effectively"

"Offscreen Rendering Capabilities"

General Tips for Performance Improvement

This section provides some general tips for improving overall rendering performance. It also lists
some features that are much faster than on previous systems and may now be used by applicatior
that could not consider them before.

Fill-rate limited applications.Because per—primitive operations (transformations, lighting, and
so on) are very efficient, applications may find that they are fill-rate limited when drawing large
polygons (more than 50 pixels per triangle). In that case, you can actually increase the
complexity of per—primitive operations at no cost to overall performance. For example,
additional lights or two-sided lighting may come for free.

For general advice on improving performance for fill-rate limited applicationT sei&g the
Raster SubsystemNote in this context that texture—-mapping is greatly accelerated on Indigo2
IMPACT and OCTANE systems with hardware texture—mapping.

Geometry-limited applications.For applications that draw many small polygons, consider a
different approach: Use textures to avoid drawing so many triangle8JSieg Textures"

Clipping. For optimum performance, avoid clipping. Special hardware supports clipping within
a small range outside of the viewport. By keeping geometry within this range, you may be able
to significantly reduce clipping overhead.

GLU NURBS. If you use GLU NURBS, store the tessellation result in display lists to take full
advantage of evaluator performance. Don't for example, recompute tessellations.

Antialiasing. Antialiased lines on Indigo2 IMPACT systems are high quality and fast.
Applications that did not use antialiased lines before because of the performance penalty may
now be able to take advantage of them. All antialiased lines are rendered with the same high
quality, regardless of the settings of GL_LINE_SMOOTH_HINT. Although available, wide
antialiased lines (width greater than 1.0) are not supported in hardware and should be avoidec
Wide antialiased points are supported in hardware with good performance.

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 14

Multisampling is not supported. Antialiasing of polygons is not supported in hardware. You car
however, draw antialiased line loops around polygons to get antialiasing.

Achieving Peak Geometry Performance
Rendering of primitives is especially fast if you follow these recommendations:

Triangles. Work with triangle strips consisting of six triangles (or multiples of six). Render
independent triangles in groups of four (or multiples or four).

Note that the hardware allows mixing of different lengths of triangle strips. Grouping like
primitives is highly recommended.

Quads. Work with quad strips consisting of three quads (or multiples of three). Render
individual quads in sets of three (or multiples of three).

UseglLoadldentity()to put identity matrixes on the stack. The system can optimize the pipeline
if the identity matrix is used, but does not check whether a matrix loadgitl dgdMatrix()is
the identity matrix.

Using Textures

Texturing capabilities of the Indigo2 IMPACT and OCTANE systems differ, as shown in the
following table:

Table 16—4 Texturing on Indigo2 and OCTANE Systems

Platform Supported Texturing
Indigo2 Solid IMPACT Software texturing
OCTANE Sl Software texturing
Indigo2 High IMPACT Hardware texturing
OCTANE Sl with hardware textures Hardware texturing
Indigo2 Maximum IMPACT Hardware texturing
OCTANE MXI Hardware texturing

Texture—-mapping is greatly accelerated on systems with hardware texture, and is only slightly slov
than non-textured fill rates. It also significantly improves image quality for your application. To get
the most benefit from textures, use the extensions to OpenGL for texture management as follows:

Use texture objects to keep as many textures resident in texture memory as possible. You car
bind a texture to a name, then use it as needed (similar to the way you define and call a disple
list). The extension also allows you to specify a set of textures and prioritize which textures
should be resident in texture memory.

Texture objects are part of OpenGL 1.1. For OpenGL 1.0, they were implemented as the textu
object extension (EXT_texture_object).

Use the texture—LOD extension to clamp LOD values, which has the side effect of
communicating to the system which mipmap levels it needs to keep resident in texture memor
For more information, se&GIS_texture_lod The Texture LOD Extension”

Use subtextures to make texture definitions more efficient. For example, assume an applicatic
uses several large textures, all of the same size and component type. Instead of declaring
multiple textures, declare one, then géeexSublmage2D{p redefine the image as needed.

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 15

Subtextures are part of OpenGL 1.1. They were implemented as the subtexture extension
(EXT_subtexture) in OpenGL 1.0.

Use the GL_RGBA4 internal format to improve performance and conserve memory. This form
is especially important if you have a large number of textures. The quality is reduced, but you
can fit more textures into memory because they use less space.

Internal formats are part of OpenGL 1.1. They were implemented as part of the texture extens
in OpenGL 1.0.
Use the GL_RGBA4 internal format and the packed pixels extension to minimize disk space a

improve download rate (sSéEXT_packed_pixeld The Packed Pixels Extensign”

Use the 3D texture extension for volume rendering. Note, however, that due to the large amot
of data, you typically have to tile the texture. You can set up the texture as a volume and slice
through it as needed. For more information,"$&€T _texture3] The 3D Texture Extension”

If you use GL_LUMINANCE and GL_LUMINANCE_ALPHA textures, you can speed up
loading by using the texture—select extension"8e4S_texture_seleidt The Texture Select
Extension).

For Indigo2 IMPACT graphics, data coherence enhances performance. For example:

— When you draw your geometry, cluster points, short lines, or very small triangles so that
you are not jumping around the texture (you want to maintain texture data coherency).

- If any minification is done to the texture, mipmaps result in improved performance.

— When you use the pixel texture extension, performance varies based on the coherency of
lookup of pixel color data as texture coordinates. Applications have no control over this.

Using Images
This section provides some tips for using images on Indigo2 IMPACT systems.

On many systems, a program encounters a noticeable performance cliff when a certain specific
feature (for example depth—buffering) is turned on, or when the number of modes or components
exceeds a certain limit.

On Indigo2 IMPACT systems, performance scales with the number of components. For example, (
some systems, a switch from RGBA to RGB may not result in a change in performance, while on
Indigo2 IMPACT systems, you should expect a performance improvement of 25%. (Note that while
this applies to loading textures, it does not apply to using loaded textures.)

Here are some additional hints for optimizing image processing:

Instead ofylPixelMap(), use the Silicon Graphics color table extension, discussed in
"SGI_color_tablél The Color Table Extensionéspecially when working with
GL_LUMINANCE or GL_LUMINANCE_ALPHA images.

OpenGL requires expansion of pixels using formats other than GL_RGBA to GL_RGBA.
Conceptually, this expansion takes place before any pixel operation is applied. Indigo2 IMPAC
systems attempt to postpone expansion as long as possible: this improves performance

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 16

(operations must be performed on all components present in arfiraagm—expanded image

has fewer components and therefore requires less computation). Because pixel maps are
inherently four components, GL_LUMINANCE and GL_LUMINANCE_ALPHA images must
be expanded (a different lookup table is applied to the red, green, and blue components derive
from the luminance value). However, if the internal format of an image matches the internal
format of the color table, Indigo2 IMPACT hardware postpones the expansion, which speeds (
processing.

The convolution extension, discussed&EXT_convolutiori] The Convolution Extensiortias
been optimized. If possible, use the extension with separable convolution filters.

Indigo2 IMPACT systems are tuned for 3 x 3, 5 x 5, and 7 x 7 convolution kernels. If you
choose a kernel size not in that set, performance is comparable to that of the closest member
the set. For example, if you specify 2 x 7, performance is similar to using 7 x 7.

Use texture—based zooming insteadlBfxelZoom()

Texture loading and interpolation is fast on Indigo2 IMPACT, and texture-based zooming
therefore results in a speed increase and higher—quality, more controllable results.

Where possible, minimize color table and histogram sizes and the number of color tables
activated. If you don’t, you may experience performance loss because the color table and the
histogram compete for limited resources with other OpenGL applications.

Accelerating Color Space Conversion

Indigo2 IMPACT systems provide accelerated color space conversions and device—specific color
matching.

Linear color space conversionUse the color matrix extension to handle linear color space
conversion, such as CMY to RGB, in hardware. This extension is also useful for reassigning o
duplicating components. SE8GI_color_matrix] The Color Matrix Extensionfor more
information.

Non-linear color space conversionklse the 3D and 4D texture extension for color conversion
(for example, RGBA to CMYK). Using thglPixelTexGenSGIX@ommand, you can direct
pixels into the lookup table and get other pixels out. Performance has been optimized.

Using Display Lists Effectively

If you work on a CAD application or other application that uses relatively static data, and therefore
find it useful to use display lists instead of immediate mode, you can benefit from the display list
implementation on Indigo2 IMPACT systems:

When the display list is compiled, most OpenGL functions are stored in a format that the
hardware can use directly. At execution time, these display list segments are simply copied to
the graphics hardware with little CPU overhead.

A further optimization is that a DMA mechanism can be used for a subset of display lists. By
default, the CPU feeds the called list to the graphics hardware. Using DMA display lists, the he
gives up control of the bus and Indigo2 IMPACT uses DMA to feed the contents to the graphic

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 17

pipeline. The speed improvement at the bus is fourfold; however, a setup cost makes this
improvement irrelevant for very short lists. The break—even point varies depending on the list
you are working with, whether it is embedded in other lists, and other factors.

Display List Compilation on Indigo2 IMPACT Hardware

The functions that are direct (use hardware formats) will change over time. The following items are
currently NOT compiled to direct form:

glCallLists() andglListBase()

all imaging functions

all texture functions

glHint(), glClear(), andglScissor()
glEnable()andglDisable()
glPushAttrib()andglPopAttrib()
all evaluator functions

most OpenGL extensions

DMA Display Lists on Indigo2 IMPACT Systems

If a display list meets certain criteria, Indigo2 IMPACT systems use DMA to transfer data from the
CPU to the graphics pipeline. This is useful if an application is bus limited. It can also be an
advantage in a multi-threaded application, because the CPU can do some other work while the
graphics subsystem pulls the display list over.

The DMA method is used under the following conditions:
Only functions that are compiled down to direct form are used.
There is no hierarchy in the display list that is more than eight levels deep.

If the display list hierarchy uses texture objects, all textures that are referenced have to fit into
hardware texture memory (TRAM) at the same time.

Note that the system tests recursively whether the DMA model is appropriate: If an embedded disg
list meets the criteria, it can be used in DMA mode even if the higher—level list is processed by the
CPU.

Offscreen Rendering Capabilities

Offscreen rendering can be accelerated using the pixel buffer extension discussed in
"SGIX_pbuffef] The Pixel Buffer Extension"

Optimizing Performance on RealityEngine Systems

This section provides information on optimizing applications for RealityEngine and RealityEngine2.
It discusses these topics:

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 18

"Optimizing Geometry Performance”
"Optimizing Rasterization"

"Optimizing Use of the Vertex Arrays"
"Optimizing Multisampling and Transparency"

"Optimizing the Imaging Pipeline"

Optimizing Geometry Performance
Here are some tips for improving RealityEngine geometry performance:

Primitive length. Most systems have a characteristic primitive length that the system is
optimized for. On RealityEngine systems, multiples of 3 vertices are preferred, and 12 vertices
(for example a triangle strip that consists of 10 triangles) result in the best performance.

Fast mode changesChanges involving logic op, depth func, alpha func, shade model, cullface,
or matrix mode are fast.

Slow mode changesChanges involving texture binding, lighting and material changes, line
width and point size changes, scissor, or viewport are slow.

Texture coordinates.Automatic texture coordinate generation wglfiexGen(yesults in a
relatively small performance degradation.

Quads and polygonsWhen rendering quads, use GL_POLYGON instead of GL_QUADS. The
GL_QUADS primitive checks for self-intersecting quads and is therefore slower.

Optimizing Rasterization

This section discusses optimizing rasterization. While it points out a few things to watch out for, it
also provides information on features that were expensive on other systems but are acceptable on
RealityEngine systems:

After a clear command (or a command to fill a large polygon), send primitives to the geometry
engine for processing. Geometry can be prepared as the clear or fill operations take place.

Texturing is free on a RealityEngine if you use a 16-bit texel internal texture format. There are
16-bit texel formats for each number of components. Using a 32-hit texel format yields half th
fill rate of the 16-bit texel formats. Internal formats are part of OpenGL 1.1; they were part of
the texture extension in OpenGL 1.0.

The use of detail texture and sharpen texture usually incurs no additional cost and can greatly
improve image quality. Note, however, that texture management can become expensive if a
detail texture is applied to many base textures. Use detail texture but keep detail and base pai
and detail only a few base textures. 3281S_sharpen_textureThe Sharpen Texture

Extension"and"SGIS_detail_texturfé The Detail Texture Extension"

If textures are changing frequently, use subtextures to incrementally load texture data.
RealityEngine systems are optimized for 32 x 32 subimages.

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 19

There is no penalty for using the highest—quality mipmap filter
(GL_LINEAR_MIPMAP_LINEAR) if 16-hit texels are used (for example, the GL_RGBA4
internal format, which is part of OpenGL 1.1 and part of the texture extension for OpenGL 1.0)

Local lighting or multiple lights are possible without an unacceptable degradation in
performance. As you turn on more lights, performance degrades slowly.

Simultaneous clearing of depth and color buffers is optimized in hardware.

Antialiased lines and points are hardware accelerated.

Optimizing Use of the Vertex Arrays

Vertex arrays were implemented as an extension to OpenGL 1.0 and are part of OpenGL 1.1. If yc
use vertex arrays, the following cases are currently accelerated for RealityEngine (each line
corresponds to a different special case). To get the accelerated routine, you need to make sure yo
vertices correspond to the given format by using the correct size and type in your enable routines,
also by enabling the proper arrays:

glVertex2f

glVertex3f

gINormal3f glVertex3f

glColor3f glVertex3f

glColor4f glVertex3f

gINormal3f glVertex3f
glTexCoord2f glVertex3f

glColor4f glTexCoord2f glVertex3f
glColor3f gINormal3f glVertex3f
glColor4f gINormal3f glVertex3f
gINormal3f glTexCoord2f glVertex3f

glColor4f glTexCoord2f gINormal3f glVertex3f

Optimizing Multisampling and Transparency

Multisampling provides full-scene antialiasing with performance sufficient for a real-time visual
simulation application. However, it is not free and it adds to the cost of some fill operations. With
RealityEngine graphics, some fragment processing operations (blending, depth buffering, stencilin
are essentially free if you are not multisampling, but do reduce performance if you use a
multisample—capable visual. Texturing is an example of a fill operation that can be free on a
RealityEngine and is not affected by the use of multisampling. Note that when using a
multisample—capable visual, you pay the cost even if you disable multisampling.

Below are guidelines for optimizing performance for multisampling:

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 20

Multisampling offers an additional performance optimization that helps balance its cost: a
virtually free screen clear operation. Technically, this operation doesn’t really clear the screen,
but rather allows you to set the depth values in the framebuffer to be undefined. Therefore, us
of this clear operation requires that every pixel in the window be rendered every frame; pixels
that are not touched remain unchanged. This clear operation is invoked with
glTagSampleBufferSGIX(3ee the reference page for more information).

When multisampling, using a smaller number of samples and color resolution results in better
performance. Eight samples with 8—bit RGB components and a 24-bit depth buffer usually res
in good performance and quality; 32-bit depth buffers are rarely needed.

Multisampling with stencilling is expensive. If it becomes too expensive, use the polygon offse
extension to deal with decal tasks (for example, runway strips).

Polygon offsets are supported in OpenGL 1.1 and were part of the Polygon Offset extension ir
OpenGL 1.0.

There are two ways of achieving transparency on a RealityEngine system: alpha blending and
subpixel screen—door transparency ugiSgmpleMaskSGIS@AIpha blending may be slower,
because more buffer memory may need to be accessed. For more information about screen—

transparency, sé8GIS_multisamplé The Multisample Extension”

Optimizing the Imaging Pipeline
Here are some points that help you optimize the imaging pipeline:
Unsigned color types are faster than signed or float types.

Smaller component types (for example, GL_UNSIGNED_BYTE) require less bandwidth from
the host to the graphics pipeline and are faster than larger types.

The slow pixel drawing path is used when fragment operations (depth or alpha testing, and so
on) are used, or when the format is GL_DEPTH_COMPONENT, or when multisampling is
enabled and the visual has a multisample buffer.

Using the Color Matrix and the Color Writemask

Your application might perform RGBA imaging operations (for example, convolution, histogram,
and such) on a single—component basis. This is the case either when processing gray scale
(monochrome) images, or when different color components are processed differently.

RealityEngine systems currently do not support RGBA-capable monochrome visuals (a feature thi
introduced by the framebuffer configuration extension;"'S€dX _fbconfig] The Framebuffer
Configuration Extension) You must therefore use a four-component RGBA visual even when
performing monochrome processing. Even when monochrome RGBA-capable visuals are suppor
you may find it beneficial to use four—-component visuals in some cases, depending on your
application, to avoid the overhead of tfi¥MakeCurrent(or giXMakeCurrentReadSGI¢€pll.

On RealityEngine systems, monochrome imaging pipeline operations are about four times as fast .
the four—-component processing. This is because only a quarter of the data has to be processed or
transported either from the host to graphics subsystiemexample, foglDrawPixels()] or from

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 21

the framebuffer to the graphics enginder example, foglCopyPixels().

The RealityEngine implementation detects monochrome processing by examining the color matrix
(see"Tuning the Imaging Pipelingand the color writemask.

The following operations are optimized under the set of circumstances listed below:
glDrawPixels()with convolution enabled and
— the pixel format is GL_LUMINANCE or GL_LUMINANCE_ALPHA
— the color matrix is such that the active source component is red

glCopyPixels(and the absolute value of GL_ZOOM_X and GL_ZOOM _Y is 1.

The following set of circumstances has to be met:
All pixel maps and fragment operations are disabled.
The color matrix does not scale any of the components.
The post color matrix scales and biases for all components are 1 and 0, respectively.

Either write is enabled only for a single component (R, G, B, or A), or alpha—component write |
disabled.

Optimizing Performance on InfiniteReality Systems

This section discusses optimizing performance on InfiniteReality systems in the following sections:
"Managing Textures on InfiniteReality Systems"
"Offscreen Rendering and Framebuffer Management"
"Optimizing State Changes"

"Miscellaneous Performance Hints"

Managing Textures on InfiniteReality Systems
The following texture management strategies are recommended for InfiniteReality systems:

Using the texture_object extension (OpenGL 1.0) or texture objects (OpenGL 1.1) usually yielr
better performance than using display lists.

Note that on RealityEngine systems, using display lists was recommended. On InfiniteReality
systems, using texture objects is preferred.

OpenGL will make a copy of your texture if needed for context switching, so deallocate your

own copy as soon as possible after loading it. Note that this behavior differs from RealityEngir
behavior.

Note that RealityEngine and InfiniteReality systems differ here:

— On RealityEngine systems, there is one copy of the texture on the host, one on the graphi
pipeline. If you run out of texture memory, OpenGL sends the copy from the host to the

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 22

graphics pipeline after appropriate cleanup.

— On Infinite Reality systems, only the copy on the graphics pipe exists. If you run out of
texture memory, OpenGL has to save the texture that didn’t fit from the graphics pipe to th
host, then clean up texture memory, then reload the texture. To avoid these multiple move
of the texture, be sure to always clean up textures you no longer need so you don’t run ou
of texture memory.

This approach has the advantage of very fast texture loading because no host copy is ma
To load a texture immediately, follow this sequence of steps:
1. Enable texturing.
2. Bind your texture.
3. CallglTeximage*().

To define a texture without loading it into the hardware until the first time it is referenced,
follow this sequence of steps:

1. Disable texturing.

2. Bind your texture.

3. CallglTeximage*()

Note that in this case, a copy of your texture is placed in main memory.

Don't overflow texture memory, or texture swapping will occur.

If you want to implement your own texture memory management policy, use subtexture loadin
You have two options. For both options, it is important that after initial setup, you never create
and destroy textures but reuse existing ones:

— Allocate one large empty texture, then gdllexSublmage*(Jo load it piecewise, and use
the texture matrix to select the relevant portion.

— Allocate several textures, then fill them in by callgiexSublmage*(as appropriate.

Use 16-bit texels whenever possible; RGBA4 can be twice as fast as RGBAS8. As a rule,
remember that bigger formats are slower.

If you need a fine color ramp, start with 16—bit texels, then use a texture lookup table and textt
scale/bias.

Texture subimages should be multiples of 8 texels wide for maximum performance.

For loading textures, use pixel formats on the host that match texel formats on the graphics
system.

Avoid OpenGL texture borders; they consume large amounts of texture memory. For clampinc
use the GL_CLAMP_TO_EDGE_SGIS style defined by the SGIS_texture_edge_clamp

extension (se&GIS_texture_edge/border_clamexture Clamp Extensions'This extension
is identical to the old IRIS GL clamping semantics on RealityEngine.

Offscreen Rendering and Framebuffer Management

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 23

InfiniteReality systems support offscreen rendering through a combination of extensions to GLX:

pbuffers are offscreen pixel arrays that behave much like windows, except that they’re invisibl

See"SGIX_pbuffefd The Pixel Buffer Extension”

fbconfigs (framebuffer configurations) define color buffer depths, determine presence of Z
buffers, and so on. SE8GIX_fbconfigd The Framebuffer Configuration Extension"

gIXMakeCurrentReadSGl@llows you to read from one window or pbuffer while writing to

another. SeeEXT_make_current_read The Make Current Read Extension"

In addition,glCopyTeximage*(allows you to copy from pbuffer or window to texture memory. This
function is supported through an extension in OpenGL 1.0 but is part of OpenGL 1.1.

For framebuffer memory management, consider the following tips:

Use pbuffers. pbuffers are allocated by "layer" in unused portions of the framebuffer.

If you have deep windows, such as multisampled or quad- buffered windows, then you'll have
less space in the framebuffer for pbuffers.

pbuffers are swappable (to avoid collisions with windows), but not completely virtualized, that
is, there is a limit to the number of pbuffers you can allocate. The sum of all allocated pbuffer
space cannot exceed the size of the framebuffer.

pbuffers can be volatile (subject to destruction by window operations) or nonvolatile (swapped
to main memory in order to avoid destruction). Volatile pbuffers are recommended because
swapping is slow. Treat volatile pbuffers like they were windows, subject to exposure events.

Optimizing State Changes
As arule, it is more efficient to change state when the relevant function is disabled than when it is

enabled. For example, when changing line width for antialiased lines, call

glLineWidth(width);
glEnable(GL_LINE_SMOOTH);

As a result of this call, the line filter table is computed just once, when line antialiasing is enabled.
you call

glEnable(GL_LINE_SMOOTH);

glLineWidth(width);

the table may be computed twice: Once when antialiasing is enabled, and again when the line wid
is changed. As a result, it may be best to disable a feature if you plan to change state, then enable
after the change.

The following mode changes are fast: sample mask, logic op, depth function, alpha function,
stencil modes, shade model, cullface, texture environment, matrix transforms.

The following mode changes are slow: texture binding, matrix mode, lighting, point size, line
width.

For best results, map the near clipping plane to 0.0 and the far clipping plane to 1.0 (this is the

OpenGL ® on Silicon Graphics ® Systems — Chapter 16, System-Specific Tuning — 24

default). Note that a different mapping, for example 0.0 and 0.9, will still yield good result. A
reverse mapping, such as near = 1.0 and far = 0.0, noticeably decreases depth-buffer precisi

When using a visual with a 1-bit stencil, it is faster to clear both the depth buffer and stencil
buffer than it is to clear the depth buffer alone.

Use the color matrix extension for swapping and smearing color channels. The implementatiol
is optimized for cases in which the matrix is composed of zeros and ones.

Be sure to check for the usual things: indirect contexts, drawing images with depth buffering
enabled, and so on.

Triangle strips that are multiples of 10 (12 vertices) are best.

InfiniteReality systems optimize 1-component pixel draw operations. They are also faster whe
the pixel host format matches the destination format.

Bitmaps have high setup overhead. Consider these approaches:

— If possible, draw text using textured polygons. Put the entire font in a texture and use textt
coordinates to select letters.

— To use bitmaps efficiently, compile them into display lists. Consider combining more than
one into a single bitmap to save overhead.

— Avoid drawing bitmaps with invalid raster positions. Pixels are eliminated late in the
pipeline and drawing to an invalid position is almost as expensive as drawing to a valid
position.

Miscellaneous Performance Hints
Minimize the amount of data sent to the pipeline.

— Use display lists as a cache for geometry. Using display lists is critical on Onyx 1 system.
is less critical, but still recommended, on Onyx2 systems. The two systems performance
differs because the bus between the host and the graphics is faster on Onyx2 systems.

The display list priority extension (s€8GIX_list_priority(] The List Priority Extension”
can be used to manage display list memory efficiently.

- Use texture memory or offscreen framebuffer memory (pbuffers) as a cache for pixels.

- Use small data types, aligned, for immediate—mode drawing such as RGBA color packed
into a 32-bit word, surface normals packed as three shorts, texture coordinates packed as
two shorts). Smaller data types mean, in effect, less data to transfer.

— Use the packed vertex array extension.
Render with exactly one thread per pipe.

Use multiple OpenGL rendering contexts sparingly. The rendering context—switching rate is
about 60,000 calls per second, assuming no texture swapping, so eachl¥alakeCurrent()
costs the equivalent of 100 textured triangles or 800 32-bit pixels.

OpenGL ® on Silicon Graphics ® Systems — Appendix A, OpenGL and IRIS GL - 25

OpenGL ® on Silicon Graphics ® Systems — Appendix A, OpenGL and IRIS GL - 26

Appendix A
OpenGL and IRIS GL

The first step in porting an IRIS GL application to OpenGL is to consu@pemGL Porting Guide
It covers all the core IRIS GL and OpenGL functionality, window and event handling, and OpenGL
extensions up to and including those in IRIX 5.3.

This appendix provides some additional information about porting IRIS GL to OpenGL, pointing to
the extensions discussed in earlier chapters of this book where appropriate. For additional
information, see th®penGL Porting Guide

Some IRIS GL Functionality and OpenGL Equivalents

This section provides an alphabetical list of IRIS GL functions and some other functionality and
either a pointer to related OpenGL functions or an explanation of how to implement similar
functionality in OpenGL.

backbuffer, frontbuffer

The framebuffer update semantics for rendering into multiple color buffers are different in IRIS GL
and OpenGL. OpenGL on RealityEngine systems actually implements the IRIS GL semantics
(computing one color value and writing it to all buffers) rather than the correct OpenGL semantics
(computing a separate color value for each buffer). This can cause unexpected results if blending i
used.

blendcolor
See'"Blending Extensions"
blendfunction
See"Blending Extensions"
convolve
See"EXT_convolutiorid The Convolution Extension”
displacepolygon

The OpenGL equivalenglPolygonOffset()is more general thatisplacepolygon()You may need
to tweak the parameter values to get the proper results. See "Polygon Offset" starting on page 247
the OpenGL Programming Guide, Version 1.1

dither

OpenGL provides no control over video dithering. (This is also the case for IRIS GL in IRIX 5.3,
unless overridden by an environment variable.)

fbsubtexload

Used to be supported through an extension in OpenGL 1.0. For OpenGL 1.1, see the
glTexSublmagel@ndglTexSublmage2Deference pages and "Replacing All or Part of a Texture
Image" starting on page 332 of tpenGL Programming Guide, Version 1.1

gamma

Use the XSGlvc extension. S&tereo Rendering"

OpenGL ® on Silicon Graphics ® Systems — Appendix A, OpenGL and IRISGL -1

glcompat GLC_SET_VSYNC, GLC_GET_VSYNC,
GLC_VSYNC_SLEEP

For GLC_GET_VSYNC, usgIXGetVideoSyncSGl{ror GLC_VSYNC_SLEEP, use
gIXWaitVideoSyncSGl(pee'SGl_swap_contral The Swap Control Extension”

GLC_SET_VSYNC has no equivalent in OpenGL. To replace it, maintain a sync counter offset in &
static variable.

glcompat SIR_VEN_INTERFACE, SIR_VEN_VIDEOCOPY

This function copies Sirius video to the framebuffer. Supported, with some constraints. Use
gIXCreateGLXVideoSourceSGIXg)create a video source conteXMakeCurrentReadSGl{p set
up the video source for a data transfer, gibpyPixels(to copy the video data to the framebuffer.

hgram, gethgram (histogram)
Supported for:

glDrawPixels(Irectwrite), glCopyPixels(rectcopy), glReadPixels(Irect
read, glTexlmage(texture)

UseglGetHistogramEXT (@ndglHistogramEXT() see'EXT_histograni] The Histogram and
Minmax Extensions"

ilbuffer, ildraw, readsource(SRC_ILBUFFER)
This function provides accelerated drawing to offscreen framebuffer memory.

See"SGIX_pbuffefd The Pixel Buffer Extension"

istexloaded

UseglAreTexturesResident@ee thelAreTexturesResidenmeference page or "A Working Set of
Resident Textures" starting on page 351 of@penGL Programming Guide, Version 1.1

leftbuffer, rightbuffer

UseglXChooseVisual(@ndglDrawBuffer()for stereo in a window. For old-style stereo, see
XSGISetStereoMode()

libsphere O sphdraw, sphgnpolys, sphfree, sphmode, sphobj,
sphrotmatrix, sphbgnbitmap, sphendbitmap, sphcolor

gluSphere(provides polygonal spheres. Only bilinear tessellation is supported; octahedral,
icosahedral, barycentric, and cubic tessellations are not supported.

There is no support for the canonical orientation capability (sphrotmatrix), hemispheres
(SPH_HEMI), or bitmap spheres. Some of the functionality is available in the sprite extension; see

"SGIX_spritel] The Sprite Extension"

linesmooth

Antialiased lines are supported, with one caveat: it is not possible to draw blended antialiased line:
a multisampled window, even when multisampling is disabledgiBtet() andglEnable()with the
GL_LINE_SMOOTH parameter.

minmax, getminmax

OpenGL ® on Silicon Graphics ® Systems — Appendix A, OpenGL and IRIS GL - 2

For minimum and maximum pixel values, g&etMinmaxEXT (andgIMinmaxEXT() see
"EXT_histogrant] The Histogram and Minmax Extensions"

mswapbuffers
Not supported.

Swapping multiple windows (for example, main and overlay buffers, or windows on genlocked
pipes) from multiple threads can be accomplished fairly reliably with semaphored calls to
glXSwapBuffers(JThe following code fragment outlines the approach:

[* Create some semaphores: */

usptr_t* arena = usinit("/usr/tmp/our_arena");

usema_t* pipeOready = usnewsema(arena, 0);

usema_t* pipelready = usnewsema(arena, 0);

[* After the process for pipeO finishes its frame, it signals its co
mpletion and waits for pipel. When pipel is also ready, pipe0 swaps:
*

usvsema(pipeOready);

uspsema(pipelready);

glXSwapBuffers(dpy, drawable);

[* The process for pipe 1 does the converse: */
usvsema(pipelready);

uspsema(pipeOready);

glXSwapBuffers(dpy, drawable);

multisample, getmultisample, msalpha, msmask, mspattern, mssize
(multisample antialiasing)

Supported. SEEGIS_multisample The Multisample Extension”

For msalpha, seglEnable()with arguments GL_SAMPLE_ALPHA_TO_MASK_SGIS and
GL_SAMPLE_ALPHA_TO_ONE_SGIS.

For msmask, segilSampleMaskSGIS()
For mspattern, segSamplePatternSGIS()
For mssize, seglXChooseVisual()
For "light points,” use multisampling with
gIHint(GL_POINT_SMOOTH_HINT,GL_NICEST)
The maximum point diameter is 3 (the same as IRIS GL).
For fast tag clear, segTagSampleBufferSGIX()
pixelmap

Differs from IRIS GL. The OpenGL functiogiPixelMap()specifies a lookup table for pixel transfer
operations, just as pixelmap does in IRIS GL. However, the location of the lookup table in the pixel
processing pipeline is different. The IRIS GL lookup table appears immediately after convolution,
while the OpenGL lookup table appears almost at the beginning of the pipeline (immediately after 1
first scale and bias). The two pipelines are equivalent only when convolution is disabled.

OpenGL ® on Silicon Graphics ® Systems — Appendix A, OpenGL and IRIS GL - 3

Pixel mapping is supported for the following calls:

glDrawPixels(Irectwrite), glCopyPixels(rectcopy), glReadPixels(Irect
read), glTeximage(texdef),

On RealityEngine systems, pixel mapping is not supported for
glTexSublmage(subtexload)

pixmode
Most of the functions of pixmode are supported, albeit in different ways:

PM_SHIFT, PM_ADD24: Use the OpenGL color matrix extension to swizzle color components
or to scale and bias pixel values. §#eixelTransfer()

PM_EXPAND, PM_CO0, PM_C1: Use the standard OpenGL color lookup table to convert
bitmap data to RGBA. SegPixelTransfer()andglPixelMap().

PM_TTOB, PM_RTOL: UsglPixelZzoom()with negative zoom factors to reflect images when
drawing or copying. Reflection during reading is not supported.

PM_INPUT_FORMAT, PM_OUTPUT_FORMAT, PM_INPUT_TYPE, PM_OUTPUT_TYPE,
PM_ZDATA: Use thgglReadPixels()glDrawPixels() andglCopyPixels(type and format
parameters.

PM_OFFSET, PM_STRIDE, PM_SIZE: UgtPixelStore()

pntsize

Supported. See comments untenultisample, getmultisample, msalpha, msmask, mspattern, mssiz:
(multisample antialiasing)"

polymode

OpenGL doesn'’t support PYM_HOLLOW/IPolygonMode(GL_LINE)s the closest approximation.
See also thglPolygonOffsetreference page and "Polygon Offset" starting on page 247 of the
OpenGL Programming Guide, Version 1.1

polysmooth

OpenGL doesn'’t support PYM_SHRINK.
popup planes

OpenGL doesn’t support drawing in the popup planes.
readcomponent

Use the color matrix extension (sgi®ixelTransfer() to extract one or more color channels for

image processing. The implementation is optimized for the case in which all channels but one are
multiplied by zero, and all framebuffer channels but one are write-masketiqskeMask(). See
"Using the Color Matrix and the Color Writemask"

See"SGI_color_matrix] The Color Matrix Extensionfor more information.

RGBwritemask

OpenGL supports masking an entire RGBA color channel, but not arbitrary sets of bits within an

OpenGL ® on Silicon Graphics ® Systems — Appendix A, OpenGL and IRIS GL - 4

RGBA color channel.
setvideo, setmonitor
OpenGL has no support for these routines.

Video output format should be changed withgkémorcommand (this is now recommended for
IRIS GL as well as OpenGL).

OpenGL supports stereo—in—a—windowgk&ehooseVisual(@ndglDrawBuffer(). For old-style
stereo, seXSGISetStereoMode()

Use the Video Library (VL) or the XSGlvc extension for other video device control tasks.
subtexload

See thglTexSublmagel@ndglTexSublmage2Deference pages and "Replacing All or Part of a
Texture Image" on page 332ff of t@penGL Programming Guide, Version 1.1

tevdef, tevbind

TV_COMPONENT_SELECT (the ability to pack multiple shallow textures together, then unpack
and select one of them during drawing) is supported on IMPACT and InfiniteReality systems via th
texture select extension (S&GIS_texture_selelctThe Texture Select Extensian”

texbind

Texture definition and binding are combined into a single operation in standard OpenGL. However
the texture object extension makes them separate again (albeit in a manner that differs from IRIS
GL). UseglBindTexture() see thgIBindTexturereference page and "Creating and Using Texture
Objects" on page 348ff of thepenGL Programming Guide, Version 1.1

Detall texturing (TX_TEXTURE_DETAIL) is supported. UgietailTexFuncSGIS(see
"SGIS_detail_texturié The Detail Texture Extension”

Simple texture memory management (TX_TEXTURE_IDLE) is supported. Use
glPrioritizeTextures()see thaylPrioritize Texturegeference page "A Working Set of Resident
Textures" starting on page 351 of tApenGL Programming Guide, Version 1.1

texdef

1D, 2D, and 3D textures are supported. @&exlmagelD()glTeximage2D()and
glTeximage3DEXT(see'EXT_texture30] The 3D Texture Extension”

TX_FAST_DEFINE is not supported. Loading subtextures is still possible, however; use
glTexSublmage2D(pee theglTexSubimagel@ndglTexSublmage2Deference pages and
"Replacing All or Part of a Texture Image" starting on page 332 @peaGL Programming Guide,
Version 1.1

The TX_BILINEAR_LEQUAL and TX_BILINEAR_GEQUAL filtering options, which are used to
implement shadows, are not supported. On InfiniteReality systems, the shadow extension is
supported; se€SGIX_shadow, SGIX_depth_texture, and SGIX_shadow_anibi€he Shadow
Extensions!'

The TX_BICUBIC filter option, which is used for bicubic filtering and as a workaround for the lack
of point sampling, is also not supported.

OpenGL ® on Silicon Graphics ® Systems — Appendix A, OpenGL and IRIS GL -5

The TX_MINFILTER options for mipmapping are supported for 1D and 2D textures, but not for 3D
textures. 3D textures must use GL_NEAREST (TX_POINT) or GL_LINEAR (TX_BILINEAR)
filtering modes. On InfiniteReality systems, mipmapping is supported.

OpenGL differs from IRIS GL in that filtered versions of the texture image (when required by the
current minification filter) are not generated automatically; the application must load them explicitly
Thus the TX_MIPMAP_FILTER_KERNEL token is not supported.

Separate magnification filters for color and alpha (TX_MAGFILTER_COLOR and
TX_MAGFILTER_ALPHA) are not supported in the general case. However, it is possible to specify
separate alpha and color magnification filters for detail and sharp texturinglT8gBarameter()

Sharp texture filtering (TX_SHARPEN) is supported. dfeexParameter(or setting the filtering
mode, andjiSharpenTexFuncSGIS(r setting the scaling function (TX_CONTROL_POINT,
TX_CONTROL_CLAMP). SeéSGIS_sharpen_textureThe Sharpen Texture Extension”

Detail texture (TX_ADD_DETAIL and TX_MODULATE_DETAIL) is supported for 2D. The
parameters are specified differently from those in IRIS GL.gbeexParameter(jor setting the
filtering mode, andjiDetailTexFuncSGIS(pr setting the scaling function (TX_CONTROL_POINT,
TX_CONTROL_CLAMP). SeéSGIS_detail_texturi@ The Detail Texture Extension"

The TX_WRAP mode TX_SELECT is supported by the texture select extension to OpenGL 1.1. Si
"SGIS_texture_selelctThe Texture Select ExtensiarOpenGL provides GL_CLAMP
(TX_CLAMP) and GL_REPEAT (TX_REPEAT).

TX_INTERNAL_FORMAT and all IRIS GL texel internal formats are supported. See the
componentparameter oflTexlmage2Dfor a list of the OpenGL internal formats.

TX_TILE (multipass rendering for high—-resolution textures) is not supported directly. OpenGL
border clamping can emulate tiling if you use the edges of neighboring tiles as the borders for the
current tile.

tlutbind

In OpenGL, tlut definition and binding are combined into a single operation, and tluts apply to all
texturing (rather than being bound to a particular texture target). See the comments under tlutdef.

tlutdef

UseglTexColorTableParameterSGligr a description of the OpenGL texture color lookup process;
see'SGI_texture_color_tablé The Texture Color Table ExtensiandseglColorTableSGI(for
information about loading the lookup table; 88&I_color_tablél The Color Table Extension"

The OpenGL lookup table semantics differ from those that IRIS GL used.

The case described in tHatdef()reference page and shown in the following table cannot be
emulated in OpenGL. (nc stands for number of components, | for intensity, A for Alpha, R, G,

and B for Red, Green, and Blue.)
tlut nc texture nc action

4 3 R, G, B,BlooksupR, G, B, A

The cases shown in the following table are supported directly, or can be supported with a

judicious choice of table values and callgitBnable()
tlut nc texture nc action

2 1 I looks up ILA

OpenGL ® on Silicon Graphics ® Systems — Appendix A, OpenGL and IRIS GL - 6

I,A looks up LA

R,G,B pass unchanged
R,G,B,A pass unchanged

I looks up R,G,B

I,A pass unchanged

R,G,B looks up R,G,B
R,G,B,A pass unchanged

I looks up R,G,B,A

| looks up RGB; A looks up A
R,G,B,A looks up R,G,B,A

A NPFPMMWODNMNEB™~MWODN

OpenGL supports cases that are not available under IRIS GlglBeeColorTableParameterSGl()
for more information.

underlays

There are no X11 Visuals for the underlay planes, so OpenGL rendering to underlays is not
supported.

OpenGL ® on Silicon Graphics ® Systems — Appendix B, Benchmarks - 7

Appendix B
Benchmarks

This appendix contains a sample program you can use to measure the performance of an OpenGl
operation. For an example of how the program can be used with a small graphics applications, see
Chapter 15, "Tuning Graphics Applications: Examples."

/***
*kk

* perf — framework for measuring performance of an OpenGL operation

*

* Compile with: cc —o perf —O perf.c —-IGL -IX11

*
kkkkkkkkkkhhkkhkkkkkkkkkkhkkkhhhhhhhhhkkkkkkkkkkkkkhhhhhhhkhkkkkkkkkkhrkxkx

**/

#include <GL/glx.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/time.h>

char* ApplicationName;

double Overhead = 0.0;

int VisualAttributes[] = { GLX_RGBA, None };
int WindowWidth;

int WindowHeight;

/Aa *% *kkkkk *% *kkkkk *kkkkk *% *kkkkk *% *kkkkk
*kk
* GetClock — get current time (expressed in seconds)
kkkkkkkhkhkkkhkkkhhkkkhhkkkhkhkkkhkhkkkkhkkkhhkkkhhkkkhkhkkkhkhkkkkhkhkkkkkkkx
**/
double
GetClock(void) {

struct timeval t;

gettimeofday(&t);
return (double) t.tv_sec + (double) t.tv_usec * 1E-6;

}

[** *% *kkkkk *% *kkkkk *kkkkk *% *kkkkk *% *kkkkk

*kk

* ChooseRunTime - select an appropriate runtime for benchmarking

OpenGL ® on Silicon Graphics ® Systems — Appendix B, Benchmarks - 1

**/

double

ChooseRunTime(void) {
double start;
double finish;
double runTime;

start = GetClock();

/* Wait for next tick: */
while ((finish = GetClock()) == start)

/* Run for 100 ticks, clamped to [0.5 sec, 5.0 sec]: */
runTime = 100.0 * (finish — start);
if (runTime < 0.5)
runTime = 0.5;
else if (runTime > 5.0)
runTime = 5.0;

return runTime;

}

[** *% *kkkkk *% *kkkkk *kkkkk *% *kkkkk *% *kkkkk

*kk

* FinishDrawing — wait for the graphics pipe to go idle

*

* This is needed to make sure we're not including time from some
* previous uncompleted operation in our measurements. (It's not
* foolproof, since we can't eliminate context switches, but we can
* assume our caller has taken care of that problem.)

*% *kkkkk *% *kkkkk *kkkkkkkkkk *kkkkk *% *kkkkk

* */
void
FinishDrawing(void) {
glFinish();
}

/***

*kk

* WaitForTick — wait for beginning of next system clock tick; retur
n
* the time

*% *kkkkk *% *kkkkk *kkkkkkkkkk *kkkkk *% *kkkkk

**/

OpenGL ® on Silicon Graphics ® Systems — Appendix B, Benchmarks - 2

double

WaitForTick(void) {
double start;
double current;

start = GetClock();

/* Wait for next tick: */
while ((current = GetClock()) == start)

/* Start timing: */
return current;

}

[** *% *kkkkk *% * *% *% * *% *% * *% *% *

*kk

* InitBenchmark — measure benchmarking overhead

*

* This should be done once before each risky change in the

* pbenchmarking environment. A “risky” change is one that might

* reasonably be expected to affect benchmarking overhead. (For

* example, changing from a direct rendering context to an indirect

* rendering context.) If all measurements are being made on a sing
le

* rendering context, one call should suffice.

**/

void

InitBenchmark(void) {
double runTime;
long reps;
double start;
double finish;
double current;

[* Select a run time appropriate for our timer resolution: *
runTime = ChooseRunTime();

[* Wait for the pipe to clear: */
FinishDrawing();

/* Measure approximate overhead for finalization and timing

OpenGL ® on Silicon Graphics ® Systems — Appendix B, Benchmarks — 3

* routines
*/
reps = 0;
start = WaitForTick();
finish = start + runTime;
do {
FinishDrawing();
++reps;
} while ((current = GetClock()) < finish);

/* Save the overhead for use by Benchmark(): */
Overhead = (current — start) / (double) reps;

}

[** *% *kkkkk *% *kkkkk *kkkkk *% *kkkkk *% *kkkkk

*kk

* Benchmark — measure number of caller’s operations performed per
* second.

* Assumes InitBenchmark() has been called previously, to initialize

* the estimate for timing overhead.

*% *kkkkk *% *kkkkk *kkkkkkkkkk *kkkkk *% *kkkkk

**/
double
Benchmark(void (*operation)(void)) {
double runTime;
long reps;
long newReps;
long i;
double start;
double current;

if (loperation)
return 0.0;

/* Select a run time appropriate for our timer resolution: *

runTime = ChooseRunTime();

/*
* Measure successively larger batches of operations until w

* find one that’s long enough to meet our runtime target:
*/
reps = 1;
for (3;) {
/* Run a batch: */
FinishDrawing();

OpenGL ® on Silicon Graphics ® Systems — Appendix B, Benchmarks - 4

start = WaitForTick();

for (i=reps;i>0; —i)
(*operation)();

FinishDrawing();

[* If we reached our target, bail out of the loop: *

/
current = GetClock();
if (current >= start + runTime + Overhead)
break;
/*
* Otherwise, increase the rep count and try to reac
h
* the target on the next attempt:
*
if (current > start)
newReps = reps *
(0.5 + runTime / (current — start —
Overhead
DE

else
newReps = reps * 2;
if (newReps == reps)
reps += 1,
else
reps = newReps;

/* Subtract overhead and return the final operation rate: */
return (double) reps / (current — start — Overhead);

}

[** *% *kkkkk *% * *% *% * *% *% * *% *% *

*kk

* Test — the operation to be measured
*

* Will be run several times in order to generate a reasonably accur
ate

* result.

**/

void

Test(void) {

OpenGL ® on Silicon Graphics ® Systems — Appendix B, Benchmarks -5

/* Replace this code with the operation you want to measure:
*

glColor3f(1.0, 1.0, 0.0);

glRecti(0, 0, 32, 32);

}

[** *% *kkkkk *% *kkkkk *kkkkk *% *kkkkk *% *kkkkk

*%k%
* RunTest — initialize the rendering context and run the test
kkkkkkkkkkhhkkhkkkkkkkkkkkkkkhhhhhhhkkkkkkkkkkkhhhhhhhhhhhkkkkkkkkhrkxkx
**/
void
RunTest(void) {

if (Overhead == 0.0)

InitBenchmark();
/* Replace this sample with initialization for your test: */

glClearColor(0.5, 0.5, 0.5, 1.0);
glClear(GL_COLOR_BUFFER_BIT);

glMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho(0.0, WindowWidth, 0.0, WindowHeight, —-1.0, 1.0);

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

printf("%.2f operations per second\n", Benchmark(Test));

}

[** *% *kkkkk *% *kkkkk *kkkkk *% *kkkkk *% *kkkkk

*kk

* ProcessEvents — handle X11 events directed to our window

*

* Run the measurement each time we receive an expose event.

* Exit when we receive a keypress of the Escape key.

* Adjust the viewport and projection transformations when the windo
w

* changes size.

kkkkkkkhkhkkkhkkkkhkkkhhkkkhkhkkkhkhkkhhkhkkkhhkkkhhkkkhkhkkkhkhkkkkhkkkkkkkx
**/
void
ProcessEvents(Display* dpy) {
XEvent event;
Bool redraw = 0;

do {

OpenGL ® on Silicon Graphics ® Systems — Appendix B, Benchmarks - 6

char buf[31];
KeySym keysym;

XNextEvent(dpy, &event);
switch(event.type) {
case Expose:
redraw = 1;
break;
case ConfigureNotify:
glViewport(0, 0,
WindowWidth =
event.xconfigure.wid
th,
WindowHeight =
event.xconfigure.heigh
t);
redraw = 1;
break;
case KeyPress:
(void) XLookupString(&event.xkey, bu

sizeof(buf), &keysym, NULL);
switch (keysym) {
case XK_Escape:
exit(EXIT_SUCCESS);

default:
break;
}
break;
default:
break;
}

} while (XPending(dpy));

if (redraw) RunTest();
}

[** *% *kkkkk *% * *% *% * *% *% * *% *% *

*kk

* Error — print an error message, then exit

**/

void

Error(const char* format, ...) {
va_list args;

OpenGL ® on Silicon Graphics ® Systems — Appendix B, Benchmarks - 7

fprintf(stderr, "%s: ", ApplicationName);

va_start(args, format);
viprintf(stderr, format, args);
va_end(args);

exit(EXIT_FAILURE);
}

/***

*kk

* main — create window and context, then pass control to ProcessEve
nts

kkkkkkkhkhkkkhkhkkhhkhkkkhhkkkhkhkkkhkhkkhhkhkkkhkhkkkhkhkkkkhkhkkkhkhkkkkhkkkkkkkx
**/
int
main(int argc, char* argv(]) {
Display *dpy;
XVisuallnfo *vi;
XSetWindowAttributes swa;
Window win;
GLXContext cx;

ApplicationName = argv|[0];
/* Get a connection: */
dpy = XOpenDisplay(NULL);

if (!dpy) Error("can’t open display");

/* Get an appropriate visual: */
vi = gIXChooseVisual(dpy, DefaultScreen(dpy),VisualAttribute

S);
if (!vi) Error("no suitable visual");
/* Create a GLX context: */
cx = gIXCreateContext(dpy, vi, 0, GL_TRUE);
/* Create a color map: */
swa.colormap = XCreateColormap(dpy, RootWindow(dpy,
vi->screen), vi->visual, AllocNon
e);
/* Create a window: */
swa.border_pixel = 0;
swa.event_mask = ExposureMask | StructureNotifyMask |
KeyPressMa
sk;

OpenGL ® on Silicon Graphics ® Systems — Appendix B, Benchmarks - 8

win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0,
300, 300, 0,vi—>depth, InputOutput, vi—>visu
al,
CWBorderPixel| CWColormap|CWEventMask, &swa);
XStoreName(dpy, win, "perf");
XMapWindow(dpy, win);

/* Connect the context to the window: */
gIXMakeCurrent(dpy, win, cx);

/* Handle events: */
while (1) ProcessEvents(dpy);

}

OpenGL ® on Silicon Graphics ® Systems — Appendix C, Benchmarking Libraries: libpdb and libisfast — 9

Appendix C
Benchmarking Libraries: libpdb and libisfast

When optimizing an OpenGL application, there are two problems you need to address:

When you're writing an OpenGL application, it's difficult to know whether a particular feature
(like depth buffering or texture mapping) is fast enough to be useful.

If you want your application to run fast on a variety of machines, while taking advantage of as
many hardware features as possible, you need to write code that makes configuration decisiol
at runtime.

For the OpenGL predecessor IRIS GL, you couldgetijdesc(}o determine whether a feature had
hardware support. For example, you could determine whether a Z buffer existed. If it did, you migh
assume that Z buffering was fast, and therefore your application would use it.

In OpenGL, things are more complicated. All the core features are provided, even when there is n¢
hardware support for them and they must be implemented completely in software. There is no
OpenGL routine that reports whether a feature is implemented partly or completely in hardware.

Furthermore, features interact in unpredictable ways. For example, a machine might have hardwai
support for depth buffering, but only for some comparison functions. Or depth buffering might be fe
only as long as stencilling is not enabled. Or depth buffering might be fast when drawing to a
window, but slow when drawing to a pixmap. And so on. A routine that identifies hardware support
for particular features is actually a lot more complicated and less useful than you might think.

To decide whether a given OpenGL feature is fast, you have to measure it. Since the performance
a section of graphics code is dependent on many pieces of information from the runtime environm
no other method is as well-defined and reliable.

Keep in mind that while the results of the libisfast routines are interesting, they apply to limited
special cases. Always consider using a more general tool like Open Inventor or IRIS Performer.

Performance measurement can be tricky:
You need to handle the cases when you're displaying over a network, as well as locally.
Think about flushing the graphics pipeline properly, and accounting for the resulting overhead.

Measuring all the features needed by your application may take a while. Save performance
measurements and reuse them whenever possible; users won't want to wait for measurement
each time the application starts.

Consider measuring things other than graphics: Disk and network throughput, processing time
for a particular set of data, performance on uniprocessor and multiprocessor systems.

Libraries for Benchmarking
This appendix describes two libraries that can help with all of the tasks just mentioned:

libpdb PerformanceéDatdBase). Routines for measuring execution rates and maintaining a
simple database.

libisfast. A set of routines demonstrating libpdb that answer common questions about the

OpenGL ® on Silicon Graphics ® Systems — Appendix C, Benchmarking Libraries: libpdb and libisfast — 1

performance of OpenGL features (using reasonable but subjective criteria).

These libraries can’t substitute for comprehensive benchmarking and performance analysis, and d
replace more sophisticated tools (like IRIS Performer and IRIS Inventor) that optimize application
performance in a variety of ways. However, they can handle simple tasks easily.

Using libpdb
libpdb provides five routines:
pdbOpen(ppens the performance database.

pdbReadRate(eads the execution rate for a given benchmark (identified by a machine name,
application name, benchmark name, and version string) from the database.

pdbMeasureRatefheasures the execution rate for a given operation.
pdbWriteRate(Writes the execution rate for a given benchmark into the database.

pdbClose(rloses the performance database and writes it back to disk if necessary.

All libpdb routines return a value of type pdbStatusT, which is a bitmask of error conditions. If the
value is zero (PDB_NO_ERROR), the call completed successfully. If the value is nonzero, itis a
combination of one or more of the conditions listed@aible C-1

Table C-1 Errors Returned by libpdb Routines

Error Meaning
PDB_OUT_OF_MEMORY Attempt to allocate memory failed.
PDB_SYNTAX_ERROR Database contains one or more records that could not be parsed.

PDB_NOT_FOUND Database does not contain the record requested by the application.

PDB_CANT_WRITE Database file could not be updated.

PDB_NOT_OPEN pdbOpen(Wwas not invoked before calling one of the other libpdb
routines.

PDB_ALREADY_OPEN pdbOpen()wvas called while the database is still open (e.g., before
pdbClose()s invoked).

Every program must cafildbOpen(pefore using the database, guthClose(when the database is

no longer needegdbOpen(ppens the database file (stored in $HOME/.pdb2 on UNIX systems) anc
reads all the performance measurements into main meptirglose(yeleases all memory used by
the library, and writes the database back to its file if any changes have been made by invoking
pdbWriteRate()

pdbStatusT pdbOpen(void);
pdbStatusT pdbClose(void);

pdbOpen(yeturns
PDB_NO_ERROR on success
PDB_OUT_OF_MEMORY if there was insufficient main memory to store the entire database

PDB_SYNTAX_ERROR if the contents of the database could not be parsed or seemed
implausible (for example a nonpositive performance measurement)

PDB_ALREADY_OPEN if the database has been opened by a previousmaiti@pen()and

OpenGL ® on Silicon Graphics ® Systems — Appendix C, Benchmarking Libraries: libpdb and libisfast — 2

not closed by a call tpdbClose()

pdbClose(yeturns
PDB_NO_ERROR on success
PDB_CANT_WRITE if the database file is unwritable for any reason

PDB_NOT_OPEN if the database is not open

Normally applications should look for the performance data they need before going to the trouble ¢
taking measurementgdbReadRate(Wwhich is used for this, has the following prototype:

pdbStatusT pdbReadRate (const char* machineNameonst char* appName
const char* benchmarkNameonst char* versionString double* rate

)

machineName A zero—terminated string giving the name of the machine for which the
measurement is sought. If NULL, the default machine name is used. (In X11
environments, the display nhame is an appropriate choice, and the default machit
name is the content of the DISPLAY environment variable.)

appName Name of the application. This is used as an additional database key to reduce
accidental collisions between benchmark names.

benchmarkName Name of the benchmark.

versionString The fourth argument is a string identifying the desired version of the benchmark.
For OpenGL performance measurements, the string returned by
glGetString(GL_VERSIONS a good value for this argument. Other applications
might use the version number of the benchmark, rather than the version number
of the system under test.

rate A pointer to a double—precision floating—point variable that receives the
performance measurement (the "rate") from the database. The rate indicates the
number of benchmark operations per second that were measured on a previous
run. If pdbReadRate(eturns zero, then it completed successfully and the rate is
returned in the last argument. If the requested benchmark is not present in the
database, it returns PDB_NOT_FOUND. FinallypdbReadRate(s called
when the database has not been opengdib@pen() it returns
PDB_NOT_OPEN.

Example for pdbRead

main() {
double rate;
pdbOpen();
if (odbReadRate(NULL, "myApp", "triangles"”,
glGetString(GL_VERSION), &rate)
== PDB_NO_ERROR)
printf("%g triangle calls per second\n", rate);
pdbClose();

OpenGL ® on Silicon Graphics ® Systems — Appendix C, Benchmarking Libraries: libpdb and libisfast — 3

}

When the application is run for the first time, or when the performance database file has been
removed (perhaps to allow a fresh start after a hardware upgrdt®eadRate(d not able to find
the desired benchmark. If this happens, the application shoujfitibbéeasureRate(Wwhich has the
following prototype, to make a measurement:

pdbStatusT pdbMeasureRate (pdbCallbackT initialize, pdbCallbackT operation
pdbCallbackT finalize int calibrate, double* rat

e

initialize A pointer to the initialization function. The initialization function is run before

operation

finalize

rate

each set of operations. For OpenGL performance measurement, it's appropriate
to useglFinish() for initialization, to make sure that the graphics pipe is quiet.
However, for other performance measurements, the initialization function can
create test data, preload caches, and so on. May be NULL, in which case no
initialization is performed.

A pointer to the operation function. This function performs the operations that ar
to be measured. Usually you'll want to make sure that any global state needed t
the operation is set up before calling the operation function, so that you don't
include the cost of the setup operations in the measurement.

A pointer to a finalization function. This is run once, after all the calls to the
operation function are complete. In the example abgifmish() ensures that the
graphics pipeline is idle. It may be NULL, in which case no finalization is
performed. The finalization function must be calibrated so that the overhead of
calling it may be subtracted from the time used by the operation function. If the
fourth argument is nonzero, thpdbMeasureRateQalibrates the finalization
function. If the fourth argument is zero, thedbMeasureRate{)ses the results

of the previous calibration. Recalibrating each measurement is the safest
approach, but it roughly doubles the amount of time needed for a measurement.
For OpenGL, it should be acceptable to calibrate once and recalibrate only wher
using a different X11 display.

A pointer to a double—precision floating—point variable that receives the executic
rate. This rate is the number of times the operation function was called per
secondpdbMeasureRate@ttempts to compute a number of repetitions that
results in a run time of about one second. (Calibration requires an additional
second.) It's reasonably careful about timekeeping on systems with
low-resolution clocks.

pdbMeasureRate@lways returns PDB_NO_ERROR.

Example for pdbMeasureRate()

void SetupOpenGLState(void) {
/* set all OpenGL state to desired values */

}

OpenGL ® on Silicon Graphics ® Systems — Appendix C, Benchmarking Libraries: libpdb and libisfast — 4

void DrawTriangles(void) {
glBegin(GL_TRIANGLE_STRIP);
[* specify some vertices... */
glEnd();
}
main() {
double rate;
pdbOpen();
if (pdbReadRate(NULL, "myApp", "triangles",
glGetString(GL_VERSION), &rate)

I= PDB_NO_ERROR) {
SetupOpenGLState();
pdbMeasureRate(glFinish, DrawTriangles,

glFinish, 1, &rate);
}
printf("%g triangle calls per second\n”, rate);
pdbClose();

}

Once a rate has been measured, it should be stored in the database bydtaNirteRate()which
has the following prototype:

pdbStatusT pdbWriteRate (const char* machineNameconst char* applicatio
nName const char* benchmarkNameonst char* versionString double rate)

The first four arguments @dbWriteRate(Jnatch the first four arguments pdbReadRate()lhe last
argument is the performance measurement to be saved in the database.

pdbWriteRate(Jeturns

PDB_NO_ERROR if the performance measurement was added to the in—-memory copy of the
database

PDB_OUT_OF_MEMORY if there was insufficient main memory to do so

PDB_NOT_OPEN if the database is not open

WhenpdbWriteRate()s called, the in—-memory copy of the performance database is marked "dirty."
pdbClose(takes note of this and writes the database back to disk.

Example for pdbWriteRate()

main() {

double rate;

pdbOpen();

if (odbReadRate(NULL, "myApp", "triangles"”,

glGetString(GL_VERSION), &rate)
= PDB_NO_ERROR) {
SetupOpenGL();
pdbMeasureRate(glFinish, DrawTriangles,
glFinish, 1, &rate);

OpenGL ® on Silicon Graphics ® Systems — Appendix C, Benchmarking Libraries: libpdb and libisfast - 5

pdbWriteRate(NULL, "myApp", "triangles",
glGetString(GL_VERSION), rate);

}

printf("%g triangle calls per second\n”, rate);
pdbClose();

}

Using libisfast

The libisfast library is a set of demonstration routines that show how libpdb can be used to measur
and maintain OpenGL performance data. libisfast is based on purely subjective performance criter
If they're appropriate for your application, feel free to use them. If not, copy the source code and
modify it accordingly.

In all cases that follow, the term "triangles" refers to a triangle strip with 37 vertices. The triangles
are drawn with perspective projection, lighting, and smooth (Gouraud) shading. Unless otherwise
stated, display-list-mode drawing is used. (This makes isfast yield more useful results when the t:
machine is being accessed over a network.)

The application must initialize isfast before performing any performance measurements, and clean
after the measurements are finished. On X11 systems initialize libisfast by calling

int IsFastXOpenDisplay(const char* displayName);
Perform cleanup by calling
void IsFastXCloseDisplay(void);

IsFastOpenXDisplay(jeturns zero if the named display could not be opened, and nonzero if the
display was opened successfully.

DepthBufferinglsFast(jeturns nonzero if depth buffered triangles can be drawn at least one—half as
fast as triangles without depth buffering:

int DepthBufferinglsFast(void);

ImmediateModelsFastfeturns nonzero if immediate—-mode triangles can be drawn at least one-hal
as fast as display-listed triangles:

int ImmediateModelsFast(void);

Note that one significant use whmediateModelsFast(hay be to decide whether a "local” or a
"remote" rendering strategy is appropriate. If immediate mode is fast, as on a local workstation, it
may be best to use that mode and avoid the memory cost of duplicating the application’s data
structures in display lists. If immediate mode is slow, as is likely for a remote workstation, it may be
best to use display lists for bulky geometry and textures.

StencillinglsFast(yeturns nonzero if stencilled triangles can be drawn at least one—half as fast as
non-stencilled triangles:

int StencillinglsFast(void);

TextureMappinglsFastfeturns nonzero if texture-mapped triangles can be drawn at least one—hali
fast as non—texture—-mapped triangles:

int TextureMappinglsFast(void);

OpenGL ® on Silicon Graphics ® Systems — Appendix C, Benchmarking Libraries: libpdb and libisfast — 6

Although the routines in libisfast are useful for a number of applications, you should study them an
modify them for your own use. That way you'll explore the particular performance characteristics o
your systems: their sensitivity to triangle size, triangle strip length, culling, stencil function,
texture—map type, texture—coordinate generation method, and so on.

OpenGL ® on Silicon Graphics ® Systems — Appendix D, Extensions on Different Silicon Graphics Systems -
7

Appendix D
Extensions on Different Silicon Graphics Systems

This appendix lists all extensions supported for InfiniteReality systems, OCTANE and Indigo2
IMPACT systems, and O2 systems. Note that while the list is comprehensive, this guide only
discusses those extensions that are either available or scheduled to be available on more than on«
platform.

Table D-1 Extension on Different Silicon Graphics Systems

o
N}

Extension InfiniteReality OCTANE and
IMPACT

x

EXT_abgr
EXT_blend_color
EXT_blend_logic_op
EXT_blend_minmax
EXT_blend_subtract
EXT_convolution
EXT_histogram
EXT_packed_pixels
EXT_texture_3D
SGI_color_matrix
SGI_color_table
SGI_texture_color_table
SGIS_detail_texture
SGIS_fog_function
SGIS_multisample
SGIS_point_line_texgen
SGIS_point_parameters
SGIS_sharpen_texture
SGIS_texture_border_clamp X
SGIS_texture_edge_clamp
SGIS_texture_filter4
SGIS_texture_LOD
SGIS_texture_select
SGIX_calligraphic_fragment
SGIX_clipmap
SGIX_fog_offset
SGIX_instruments
SGIX_interlace
SGIX_ir_instrumentl
SGIX_flush_raster
SGIX_list_priority
SGIX_reference_plane
SGIX_shadow
SGIX_shadow_ambient
SGIX_sprite
SGIX_texture_add_env
SGIX_texture_lod_bias
SGIX_texture_scale_bias
SGIX_depth_texture

X X X X X X X X X X X X
X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

XX X X X X X X X X XX X X X X X XXX

OpenGL ® on Silicon Graphics ® Systems — Appendix D, Extensions on Different Silicon Graphics Systems -
1

Index

