OpenGL Reference Manual The Official Reference Document for OpenGL, Rele
1
Preface
What You Should Know Before Reading This Manual
Acknowledgments

Chapter 1
Introduction to OpenGL

OpenGL Fundamentals
Primitives and Commands
Procedural versus Descriptive
Execution Model

Basic OpenGL Operation

Chapter 2
Overview of Commands and Routines

OpenGL Processing Pipeline
Vertices
Primitives
Fragments
Pixels
Additional OpenGL Commands
Using Evaluators
Performing Selection and Feedback
Using Display Lists
Managing Modes and Execution
Obtaining State Information
OpenGL Utility Library
Manipulating Images for Use in Texturing
Transforming Coordinates
Polygon Tessellation
Rendering Spheres, Cylinders, and Disks
NURBS Curves and Surfaces
Handling Errors
OpenGL Extension to the X Window System
Initialization
Controlling Rendering

Chapter 3
Summary of Commands and Routines

Notation

OpenGL Commands
Primitives
Coordinate Transformation
Coloring and Lighting
Clipping
Rasterization
Pixel Operations
Texture Mapping
Fog
Frame Buffer Operations
Evaluators
Selection and Feedback
Display Lists
Modes and Execution
State Queries

GLU Routines
Texture Images
Coordinate Transformation
Polygon Tessellation
Quadric Objects
NURBS Curves and Surfaces
Error Handling

GLX Routines
Initialization
Controlling Rendering

Chapter 4
Defined Constants and Associated Commands

Chapter 5
OpenGL Reference Pages

glAccum
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glAlphaFunc

NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glBegin
NAME
C SPECIFICATION
PARAMETERS
C SPECIFICATION
DESCRIPTION
ERRORS
SEE ALSO
glBitmap
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glBlendFunc
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
EXAMPLES
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glCallList
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION

NOTES
ASSOCIATED GETS
SEE ALSO
glCallLists
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ASSOCIATED GETS
SEE ALSO
glClear
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glClearAccum
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glClearColor
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glClearDepth
NAME
C SPECIFICATION

PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glClearindex
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glClearStencil
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glClipPlane
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glColor
NAME
C SPECIFICATION
PARAMETERS
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ASSOCIATED GETS

SEE ALSO
glColorMask

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glColorMaterial

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glCopyPixels

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

EXAMPLES

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glCullFace

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glDeleteLists

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

SEE ALSO
glDepthFunc

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glDepthMask

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glDepthRange

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glDrawBuffer

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO

glDrawPixels
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS

ASSOCIATED GETS

SEE ALSO
glEdgeFlag

NAME

C SPECIFICATION

PARAMETERS

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ASSOCIATED GETS

SEE ALSO
glEnable

NAME

C SPECIFICATION

PARAMETERS

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

SEE ALSO
glEvalCoord

NAME

C SPECIFICATION

PARAMETERS

C SPECIFICATION

PARAMETERS

DESCRIPTION

ASSOCIATED GETS

SEE ALSO
glEvalMesh

NAME

C SPECIFICATION

PARAMETERS

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glEvalPoint

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ASSOCIATED GETS

SEE ALSO
glFeedbackBuffer

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glFinish

NAME

C SPECIFICATION

DESCRIPTION

NOTES

ERRORS

SEE ALSO
glFlush

NAME

C SPECIFICATION

DESCRIPTION

NOTES

ERRORS

SEE ALSO

glFog
NAME

C SPECIFICATION
PARAMETERS
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glFrontFace
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glFrustum
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glGenLists
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glGet
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS

SEE ALSO
glGetClipPlane

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
glGetError

NAME

C SPECIFICATION

DESCRIPTION

ERRORS
glGetLight

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
glGetMap

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
glGetMaterial

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
glGetPixelMap

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glGetPolygonStipple

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
glGetString

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS
glGetTexEnv

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
glGetTexGen

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
glGetTexlmage
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glGetTexLevelParameter
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
SEE ALSO
glGetTexParameter
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
SEE ALSO
glHint
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
glindex
NAME
C SPECIFICATION
PARAMETERS
C SPECIFICATION
PARAMETERS

DESCRIPTION
NOTES
ASSOCIATED GETS
SEE ALSO
glindexMask
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glinitNames
NAME
C SPECIFICATION
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glisEnabled
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
SEE ALSO
glisList
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
SEE ALSO
glLight
NAME
C SPECIFICATION
PARAMETERS
C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glLightModel

NAME

C SPECIFICATION

PARAMETERS

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glLineStipple

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glLineWidth

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glListBase

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS
SEE ALSO
glLoadldentity
NAME
C SPECIFICATION
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glLoadMatrix
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glLoadName
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glLogicOp
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glMapl
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION

NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glMap2
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glMapGrid
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glMaterial
NAME
C SPECIFICATION
PARAMETERS
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glMatrixMode
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS

ASSOCIATED GETS
SEE ALSO
glMultMatrix
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
gINewList
NAME
C SPECIFICATION
PARAMETERS
C SPECIFICATION
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
gINormal
NAME
C SPECIFICATION
PARAMETERS
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ASSOCIATED GETS
SEE ALSO
glOrtho
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glPassThrough

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glPixelMap

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glPixelStore

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glPixelTransfer

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glPixelZoom

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glPointSize

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glPolygonMode

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

EXAMPLES

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glPolygonStipple

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glPushAttrib

NAME

C SPECIFICATION

PARAMETERS

C SPECIFICATION

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glPushMatrix

NAME

C SPECIFICATION

C SPECIFICATION

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glPushName

NAME

C SPECIFICATION

PARAMETERS

C SPECIFICATION

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glRasterPos

NAME

C SPECIFICATION

PARAMETERS

C SPECIFICATION

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glReadBuffer

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glReadPixels

NAME

C SPECIFICATION

PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glRect
NAME
C SPECIFICATION
PARAMETERS
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
SEE ALSO
glRenderMode
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glRotate
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glScale
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES

ERRORS
ASSOCIATED GETS
SEE ALSO
glScissor
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glSelectBuffer
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glShadeModel
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glStencilFunc
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glStencilMask
NAME

C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glStencilOp
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO
glTexCoord
NAME
C SPECIFICATION
PARAMETERS
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ASSOCIATED GETS
SEE ALSO
glTexEnv
NAME
C SPECIFICATION
PARAMETERS
C SPECIFICATION
PARAMETERS
DESCRIPTION
ERRORS
ASSOCIATED GETS
SEE ALSO
glTexGen
NAME
C SPECIFICATION
PARAMETERS

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glTeximagelD

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glTeximage2D

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glTexParameter

NAME

C SPECIFICATION

PARAMETERS

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

ASSOCIATED GETS

SEE ALSO
glTranslate

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO
glVertex

NAME

C SPECIFICATION

PARAMETERS

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

SEE ALSO
glViewport

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

ASSOCIATED GETS

SEE ALSO

Chapter 6
GLU Reference Pages

gluBeginCurve
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
EXAMPLE
SEE ALSO
gluBeginPolygon
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
EXAMPLE
SEE ALSO
gluBeginSurface
NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

EXAMPLE

SEE ALSO
gluBeginTrim

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

EXAMPLE

SEE ALSO
gluBuild1DMipmaps

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluBuild2DMipmaps

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluCylinder

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluDeleteNurbsRenderer

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluDeleteQuadric

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluDeleteTess

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluDisk

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluErrorString

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluGetNurbsProperty

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluLoadSamplingMatrices

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluLookAt

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluNewNurbsRenderer

NAME

C SPECIFICATION

DESCRIPTION

SEE ALSO
gluNewQuadric

NAME

C SPECIFICATION

DESCRIPTION

SEE ALSO
gluNewTess

NAME

C SPECIFICATION

DESCRIPTION

SEE ALSO
gluNextContour

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

EXAMPLE

SEE ALSO
gluNurbsCallback

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluNurbsCurve

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

EXAMPLE

SEE ALSO
gluNurbsProperty

NAME

C SPECIFICATION

PARAMETERS
DESCRIPTION
SEE ALSO

gluNurbsSurface

NAME

C SPECIFICATION
PARAMETERS
DESCRIPTION
EXAMPLE

SEE ALSO

gluOrtho2D

NAME

C SPECIFICATION
PARAMETERS
DESCRIPTION
SEE ALSO

gluPartialDisk

NAME

C SPECIFICATION
PARAMETERS
DESCRIPTION
SEE ALSO

gluPerspective

NAME

C SPECIFICATION
PARAMETERS
DESCRIPTION
SEE ALSO

gluPickMatrix

NAME

C SPECIFICATION
PARAMETERS
DESCRIPTION
EXAMPLE

SEE ALSO

gluProject

NAME
C SPECIFICATION
PARAMETERS

DESCRIPTION
SEE ALSO
gluPwICurve
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
SEE ALSO
gluQuadricCallback
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
SEE ALSO
gluQuadricDrawStyle
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
SEE ALSO
gluQuadricNormals
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
SEE ALSO
gluQuadricOrientation
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
SEE ALSO
gluQuadricTexture
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
SEE ALSO
gluScalelmage

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluSphere

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO
gluTessCallback

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

EXAMPLE

SEE ALSO
gluTessVertex

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

EXAMPLE

SEE ALSO
gluUnProject

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

SEE ALSO

Chapter 7
GLX Reference Pages

gIXChooseVisual
NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
EXAMPLES

NOTES

ERRORS

SEE ALSO
gIXCopyContext

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
gIXCreateContext

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
gIXCreateGLXPixmap

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
glXDestroyContext

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

SEE ALSO
gIXDestroyGLXPixmap

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

SEE ALSO
gIXGetConfig

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
gIXGetCurrentContext

NAME

C SPECIFICATION

DESCRIPTION

SEE ALSO
gIXGetCurrentDrawable

NAME

C SPECIFICATION

DESCRIPTION

SEE ALSO
glXintro

NAME

OVERVIEW

EXAMPLES

NOTES

SEE ALSO
glXlIsDirect

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

SEE ALSO
glXMakeCurrent

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
gIXQueryExtension

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

SEE ALSO
gIXQueryVersion

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

SEE ALSO
gIXSwapBuffers

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

NOTES

ERRORS

SEE ALSO
glXUseXFont

NAME

C SPECIFICATION

PARAMETERS

DESCRIPTION

ERRORS

SEE ALSO
gIXWaitGL

NAME

C SPECIFICATION

DESCRIPTION

NOTES

ERRORS

SEE ALSO

gIXWaitX
NAME
C SPECIFICATION
DESCRIPTION
NOTES
ERRORS
SEE ALSO

OpenGL Reference Manual
The Official Reference Document for OpenGL, Release 1

OpenGL Reference Manual — Preface - 1

Preface

OpenGlL (GL for Graphics Librariyl) is a software interface to graphics hardware. This interface
consists of several hundred functions that allow you, a graphics programmer, to specify the object:
and operations needed to produce high—quality color images of three—dimensional objects. Many «
these functions are actually simple variations of each other, so in reality there are only 120
substantially different functions.

As complements to the core set of OpenGL functions, the OpenGL Utility Library (GLU) and the
OpenGL Extension to the X Window Systen{GLX) provide useful supporting features. This
manual explains what all these functions do; it has the following chapters:

Chapter 1, "Introduction to OpenGlptovides a brief statement of the major underlying
concepts embodied in OpenGL. It uses a high—level block diagram to discuss in conceptual te
all the major stages of processing performed by OpenGL.

Chapter 2, "Overview of Commands and Routindegcribes in more detail how input data (in
the form of vertices specifying a geometric object or pixels defining an image) is processed an
how you can control this processing using the functions that comprise OpenGL. Functions
belonging to GLU and GLX are also discussed.

Chapter 3, "Summary of Commands and Routinésts the OpenGL commands in groups
according to what sort of tasks they perform. Full prototypes are given so that you can use this
section as a quick reference once you understand what the commands accomplish.

Chapter 4, "Defined Constants and Associated Commaligls,the constants defined in
OpenGL and the commands that use them.

Chapter 5, "OpenGL Reference Pagegich forms the bulk of this manual, contains
descriptions of each set of related OpenGL commands. (Commands with parameters that diffe
only in data type are described together, for example.) Each reference page fully describes the
relevant parameters, the effect of the commands, and what errors might be generated by usin
the commands.

Chapter 6, "GLU Reference Pagesphtains the reference pages for all the GLU routines.

Chapter 7, "GLX Reference Pagesyitains the reference pages for the GLX routines.

What You Should Know Before Reading This Manual

This manual is designed to be used as the companion reference volum@peni®&. Programming
Guideby Jackie Neider, Tom Davis, and Mason Woo (Reading, MA: Addison—-Wesley Publishing
Company). The focus of thReference Manuas how OpenGL works, while therogramming

Guidés focus is how to use OpenGL. For a complete understanding of OpenGL, you need both tyf
of information. Another difference between these two books is that most of the content of this
Reference Manuas organized alphabetically, based on the assumption that you know what you
don’t know and therefore need only to look up a description of a particular command; the
Programming Guidés organized like a tutorialit explains the simpler OpenGL concepts first and
builds up to the more complex ones. Although the command descriptions in this manual don’t
necessarily require you to have readRnegramming Guideyour understanding of the intended

OpenGL Reference Manual — Preface - 1

usage of the commands will be much more complete if you have read it. Both books also assume -
you know how to program in C.

If you don’t have much of a computer graphics background, you should certainly start with the
Programming Guideather than thiReference ManuaBasic graphics concepts are not explained in
this manual. You might also want to look@Gamputer Graphics: Principles and Practibg James

D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes (Reading, MA: Addison-Wesle
Publishing Company). That book is an encyclopedic treatment of the field of computer graphics.
Another, gentler introduction to the subject can be fourBDitComputer Graphics: A User’'s Guide

for Artists and Designerly Andrew S. Glassner (New York: Design Press).

Acknowledgments

This manual owes its existence to many people. Kurt Akeley of Silicon Graphics®, Sally Browning
of SABL Productions, and Kevin P. Smith also of Silicon Graphics wrote most of the material, with
contributions from Jackie Neider and Mark Segal (both from Silicon Graphits)OpenGL

Graphics System: A Specificati@oauthored by Mark and Kurffhe OpenGL Graphics System

Utility Library (written by Kevin), an@penGL Graphics with the X Window Sysi{@ritten by Phil
Karlton) served as source documents for the authors. Phil Karlton and Kipp Hickman assisted by
helping to define and create OpenGL at Silicon Graphics, with help from Raymond Drewry of Gain
Technology, Inc., Fred Fisher of Digital Equipment Corp., and Randi Rost of Kubota Pacific
Computer, Inc. The members of the OpenGL Architecture Review Bddridray Cantor and Linas
Vepstas from International Business Machines, Paula Womack and Jeff Lane of Digital Equipment

Corporation, Murali Sundaresan of Intel, and Chuck Whitmer of Micraisaio contributed. Thad
Beier together with Seth Katz and the Inventor team at Silicon Graphics created the cover image. |
Maitz of Silicon Graphics, Arthur Evans of Evans Technical Communications, and Susan Blau
provided production assistance; Tanya Kucak copyedited the manual. Finally, this book wouldn’t
exist unless OpenGL did, for which all the members of the OpenGL team at Silicon Graphics, Inc.,
need to be thanked for their efforts: Momi Akeley, Allen Akin, Chris Frazier, Bill Glazier, Paul Ho,
Simon Hui, Lesley Kalmin, Pierre Tardif, Jim Winget, and especially Wei Yen, in addition to the
previously mentioned Kurt, Phil, Mark, Kipp, and Kevin. Many other Silicon Graphics employees,
who are too numerous to mention, helped refine the definition and functionality of OpenGL.

OpenGL Reference Manual — Chapter 1, Introduction to OpenGL - 2

Chapter 1
Introduction to OpenGL

As a software interface for graphics hardware, OpenGL’s main purpose is to render two— and
three—dimensional objects into a frame buffer. These objects are described as sequences of vertic
(which define geometric objects) or pixels (which define images). OpenGL performs several
processing steps on this data to convert it to pixels to form the final desired image in the frame buf

This chapter presents a global view of how OpenGL works; it contains the following major sections

"OpenGL Fundamentalddriefly explains basic OpenGL concepts, such as what a graphic
primitive is and how OpenGL implements a client—server execution model.

"Basic OpenGL Operatiorgives a high—level description of how OpenGL processes data and
produces a corresponding image in the frame buffer.

OpenGL Fundamentals

This section explains some of the concepts inherent in OpenGL.

Primitives and Commands

OpenGL drawgrimitived] points, line segments, or polygdhsubject to several selectable modes.
You can control modes independently of each other; that is, setting one mode doesn't affect whett
other modes are set (although many modes may interact to determine what eventually ends up in-
frame buffer). Primitives are specified, modes are set, and other OpenGL operations are describec
issuing commands in the form of function calls.

Primitives are defined by a group of one or meegices A vertex defines a point, an endpoint of a
line, or a corner of a polygon where two edges meet. Data (consisting of vertex coordinates, colors
normals, texture coordinates, and edge flags) is associated with a vertex, and each vertex and its
associated data are processed independently, in order, and in the same way. The only exception t
this rule is if the group of vertices must dlgpedso that a particular primitive fits within a specified
region; in this case, vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, although there may be ¢
indeterminate delay before a command takes effect. This means that each primitive is drawn

completely before any subsequent command takes effect. It also means that state—querying comn
return data that's consistent with complete execution of all previously issued OpenGL commands.

Procedural versus Descriptive

OpenGL provides you with fairly direct control over the fundamental operations of two— and
three—dimensional graphics. This includes specification of such parameters as transformation
matrices, lighting equation coefficients, antialiasing methods, and pixel update operators. Howevel
doesn’t provide you with a means for describing or modeling complex geometric objects. Thus, the
OpenGL commands you issue specify how a certain result should be produced (what procedure
should be followed) rather than what exactly that result should look like. That is, OpenGL is
fundamentally procedural rather than descriptive. Because of this procedural nature, it helps to knc
how OpenGL worksl the order in which it carries out its operations, for examteorder to fully

OpenGL Reference Manual — Chapter 1, Introduction to OpenGL - 1

understand how to use it.

Execution Model

The model for interpretation of OpenGL commands is client-server. An application (the client) issu
commands, which are interpreted and processed by OpenGL (the server). The server may or may
operate on the same computer as the client. In this sense, OpenGL is network—transparent. A sen
can maintain several Gtontextseach of which is an encapsulated GL state. A client can connect to
any one of these contexts. The required network protocol can be implemented by augmenting an
already existing protocol (such as that of the X Window System) or by using an independent
protocol. No OpenGL commands are provided for obtaining user input.

The effects of OpenGL commands on the frame buffer are ultimately controlled by the window
system that allocates frame buffer resources. The window system determines which portions of the
frame buffer OpenGL may access at any given time and communicates to OpenGL how those
portions are structured. Therefore, there are no OpenGL commands to configure the frame buffer |
initialize OpenGL. Frame buffer configuration is done outside of OpenGL in conjunction with the
window system; OpenGL initialization takes place when the window system allocates a window for
OpenGL rendering. (GLX, the X extension of the OpenGL interface, provides these capabilities, as
described inOpenGL Extension to the X Window Systen)."

Basic OpenGL Operation

The figure shown below gives an abstract, high—level block diagram of how OpenGL processes dé
In the diagram, commands enter from the left and proceed through what can be thought of as a
processing pipeline. Some commands specify geometric objects to be drawn, and others control h
the objects are handled during the various processing stages.

Dispiay
List
l P Fye e Per-
caTenand y gl VI | Sﬁﬁ_ﬁg“ ol FRTENTION (gl FRONENt (gl Frme Butfer
]
Azzerrbly R s
Terure
I'-'Ien'ﬂr}'
L Fizel T
Lani =} [u g1
Ope g

Figure 1-1 OpenGL Block Diagram

As shown by the first block in the diagram, rather than having all commands proceed immediately
through the pipeline, you can choose to accumulate some of thedisjpiay listfor processing at a
later time.

Theevaluatorstage of processing provides an efficient means for approximating curve and surface
geometry by evaluating polynomial commands of input values. During the nextmagesrtex

OpenGL Reference Manual — Chapter 1, Introduction to OpenGL - 2

operations and primitive assemp{ypenGL processes geometric primitidgmints, line segments,
and polygons, all of which are described by vertices. Vertices are transformed and lit, and primitive
are clipped to the viewport in preparation for the next stage.

Rasterizatiorproduces a series of frame buffer addresses and associated values using a
two—dimensional description of a point, line segment, or polygon.fEzaghentso produced is fed

into the last stagger—fragment operationghich performs the final operations on the data before

it's stored as pixels in thifeame buffer These operations include conditional updates to the frame
buffer based on incoming and previously stored z—values (for z-buffering) and blending of incomir
pixel colors with stored colors, as well as masking and other logical operations on pixel values.

Input data can be in the form of pixels rather than vertices. Such data, which might describe an imi
for use in texture mapping, skips the first stage of processing described above and instead is
processed as pixels, in thixel operationstage. The result of this stage is either storadxdsre
memory for use in the rasterization stage, or rasterized and the resulting fragments merged into ths
frame buffer just as if they were generated from geometric data.

All elements of OpenGL state, including the contents of the texture memory and even of the frame
buffer, can be obtained by an OpenGL application.

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines — 3

Chapter 2
Overview of Commands and Routines

Many OpenGL commands pertain specifically to drawing objects such as points, lines, polygons, a
bitmaps. Other commands control the way that some of this drawing occurs (such as those that er
antialiasing or texturing). Still other commands are specifically concerned with frame buffer
manipulation. This chapter briefly describes how all the OpenGL commands work together to creal
the OpenGL processing pipeline. Brief overviews are also given of the routines comprising the
OpenGL Utility Library (GLU) and the OpenGL extensions to the X Window System (GLX).

This chapter has the following main sections:

"OpenGL Processing Pipelinekpands on the discussion@mapter 1by explaining how
specific OpenGL commands control the processing of data.

"Additional OpenGL Commandsliscusses several sets of OpenGL commands not covered in
the previous section.

"OpenGL Utility Library" describes the GLU routines that are available.

"OpenGL Extension to the X Window Systed#scribes the GLX routines.

OpenGL Processing Pipeline

Now that you have a general idea of how OpenGL works €bapter 1, let's take a closer look at
the stages in which data is actually processed and tie these stages to OpenGL commands. The fic
shown on the next page is a more detailed block diagram of the OpenGL processing pipeline.

For most of the pipeline, you can see three vertical arrows between the major stages. These arrow
represent vertices and the two primary types of data that can be associated with vertices: color val
and texture coordinates. Also note that vertices are assembled into primitives, then to fragments, ¢
finally to pixels in the frame buffer. This progression is discussed in more detail in the following
sections.

As you continue reading, be aware that we've taken some liberties with command names. Many
OpenGL commands are simple variations of each other, differing mostly in the data type of
arguments; some commands differ in the number of related arguments and whether those argume
can be specified as a vector or whether they must be specified separately in a list. For example, if
use theglVertex2f()command, you need to suppyandy coordinates as 32-hit floating—point
numbers; withlglVertex3sv()you must supply an array of three short (16-bit) integer valugs/for
andz. For simplicity, only the base name of the command is used in the discussion that follows, an
an asterisk is included to indicate that there may be more to the actual command name than is bei
shown. For examplglVertex*() stands for all variations of the command you use to specify vertices.

Also keep in mind that the effect of an OpenGL command may vary depending on whether certain
modes are enabled. For example, you need to enable lighting if the lighting—related commands are¢
have the desired effect of producing a properly lit object. To enable a particular mode, you use the
glEnable()command and supply the appropriate constant to identify the mode (for example,
GL_LIGHTING). The following sections don'’t discuss specific modes, but you can refer to the
reference page f@lEnable()for a complete list of the modes that can be enabled. Modes are
disabled withgIDisable()

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines — 1

VERTI:ES Wy e Color
— Fastar Pos Marmzal h;&:
Current Cumant
Marmal Cakar
]
el el i
e i
L 4 ¥ ¥ 4’
Lighing &
by Ly Celarirg TesuZen
Tezre
b
oy Y h J
FRIMITIVEZ Primi §ve Asmemblp
B pplicalore Specific Clipping
Frojecion
Mk
DrwhFizd=
Wiesw Wolame Clipping Pzl
Sorage
* Mo das
Divide bpw;
Wiewpork
Fiizoad
Transkr
o des
;u.,--’ Curran k y————————#% ‘-
Raxcler -l Faskeriaban
FRAGMENTS Pos o ————
¥
PRCEL=
— Frame= Eufier

Figure 2-1 OpenGL Pipeline

Vertices

This section relates the OpenGL commands that perform per—vertex operations to the processing
stages shown in the figure on the previous page.

Input Data

You must provide several types of input data to the OpenGL pipeline:

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines — 2

Verticed] Vertices describe the shape of the desired geometric object. To specify vertices, you
useglVertex*()commands in conjunction witiBegin()andglEnd() to create a point, line, or
polygon. You can also uggRect*() to describe an entire rectangle at once.

Edge flag] By default, all edges of polygons are boundary edges. UggBtgeFlag*()
command to explicitly set the edge flag.

Current raster positian Specified withglRasterPos*()the current raster position is used to
determine raster coordinates for pixel and bitmap drawing operations.

Current normal A normal vector associated with a particular vertex determines how a surface
at that vertex is oriented in three—dimensional space; this in turn affects how much light that
particular vertex receives. UgiNormal*() to specify a normal vector.

Current colof] The color of a vertex, together with the lighting conditions, determine the final,
lit color. Color is specified witlglColor*() if in RGBA mode or wittglindex*() if in color index
mode.

Current texture coordinatésSpecified withglTexCoord*() texture coordinates determine the
location in a texture map that should be associated with a vertex of an object.

WhenglVertex*() is called, the resulting vertex inherits the current edge flag, normal, color, and
texture coordinates. TherefogiEdgeFlag*() giINormal*(), giColor*(), andglTexCoord*()must be
called beforglVertex*() if they are to affect the resulting vertex.

Matrix Transformations

Vertices and normals are transformed by the modelview and projection matrices before they're use
to produce an image in the frame buffer. You can use commands syibhaasxMode()

glMultMatrix(), glRotate() glTranslate() andglScale()to compose the desired transformations, or
you can directly specify matrices wigfiLoadMatrix() andglLoadldentity() UseglPushMatrix()and
glPopMatrix() to save and restore modelview and projection matrices on their respective stacks.

Lighting and Coloring

In addition to specifying colors and normal vectors, you may define the desired lighting conditions
with glLight*() andglLightModel*(), and the desired material properties vgtilaterial*() . Related
commands you might use to control how lighting calculations are performed imgt&itedeModel()
glFrontFace() andglColorMaterial().

Generating Texture Coordinates

Rather than explicitly supplying texture coordinates, you can have OpenGL generate them as a
function of other vertex data. This is what tiiéexGen*()command does. After the texture
coordinates have been specified or generated, they are transformed by the texture matrix. This me
is controlled with the same commands mentioned earlier for matrix transformations.

Primitive Assembly

Once all these calculations have been performed, vertices are assembled into primpdines line

segments, or polygohstogether with the relevant edge flag, color, and texture information for each

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines — 3

vertex.

Primitives

During the next stage of processing, primitives are converted to pixel fragments in several steps:
primitives are clipped appropriately, whatever corresponding adjustments are necessary are made
the color and texture data, and the relevant coordinates are transformed to window coordinates.
Finally, rasterization converts the clipped primitives to pixel fragments.

Clipping

Points, line segments, and polygons are handled slightly differently during clipping. Points are eith:
retained in their original state (if they're inside the clip volume) or discarded (if they’re outside). If
portions of line segments or polygons are outside the clip volume, new vertices are generated at tt
clip points. For polygons, an entire edge may need to be constructed between such new vertices. |
both line segments and polygons that are clipped, the edge flag, color, and texture information is
assigned to all new vertices.

Clipping actually happens in two steps:

1. Application-specific clipping Immediately after primitives are assembled, they’re clipped in
eye coordinateas necessary for any arbitrary clipping planes you've defined for your
application withglClipPlane() (OpenGL requires support for at least six such
application—specific clipping planes.)

2. View volume clippingl Next, primitives are transformed by the projection matrix (tlij
coordinate} and clipped by the corresponding viewing volume. This matrix can be controlled b
the previously mentioned matrix transformation commands but is most typically specified by
glFrustum()or glOrtho().

Transforming to Window Coordinates

Before clip coordinates can be converted/todow coordinatesthey are normalized by dividing by
the value ofwto yield normalized device coordinateifter that, the viewport transformation applied
to these normalized coordinates produces window coordinates. You control the viewport, which
determines the area of the on—screen window that displays an imaggDejitthRange(and
glViewport()

Rasterization

Rasterization is the process by which a primitive is converted to a two—dimensional image. Each p
of this image contains such information as color, depth, and texture data. Together, a point and its
associated information are calleét@agment The current raster position (as specified with
glRasterPos*() is used in various ways during this stage for pixel drawing and bitmaps. As discuss
below, different issues arise when rasterizing the three different types of primitives; in addition, pix
rectangles and bitmaps need to be rasterized.

Primitives. You control how primitives are rasterized with commands that allow you to choose
dimensions and stipple patterg?ointSize()glLineWidth() glLineStipple() and
glPolygonStipple()Additionally, you can control how the front and back faces of polygons are
rasterized withglCullFace() glFrontFace() andglPolygonMode()

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines - 4

Pixels. Several commands control pixel storage and transfer modes. The cogiRiaatEtore*()
controls the encoding of pixels in client memory, giRixelTransfer*()andglPixelMap*() control

how pixels are processed before being placed in the frame buffer. A pixel rectangle is specified wit
glDrawPixels() its rasterization is controlled wigiPixelZoom()

Bitmaps. Bitmaps are rectangles of zeros and ones specifying a particular pattern of fragments to |
produced. Each of these fragments has the same associated data. A bitmap is specified using
glBitmap()

Texture Memory. Texturing maps a portion of a specified texture image onto each primitive when
texturing is enabled. This mapping is accomplished by using the color of the texture image at the
location indicated by a fragment'’s texture coordinates to modify the fragment's RGBA color. A
texture image is specified usigflreximage2D(pr glTeximagelD()The commands
glTexParameter*(andglTexEnv*()control how texture values are interpreted and applied to a
fragment.

Fog. You can have OpenGL blend a fog color with a rasterized fragment’'s post-texturing color usit
a blending factor that depends on the distance between the eyepoint and the fragngiirtddge
to specify the fog color and blending factor.

Fragments

OpenGL allows a fragment produced by rasterization to modify the corresponding pixel in the fram
buffer only if it passes a series of tests. If it does pass, the fragment’s data can be used directly to
replace the existing frame buffer values, or it can be combined with existing data in the frame buffe
depending on the state of certain modes.

Pixel Ownership Test

The first test is to determine whether the pixel in the frame buffer corresponding to a particular
fragment is owned by the current OpenGL context. If so, the fragment proceeds to the next test. If
not, the window system determines whether the fragment is discarded or whether any further
fragment operations will be performed with that fragment. This test allows the window system to
control OpenGL'’s behavior when, for example, an OpenGL window is obscured.

Scissor Test

With theglScissor()command, you can specify an arbitrary screen—aligned rectangle outside of
which fragments will be discarded.

Alpha Test

The alpha test (which is performed only in RGBA mode) discards a fragment depending on the
outcome of a comparison between the fragment’s alpha value and a constant reference value. The
comparison command and reference value are specifiegMithaFunc()

Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a comparison between
value in the stencil buffer and a reference value. The comgi8itehcilFunc(specifies the
comparison command and the reference value. Whether the fragment passes or fails the stencil te

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines - 5

the value in the stencil buffer is modified according to the instructions specified|&fdncilOp()

Depth Buffer Test

The depth buffer test discards a fragment if a depth comparisorgfBiepthFunc(specifies the
comparison command. The result of the depth comparison also affects the stencil buffer update ve
if stenciling is enabled.

Blending

Blending combines a fragment’s R, G, B, and A values with those stored in the frame buffer at the
corresponding location. The blending, which is performed only in RGBA mode, depends on the alg
value of the fragment and that of the corresponding currently stored pixel; it might also depend on
RGB values. You control blending withBlendFunc() which allows you to indicate the source and
destination blending factors.

Dithering

If dithering is enabled, a dithering algorithm is applied to the fragment’s color or color index value.
This algorithm depends only on the fragment’s value andataly window coordinates.

Logical Operations

Finally, a logical operation can be applied between the fragment and the value stored at the
corresponding location in the frame buffer; the result replaces the current frame buffer value. You
choose the desired logical operation wjthogicOp() Logical operations are performed only on

color indices, never on RGBA values.

Pixels

During the previous stage of the OpenGL pipeline, fragments are converted to pixels in the frame
buffer. The frame buffer is actually organized into a set of logical bufférscolor, depth, stencil,
andaccumulatiorbuffers. The color buffer itself consists ofrant left, front right, back left, back

right, and some number aluxiliary buffers. You can issue commands to control these buffers, and
you can directly read or copy pixels from them. (Note that the particular OpenGL context you're
using may not provide all of these buffers.)

Frame Buffer Operations

You can select into which buffer color values are written giithrawBuffer() In addition, four

different commands are used to mask the writing of bits to each of the logical frame buffers after a
per—fragment operations have been perforigidaiexMask()glColorMask() giDepthMask()and
glStencilMask()The operation of the accumulation buffer is controlled wifkccum() Finally,

glClear() sets every pixel in a specified subset of the buffers to the value specified with
glClearColor(), glClearindex() glClearDepth() glClearStencil() or giClearAccum()

Reading or Copying Pixels

You can read pixels from the frame buffer into memory, encode them in various ways, and store tt
encoded result in memory witiReadPixels()In addition, you can copy a rectangle of pixel values
from one region of the frame buffer to another wjtiopyPixels() The commandgIReadBuffer()

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines - 6

controls from which color buffer the pixels are read or copied.

Additional OpenGL Commands

This section briefly describes special groups of commands that weren’t explicitly shown as part of
OpenGL’s processing pipeline. These commands accomplish such diverse tasks as evaluating
polynomials, using display lists, and obtaining the values of OpenGL state variables.

Using Evaluators

OpenGL’s evaluator commands allow you to use a polynomial mapping to produce vertices, norms
texture coordinates, and colors. These calculated values are then passed on to the pipeline as if tr
had been directly specified. The evaluator facility is also the basis for the NURBS (Non-Uniform
Rational B—Spline) commands, which allow you to define curves and surfaces, as described later i
this chapter undéOpenGL Utility Library."

The first step involved in using evaluators is to define the appropriate one- or two—dimensional
polynomial mapping usinglMap*(). The domain values for this map can then be specified and
evaluated in one of two ways:

By defining a series of evenly spaced domain values to be mappedidMapGrid*() and then
evaluating a rectangular subset of that grid wiEvalMesh*() A single point of the grid can be
evaluated usinglEvalPoint*().

By explicitly specifying a desired domain value as an argumegiEt@mlCoord*() which
evaluates the maps at that value.

Performing Selection and Feedback

Selection, feedback, and rendering are mutually exclusive modes of operation. Rendering is the
normal, default mode during which fragments are produced by rasterization; in selection and
feedback modes, no fragments are produced and therefore no frame buffer modification occurs. In
selection mode, you can determine which primitives would be drawn into some region of a window
in feedback mode, information about primitives that would be rasterized is fed back to the
application. You select among these three modesgiiRBnderMode()

Selection

Selection works by returning the current contents of the name stack, which is an array of
integer—valued names. You assign the names and build the name stack within the modeling code
specifies the geometry of objects you want to draw. Then, in selection mode, whenever a primitive
intersects the clip volume, a selection hit occurs. The hit record, which is written into the selection
array you've supplied witlylSelectBuffer()contains information about the contents of the name
stack at the time of the hit. (Note tiiaEelectBuffer(heeds to be called before OpenGL is put into
selection mode witlflRenderMode()Also, the entire contents of the name stack isn’'t guaranteed to
be returned untijiRenderMode(js called to take OpenGL out of selection mode.) You manipulate
the name stack withlinitNames() glLoadName()glPushName()andglPopName() In addition,

you might want to use an OpenGL Utility Library routine for selectitwRickMatrix(), which is
described later in this chapter und&penGL Utility Library."

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines — 7

Feedback

In feedback mode, each primitive that would be rasterized generates a block of values that is copi¢
into the feedback array. You supply this array wiffeedbackBuffer()which must be called before
OpenGL is put into feedback mode. Each block of values begins with a code indicating the primitiv
type, followed by values that describe the primitive’s vertices and associated data. Entries are alsc
written for bitmaps and pixel rectangles. Values are not guaranteed to be written into the feedback
array untilgIRenderMode(js called to take OpenGL out of feedback mode. You can use
glPassThrough(Jo supply a marker that's returned in feedback mode as if it were a primitive.

Using Display Lists

A display list is simply a group of OpenGL commands that has been stored for subsequent executi
ThegINewList()command begins the creation of a display list, glishdList() ends it. With few
exceptions, OpenGL commands called betwgRiewList()andglEndList() are appended to the

display list, and optionally executed as well. (The reference pagéNewList()lists the commands

that can't be stored and executed from within a display list.) To trigger the execution of a list or set
lists, useglCallList() orglCallLists() and supply the identifying number of a particular list or lists.
You can manage the indices used to identify display listsgM@enLists() glListBase() and

glisList(). Finally, you can delete a set of display lists witbeleteLists()

Managing Modes and Execution

The effect of many OpenGL commands depends on whether a particular mode is in effect. You us
glEnable()andglDisable()to set such modes agtdsEnabled()to determine whether a particular
mode is set.

You can control the execution of previously issued OpenGL commandglWittish(), which forces
all such commands to complete,ghiFlush(), which ensures that all such commands will be
completed in a finite time.

A particular implementation of OpenGL may allow certain behaviors to be controlled with hints, by
using theglHint() command. Possible behaviors are the quality of color and texture coordinate
interpolation, the accuracy of fog calculations, and the sampling quality of antialiased points, lines,
polygons.

Obtaining State Information

OpenGL maintains humerous state variables that affect the behavior of many commands. Some o
these variables have specialized query commands:

glGetLight()
glGetMaterial()
glGetClipPlane()
glGetPolygonStipple()
glGetTexEnv()
glGetTexGen()
glGetTexImage()
glGetTexLevelParameter()
glGetTexParameter()
glGetMap()
glGetPixelMap()

The value of other state variables can be obtainedgh&htBooleanv()glGetDoublev()

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines — 8

glGetFloatv() or glGetintegerv()as appropriate. The reference pagegf@et*() explains how to
use these commands. Other query commands you might want to gé8etterror(), glGetString()
andglisEnabled() (Se€'Handling Errors" later in this chapter for more information about routines
related to error handling.) Finally, you can save and restore sets of state variabigRugitiAttrib()
andglPopAttrib().

OpenGL Utility Library

The OpenGL Utility Library (GLU) contains several groups of commands that complement the core
OpenGL interface by providing support for auxiliary features. Since these utility routines make use
core OpenGL commands, any OpenGL implementation is guaranteed to support the utility routines
Note that the prefix for Utility Library routines gdu rather thargl.

Manipulating Images for Use in Texturing

GLU provides image scaling and automatic mipmapping routines to simplify the specification of
texture images. The routigguScalelmage(scales a specified image to an accepted texture size; the
resulting image can then be passed to OpenGL as a texture. The automatic mipmapping routines
gluBuild1DMipmaps(andgluBuild2DMipmaps(xreate mipmapped texture images from a specified
image and pass themdtleximagelD(pndglTeximage2D()respectively.

Transforming Coordinates

Several commonly used matrix transformation routines are provided. You can set up a
two—dimensional orthographic viewing region vgthOrtho2D(), a perspective viewing volume
usinggluPerspective()or a viewing volume that's centered on a specified eyepointghittookAt()
Each of these routines creates the desired matrix and applies it to the current matrix using
glMultMatrix().

ThegluPickMatrix()routine simplifies selection by creating a matrix that restricts drawing to a small
region of the viewport. If you rerender the scene in selection mode after this matrix has been appli
all objects that would be drawn near the cursor will be selected and information about them stored
the selection buffer. Sé@erforming Selection and Feedbackarlier in this chapter for more
information about selection mode.

If you need to determine where in the window an object is being drawglul®ject() which
converts specified coordinates from object coordinates to window coordiglatésProject()
performs the inverse conversion.

Polygon Tessellation

The polygon tessellation routines triangulate a concave polygon with one or more contours. To us¢
this GLU feature, first create a tessellation object gitiNewTess()and define callback routines

that will be used to process the triangles generated by the tessellatal@@itssCallBack]) Then
usegluBeginPolygon()gluTessVertex(gluNextContour()andgluEndPolygon(}o specify the

concave polygon to be tessellated. Unneeded tessellation objects can be destroyed with
gluDeleteTess()

Rendering Spheres, Cylinders, and Disks

You can render spheres, cylinders, and disks using the GLU quadric routines. To do this, create a

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines — 9

quadric object witlgluNewQuadric()(To destroy this object when you're finished with it, use
gluDeleteQuadric() Then specify the desired rendering style, as listed below, with the appropriate
routine (unless you're satisfied with the default values):

Whether surface normals should be generated, and if so, whether there should be one normal
vertex or one normal per fagguQuadricNormals()

Whether texture coodinates should be genergieQuadricTexture()

Which side of the quadric should be considered the outside and which the inside:
gluQuadricOrientation()

Whether the quadric should be drawn as a set of polygons, lines, or points:
gluQuadricDrawStyle()

After you've specified the rendering style, simply invoke the rendering routine for the desired type
quadric objectgluSphere()gluCylinder() gluDisk(), or gluPartialDisk() If an error occurs during
rendering, the error—handling routine you've specified glituadricCallBack()s invoked.

NURBS Curves and Surfaces

NURBS (Non-Uniform Rational B—Spline) curves and surfaces are converted to OpenGL evaluatc
by the routines described in this section. You can create and delete a NURBS object with
gluNewNurbsRenderer@ndgluDeleteNurbsRenderet(snd establish an error—handling routine with
gluNurbsCallback()

You specify the desired curves and surfaces with different sets of ralgheBeginCurve()
gluNurbsCurve()andgluEndCurve(¥or curves ogluBeginSurface()gluNurbsSurface(and
gluEndSurface(Jor surfaces. You can also specify a trimming region, which defines a subset of the
NURBS surface domain to be evaluated, thereby allowing you to create surfaces that have smoott
boundaries or that contain holes. The trimming routineglaigeginTrim() gluPwICurve()
gluNurbsCurve()andgluEndTrim()

As with quadric objects, you can control how NURBS curves and surfaces are rendered:

Whether a curve or surface should be discarded if its control polyhedron lies outside the curre
viewport

What the maximum length should be (in pixels) of edges of polygons used to render curves ar
surfaces

Whether the projection matrix, modelview matrix, and viewport should be taken from the

OpenGL server or whether you'll supply them explictly wgthLoadSamplingMatrices()

UsegluNurbsProperty(Jo set these properties, or use the default values. You can query a NURBS
object about its rendering style wigluGetNurbsProperty()
Handling Errors

The routinegluErrorString() is provided for retrieving an error string that corresponds to an OpenGL
or GLU error code. The currently defined OpenGL error codes are describediG &terror()
reference page. The GLU error codes are listed igltierrorString() gluTessCallback()

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines — 10

gluQuadricCallback() andgluNurbsCallback(yeference pages. Errors generated by GLX routines
are listed in the relevant reference pages for those routines.

OpenGL Extension to the X Window System

In the X Window System, OpenGL rendering is made available as an extension to X in the formal .
sense: connection and authentication are accomplished with the normal X mechanisms. As with ot
X extensions, there is a defined network protocol for OpenGL'’s rendering commands encapsulater
within the X byte stream. Since performance is critical in three—dimensional rendering, the OpenG
extension to X allows OpenGL to bypass the X server’s involvement in data encoding, copying, an
interpretation and instead render directly to the graphics pipeline.

This section briefly discusses the routines defined as part of GLX; these routines have thydrefix
You'll need to have some knowledge of X in order to fully understand the following and to use GLX
successfully.

Initialization

UseglXQueryExtension@ndglXQueryVersion(}o determine whether the GLX extension is defined
for an X server, and if so, which version is bound in the servergi®tghooseVisual@outine

returns a pointer to an XVisuallnfo structure describing the visual that best meets the client’s
specified attributes. You can query a visual about its support of a particular OpenGL attribute with
gIXGetConfig()

Controlling Rendering

Several GLX routines are provided for creating and managing an OpenGL rendering context. You
can use such a context to render off-screen if you want. Routines are also provided for such tasks
synchronizing execution between the X and OpenGL streams, swapping front and back buffers, ar
using an X font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created wjtKCreateContext()One of the arguments to this
routine allows you to request a direct rendering context that bypasses the X server as described
above. (Note that in order to do direct rendering, the X server connection must be local and the
OpenGL implementation needs to support direct rendering.) You can determine whether a GLX
context is direct withlglXlIsDirect()

To make a rendering context current, gb&MakeCurrent()gIXGetCurrentContext(jeturns the

current context. (You can also obtain the current drawableghitGetCurrentDrawable()

Remember that only one context can be current for any thread at any one time. If you have multipl
contexts, you can copy selected groups of OpenGL state variables from one context to another wit
glXCopyContext()When you're finished with a particular context, destroy it with
glXDestroyContext()

Off-Screen Rendering

To render off-screen, first create an X Pixmap and then pass this as an argument to
glXCreateGLXPixmap()Once rendering is completed, you can destroy the association between the

OpenGL Reference Manual — Chapter 2, Overview of Commands and Routines — 11

and GLX Pixmaps witlgIXDestroyGLXPixmap(XOff-screen rendering isn’'t guaranteed to be
supported for direct renderers.)

Synchronizing Execution

To prevent X requests from executing until any outstanding OpenGL rendering is completed, call
gIXWaitGL() Then, any previously issued OpenGL commands are guaranteed to be executed befc
any X rendering calls made afgXWaitGL(). Although the same result can be achieved with
glFinish(), gIXWaitGL()doesn't require a round trip to the server and thus is more efficient in cases
where the client and server are on separate machines.

To prevent an OpenGL command sequence from executing until any outstanding X requests are
completed, usglXWaitX() This routine guarantees that previously issued X rendering calls will be
executed before any OpenGL calls made afitévVaitX()

Swapping Buffers

For drawables that are double-buffered, the front and back buffers can be exchanged by calling
gIXSwapBuffers()An implicit glFlush() is done as part of this routine.

Using an X Font

A shortcut for using X fonts in OpenGL is provided with the comngKtlseXFont()

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 12

Chapter 3
Summary of Commands and Routines

This chapter lists the prototypes for OpenGL, the OpenGL Utility Library, and the OpenGL extensic
to the X Window System. The prototypes are grouped functionally, as shown below:

OpenGL Commands
"Primitives"

- "Coordinate Transformation”

— "Coloring and Lighting"

— "Clipping"

- "Rasterization"

— "Pixel Operations"

- "Texture Mapping"

- "Fog"

- "Frame Buffer Operations"

- "Evaluators"

- "Selection and Feedback"

- "Display Lists"

- "Modes and Execution”

- "State Queries"

GLU Routines

— "Texture Images"

— "Coordinate Transformation”

- "Polygon Tessellation"

— "Quadric Objects"

- "NURBS Curves and Surfaces"

- "Error Handling"

GLX Routines

- "Initialization"

— "Controlling Rendering"

Notation

Since some of the OpenGL commands differ from each other only by the data type of the argumer

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 1

they accept, certain conventions have been used to refer to these commands in a compact way:

void glVertex2{sifd{v}(TYPEX, TYPEY);

In this example, the first set of braces encloses characters identifying the possible data types for tt
arguments listed as having data type TYPE. (The digit preceding the braces indicates how many

arguments the command takes.) In this case, all the arguments have the placeholder TYPE, but in
other situations some arguments may have an explicitly defined data type. The table shown below
lists the set of possible data types, their corresponding characters, and the type definition OpenGL
uses for referring to that data type.

character data type

C-language type

OpenGL type definition

b
8-hit
integ
er

S
16-bit
integ
er

i
32-bit
integ
er

f
32-bit
floati
ng-po
int

d
64-bit
floati
ng-po
int

ub
8-hit
unsig
ned
integ
er

us
16-bit
unsig
ned
integ
er

u
32-hit
unsig

signed char
GLbyte

short
GLshort

int
GLint,
GLsizei

float
GLfloat,
GLclampf

double
GLdouble,
GLclampd

unsigned char
GLubyte,
GLboolean

unsigned short
GLushort

unsigned int
GLuint,
GLenum,

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 2

ned GLbitfield
integ
er
void
GLvoid

The second set of braces, if present, containfoathe vector form of the command. If you choose
to use the vector form, all the TYPE arguments are collapsed into a single array. For example, her
are the nonvector and vector forms of a command, using a 32-bit floating—point data type:

void glVertex2{GLfloatx, GLfloaty);
void glVertex2fYGLfloat V2]);

Where the use of the vector form is ambiguous, both the vector and nonvector forms are listed. Nc

that not all commands with multiple arguments have a vector form and that some commands have
only a vector form, in which case thiésn’t enclosed in braces.

OpenGL Commands

Primitives
Specify vertices or rectangles:

void gIBegin(GLenummods;

void glEnd (void);

void glVertex2{sifd{v}(TYPEX, TYPEY);

void glVertex3{sifd{v}(TYPEX, TYPEy, TYPEZ);

void glVertex4{sifd{v}(TYPEX, TYPEy, TYPEz TYPEW);
void glRect{sifd}(TYPE x1, TYPE Y1, TYPEX2, TYPEy2);
void glIRect{sifd}v(const TYPE*V1, const TYPEV?2);

Specify polygon edge treatment:

void glEdgeFlag(GLboolearflag);
void glEdgeFlagv(const GLbooleanftag);

Coordinate Transformation
Transform the current matrix:

void glRotate{fd}(TYPEangle, TYPEX, TYPEY, TYPE 2);

void glTranslate{fd}(TYPE x, TYPEy, TYPE2);

void glScale{fd}(TYPEx, TYPEY, TYPE 2);

void gIMultMatrix{fd} (const TYPE t);

void glFrustum(GLdoubleleft, GLdoubleright, GLdoublebottom GLdoubletop, GLdoublenear,
GLdoublefar);

void glOrtho (GLdoubleleft, GLdoubleright, GLdoublebottom GLdoubletop, GLdoublenear,
GLdoublefar);

Replace the current matrix:

void glLoadMatrix{fd} (const TYPE tn);
void glLoadldentity(void);

Manipulate the matrix stack:
void gIMatrixMode (GLenummodse);

void glPushMatrix(void);
void glPopMatrix (void);

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 3

Specify the viewport:

void gIDepthRangéGLclampdnear, GLclampdfar);

void glViewport (GLint x, GLint y, GLsizeiwidth, GLsizeiheigh);
Coloring and Lighting

Set the current color, color index, or normal vector:

void glColor3{bsifd ubusuif{vTYPEred TYPEgreen TYPEDblue);
void glColor4{bsifd ubusuif{vTYPEred, TYPEgreen TYPEblug TYPEalphg;
void glindex{sifd{v} (TYPEindeXx);

void gINormal3{bsifd{v} (TYPEnx TYPEny, TYPEN2);

Specify light source, material, or lighting model parameter values:
void glLight{if{v} (GLenumlight, GLenumpname TYPE param;
void glMateriaKif{v} (GLenumface GLenumpname TYPE paranj;
void glLightModel{if{v} (GLenumpname TYPE paranj;

Choose a shading model:

void glShadeMode{GLenummodse);

Specify which polygon orientation is front-facing:

void glFrontFace(GLenumdir);

Cause a material color to track the current color:

void glColorMaterial (GLenumface, GLenummods;

Obtain light source or material parameter values:

void glGetLight{iffv (GLenumlight, GLenumpname TYPE *paramg;
void glGetMaterial{ifjv (GLenumface GLenumpname TYPE *paramy;
Clipping

Specify a clipping plane:

void gIClipPlane (GLenumplang const GLdoubleéquatior);

Return clipping plane coefficients:

void glGetClipPlane(GLenumplane GLdouble tquation;

Rasterization
Set the current raster position:

void glRasterPos2{sifd{\[TYPE x, TYPEY);
void gIRasterPos3{sifd{MITYPE x, TYPEY, TYPE 2);

void glRasterPos4{sifd{\fTYPE x, TYPEY, TYPE z, TYPEw);
Specify a bitmap:

void gIBitmap (GLsizeiwidth, GLsizeiheight GLfloatxorig, GLfloatyorig, GLfloatxmove GLfloat
ymove const GLubyte Bitmap);

Specify the dimensions of points or lines:

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 4

void glPointSize(GLfloat size);
void glLineWidth (GLfloat width);

Specify or return a stipple pattern for lines or polygons:

void glLineStipple(GLint factor, GLushortpatterr);
void glPolygonStipplgconst GLubyte mask;
void glGetPolygonStippléGLubyte ‘mask;

Choose how polygons are rasterized:

void glCullFace(GLenummodse);
void glPolygonModgGLenumface, GLenummodg;

Pixel Operations

Select the source for pixel reads or copies:
void glIReadBuffe{GLenunmodg);

Read, write, and copy pixels:

void glReadPixelgGLint x, GLinty, GLsizeiwidth, GLsizeiheight GLenumformat, GLenumtype
GLvoid *pixels;

void gIDrawPixels(GLsizeiwidth, GLsizeiheight GLenumformat GLenumtype, const GLvoid
*pixely;

void glCopyPixels(GLint x, GLint y, GLsizeiwidth, GLsizeiheight GLenumtypd;

Specify or query how pixels are encoded or processed:

void glPixelStore{if}(GLenumpname TYPEparamny;

void glPixelTransfer{if} (GLenumpname TYPE paranj;

void glPixelMap{f usui}v(GLenummap GLint mapsizeconst TYPE values;

void glGetPixelMap{f usuij{GLenummap TYPE *aluey;

Control pixel rasterization:

void glPixelZzoom(GLfloat xfactor, GLfloatyfactoy);

Texture Mapping
Control how a texture is applied to a fragment:

void glTexParameter{if{v(GLenumtarget, GLenumpname TYPEparan);
void glTexEnv{if{v} (GLenumtarget, GLenumpname TYPEparan);

Set the current texture coordinates:

void glTexCoord1{sifd{v}(TYPES);

void glTexCoord2{sifd{v}(TYPEs, TYPEY);

void glTexCoord3{sifd{viTYPEs, TYPEt, TYPET);

void glTexCoord4{sifd{v}TYPEs, TYPEt, TYPEr, TYPEQ);
Control the generation of texture coordinates:

void glTexGen{ifd{v}(GLenumcoord GLenumpname TYPE param);

Specify a one- or two—dimensional texture image:

void glTeximagelDGLenumtarget GLint level GLintcomponentsGLsizeiwidth, GLint border,

GLenumformat, GLenumtype const GLvoid pixels;
void glTexlimage2D(GLenumtarget GLint level, GLintcomponentsGLsizeiwidth, GLsizeiheight
GLint border, GLenumformat GLenumtype, const GLvoid pixels);

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 5

Obtain texture-related parameter values:

void glGetTexEnv{iffGLenumtarget, GLenumpname TYPE *paramg;

void glGetTexGen{ifd}MGLenumcoord, GLenumpname TYPE *paramg;

void glGetTexImagéGLenumtarget, GLintlevel GLenumformat, GLenumtype GLvoid *pixel9;
void glGetTexLevelParameter{iff{GLenumtarget, GLint leve] GLenumpname TYPE *paramg;
void glGetTexParameter{iff{GLenumtarget GLenumpname TYPE *paramy;

Fog

Set fog parameters:

void glFog{if{v} (GLenumpname TYPEparan);

Frame Buffer Operations
Control per—fragment testing:

void glScissor(GLint x, GLinty, GLsizeiwidth, GLsizeiheigh);
void glAlphaFunc(GLenunfunc, GLclampfref);

void glStencilFungGLenumfung GLintref, GLuint maslk;
void glStencilOp(GLenumfail, GLenumpass GLenumzpasy
void glDepthFunc(GLenumfung;

Combine fragment and frame buffer values:

void gIBlendFunc(GLenumsfactor, GLenumdfacton);
void glLogicOp(GLenumopcode;

Clear some or all buffers:
void glClear (GLbitfield maskK;
Specify color, depth, and stencil values for clears:

void glClearAccum(GLfloat red, GLfloat green GLfloatblue, GLfloatalpha);

void glClearColor (GLclampfred, GLclampfgreen GLclampfblue GLclampfalpha);
void glClearDepth(GLclampddepth);

void glClearindex(GLfloat 9);

void glClearStencil(GLint s);

Control buffers enabled for writing:

void gIDrawBuffer (GLenummodé;

void glindexMask{GLuint mask;

void glColorMask(GLboolearred, GLbooleargreen GLboolearblue, GLboolearalpha);

void gIDepthMaskGLboolearflag);
void glStencilMask GLuint mask;

Operate on the accumulation buffer:

void glAccum(GLenumop, GLfloatvalue);

Evaluators

Define a one- or two—dimensional evaluator:

void gIMap1{fd} (GLenumtarget TYPEu1, TYPEu2, GLintstride, GLint order, const TYPE

*pointy;
void gIMap2{fd} (GLenumtarget, TYPEu1, TYPEu2, GLintustride GLint uorder, TYPEV1,
TYPE v2, GLintvstride,

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 6

GLint vorder, const TYPE points);
Generate and evaluate a series of map domain values:

void gIMapGrid1{fd} (GLintn, TYPEul, TYPEu2);
void gIMapGrid2{fd} (GLintun, TYPEul, TYPEuUZ2, GLintvn TYPEV], TYPEV2);

void glEvalMesh1l(GLenummode GLintil, GLinti2);

void glEvalMesh2GLenummode GLintil, GLinti2, GLintj1, GLintj2);

void glEvalPoint1(GLint i);

void glEvalPoint2(GLint i, GLint j);

Evaluate one- and two—-dimensional maps at a specified domain coordinate:

void glEvalCoord 1{fdH{v}(TYPE u);
void glEvalCoord2{fd{v}(TYPE u, TYPEV);

Obtain evaluator parameter values:

void glGetMap{idf}v (GLenumtarget, GLenumquery TYPE *v);

Selection and Feedback
Control the mode and corresponding buffer:
GLint gIRenderModdGLenummodé;

void glSelectBuffeGLsizeisize GLuint *buffen);
void glFeedbackBuffe(GLsizeisize GLenumtype, GLfloat *buffer);

Supply a token for feedback mode:

void gIPassThrougl{GLfloat token;
Control the name stack for selection:
void glinitNames(void);

void glLoadNamegGLuintname;

void glPushNamégGLuint namé;

void glPopName(void);

Display Lists

Create or delete display lists:

void gINewList(GLuintlist, GLenummode);
void glEndList(void);

void glDeleteListgGLuintlist, GLsizeirange);

Execute a display list or set of lists:

void glCallList (GLuint list);
void glCallLists (GLsizein, GLenumtype const GLvoid tists);

Manage display-list indices:
GLuint glGenLists(GLsizeirangé;

GLboolearglisList (GLuintlist);
void glListBase(GLuintbasg;

Modes and Execution

Enable, disable, and query modes:

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 7

void glEnable(GLenumcap);

void glDisable (GLenumcap);
GLboolearglisEnabled(GLenumcap);

Wait until all OpenGL commands have executed completely:
void glFinish (void);

Force all issued OpenGL commands to be executed:

void glFlush (void);

Specify hints for OpenGL operation:

void glHint (GLenumtarget, GLenummode;

State Queries
Obtain information about an error or the current OpenGL connection:

GLenumglGetError (void);
const GLubyte glGetString(GLenumnamg;

Query state variables:

void glGetBoolean{GLenumpname GLboolean paramg;
void glGetDoubleMGLenumpname GLdouble paramg;
void glGetFloatv(GLenumpname GLfloat *paramsy;

void glGetintegervyGLenumpname GLint *paramy;

Save and restore sets of state variables:

void glPushAttrib(GLbitfield mask;
void glPopAittrib (void);

GLU Routines

Texture Images
Magnify or shrink an image:

int gluScalelmagéGLenumformat, GLint widthin, GLint heightinGLenumtypein const void
*datain, GLintwidthout GLint heightout GLenumtypeout void *dataouy;

Generate mipmaps for an image:

int gluBuild1DMipmapqGLenumtarget, GLint componentsGLint width, GLenumformat GLenum

type void *data);
int gluBuild2DMipmapgGLenumtarget, GLint componentsGLintwidth, GLintheight GLenum
format, GLenumtype void *datg;

Coordinate Transformation

Create projection or viewing matrices:

void gluOrtho2D (GLdoubleleft, GLdoubleright, GLdoublebottomGLdoubletop);

void gluPerspectivdGLdoublefovy, GLdoubleaspect GLdoublezNear GLdoublezFar);

void gluPickMatrix (GLdoublex, GLdoubley, GLdoublewidth, GLdoubleheight GLint
viewpor{4]);

void gluLookAt(GLdoubleeyex GLdoubleeyey GLdoubleeyez GLdoublecenterx GLdouble

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 8

centery GLdoublecenterz GLdoubleupx, GLdoubleupy, GLdoubleup?);
Convert object coordinates to screen coordinates:

int gluProject(GLdoubleobjx, GLdoubleobjy, GLdoubleobjz const GLdoublenodelMatrif16],
const GLdoublegrojMatrix[16], const GLinwviewpor{4], GLdouble *winx, GLdouble #iny,
GLdouble Wwin2;

int gluUnProject(GLdoublewinx, GLdoublewiny, GLdoublewinz, const GLdouble
modelMatri§16], const GLdoubl@rojMatrix[16], const GLintviewpor{4], GLdouble bbjx,
GLdouble "objy, GLdouble bbjz);

Polygon Tessellation
Manage tessellation objects:
GLUtriangulatorObj*gluNewTesg$void);

void gluTessCallbackGLUtriangulatorObj tobj, GLenumwhich, void (*fn)());
void gluDelete Tes¢GL UtriangulatorObj tobj);

Describe the input polygon:

void gluBeginPolygor(GLUtriangulatorObj tobj);

void gluEndPolygonGLUtriangulatorObj tobj);

void gluNextContou{GLUtriangulatorObj tobj, GLenumtype);

void gluTessVertexGLUtriangulatorObj tobj, GLdoublev[3], void *data);

Quadric Objects
Manage quadric objects:

GLUquadricObj*gluNewQuadrigvoid);
void gluDeleteQuadridGLUquadricObj state);
void gluQuadricCallback(GLUquadricObj fiobj, GLenumwhich, void (*fn)());

Control the rendering:

void gluQuadricNormalqGLUquadricObj fluadObjectGLenumnormalg;

void gluQuadricTexturd GLUquadricObj fluadObjectGLbooleantextureCoordgs
void gluQuadricOrientationGLUquadricObj fluadObject GLenumorientation;
void gluQuadricDrawStylg GLUquadricObj jluadObject GLenumdrawStyl8;

Specify a quadric primitive:

void gluCylinder(GLUquadricObj fobj, GLdoublebaseRadius
GLdoubletopRadius GLdoubleheight GLintslices GLint stack};
void gluDisk (GLUquadricObj fobj, GLdoubleinnerRadius
GLdoubleouterRadiusGLintslices GLintloops);

void gluPartialDisk (GLUquadricObj fjobj GLdoubleinnerRadius
GLdoubleouterRadiusGLintslices GLintloops
GLdoublestartAngle GLdoublesweepAnglg

void gluSphergGLUquadricObj tjobj GLdoubleradius GLintslices
GLint stackg;

NURBS Curves and Surfaces
Manage a NURBS object:

GLUnurbsObj*gluNewNurbsRenderdvoid);
void gluDeleteNurbsRenderdGLUnurbsObj hob));

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 9

void gluNurbsCallbackGLUnurbsObj hobj, GLenumwhich void (*fn)());
Create a NURBS curve:

void gluBeginCurvg(GLUnurbsObj hob));

void gluEndCurve(GLUnurbsObj hobj;

void gluNurbsCurvg(GLUnurbsObj hobj, GLint nknots GLfloat *knot, GLint stride, GLfloat
*ctlarray, GLint order, GLenumtype);

Create a NURBS surface:

void gluBeginSurfac€GLUnurbsObj hobj);void gluEndSurfacd GLUnurbsObj hobj);

void gluNurbsSurfac€GLUnurbsObj hobj, GLintuknot_countGLfloat *uknot GLint vknot_count
GLfloat *vknot GLintu_stride GLintv_stride GLfloat *ctlarray, GLintsorder, GLint torder,
GLenumtype);

Define a trimming region:

void gluBeginTrim(GLUnurbsObj hob));

void gluEndTrim (GLUnurbsObj hobj);

void gluPwICurve(GLUnurbsObj hobj, GLintcount, GLfloat *array, GLint stride, GLenumtype);
Control NURBS rendering:

void gluLoadSamplingMatrice€GLUnurbsObj hobj, const GLfloatmodelMatriX16], const GLfloat

projMatrix[16], const GLintviewpor{4]);

void gluNurbsPropertyGLUnurbsObj hobj, GLenumproperty GLfloat valug;
void gluGetNurbsPropertfGLUnurbsObj hobj GLenumproperty,

GLfloat *value);

Error Handling
Produce an error string from an OpenGL error code:

const GLubyte*gluErrorString (GLenumerrorCods;

GLX Routines

Initialization
Determine whether the GLX extension is defined on the X server:

Bool gIXQueryExtensio(Display *dpy; int *errorBase int *eventBasg
Bool gIXQueryVersior(Display *dpy, int *major, int *minor);

Obtain the desired visual:

XVisuallnfo* gIXChooseVisua{Display *dpy, int screen int *attribList);
int gIXGetConfig(Display *dpy, XVisuallnfo *vis, int attrib, int *value);

Controlling Rendering
Manage or query an OpenGL rendering context:

GLXContextglXCreateContextDisplay*dpy, XVisuallnfo*vis, GLXContextshareList Bool

direc;

void gIXDestroyContex(Display*dpy, GLXContextcty);

void gIXCopyContex(Display *dpy, GLXContextsrc, GLXContextdst, GLuintmask;
Bool giXIsDirect (Display *dpy, GLXContextctx);

Bool giXMakeCurren{Display *dpy, GLXDrawabledraw, GLXContextctX);
GLXContextgIXGetCurrentContextvoid);

OpenGL Reference Manual — Chapter 3, Summary of Commands and Routines — 10

GLXDrawableglXGetCurrentDrawablévoid);

Perform off-screen rendering:
GLXPixmapglXCreateGLXPixmafDisplay *dpy, XVisuallnfo *vis,
Pixmappixmap);

void gIXDestroyGLXPixmagDisplay *dpy, GLXPixmappix);
Synchronize execution:

void gIXWaitGL (void);
void gIXWaitX (void);

Exchange front and back buffers:
void gIXSwapBuffergDisplay *dpy, Windowwindow);
Use an X font:

void gIXUseXFont(Fontfont, intfirst, int count int listBase;

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands — 11

Chapter 4
Defined Constants and Associated Commands

This chapter lists all the defined constants in OpenGL and their corresponding commands; these
constants might indicate a parameter name, a value for a parameter, a mode, a query target, or a
return value. The list is intended to be used as another index into the reference pages: if you
remember the name of a constant, you can use this table to find out which functions use it, and the
you can refer to the reference pages for those functions for more information. Note that all the
constants listed can be used directly by the corresponding commands; the reference pages list

additional, related commands that might be of interest.
Constant Associated Commands

GL_2D, GL_3D, GL_3D_COLOR,
GL_COLOR_TEXTURE,
GL_4D_COLOR_TEXTURE
glFeedbackBuffer()

GL_2 BYTES, GL_3_BYTES, GL_4_BYTES
glCallLists()

GL_ACCUM

glAccum()
GL_ACCUM_ALPHA_BITS,
GL_ACCUM_BLUE_BITS
glGet*()
GL_ACCUM_BUFFER_BIT
glClear(), glPushAttrib()
GL_ACCUM_CLEAR_VALUE,
GL_ACCUM_GREEN_BITS,
GL_ACCUM_RED_BITS

glGet*()

GL_ADD

glAccum()
GL_ALL_ATTRIB_BITS
glPushAttrib()

GL_ALPHA

glDrawPixels(), gIReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()
GL_ALPHA_BIAS
glPixelTransfer*(), glGet*()
GL_ALPHA BITS

glGet*()

GL_ALPHA_SCALE
glPixelTransfer*(), glGet*()
GL_ALPHA_TEST

glEnable(), glisEnabled(), glGet*()
GL_ALPHA_TEST_FUNC, GL_ALPHA_TEST_REF
glGet*()

GL_ALWAYS

glAlphaFunc(), giDepthFunc(), glStencilFunc()

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 1

GL_AMBIENT

glLight*(), glGetLight*(), gIMaterial*(),
glGetMaterial*(), glColorMaterial()
GL_AMBIENT_AND_DIFFUSE
glMaterial*(), glGetMaterial*(),
glColorMaterial()

GL_AND, GL_AND_INVERTED,
GL_AND_REVERSE

glLogicOp()
GL_ATTRIB_STACK_DEPTH
glGet*()

GL_AUTO_NORMAL

glEnable(), glisEnabled(), glGet*()
GL_AUXO through GL_AUX3
glDrawBuffer(), gIReadBuffer()
GL_AUX_BUFFERS

glGet*()

GL_BACK

glColorMaterial(), glCullFace(), glDrawBuffer(),
glReadBuffer(), glMaterial*(), giGetMaterial*(),
glPolygonMode()

GL_BACK_LEFT, GL_BACK_RIGHT
glDrawBuffer(), gIReadBuffer()
GL_BITMAP

glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()
GL_BITMAP_TOKEN
glPassThrough()

GL_BLEND

glTexEnv*(), glGetTexEnv*(), glEnable(),
glisEnabled(), glGet*()
GL_BLEND_DST, GL_BLEND_SRC
glGet*()

GL_BLUE

glDrawPixels(), gIReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()

GL_BLUE_BIAS

glPixelTransfer*(), glGet*()
GL_BLUE_BITS

glGet*()

GL_BLUE_SCALE
glPixelTransfer*(), glGet*()

GL_BYTE

glCallLists(), glDrawPixels(), glReadPixels(),
glTeximagelD(), glTexlmage2D(),

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 2

glGetTexImage()

GL_CCW

glFrontFace()

GL_CLAMP

glTexParameter*()

GL_CLEAR

glLogicOp()

GL_CLIP_PLANE

glEnable(), glisEnabled()
GL_CLIP_PLANEO through GL_CLIP_PLANE5
glClipPlane(), glGetClipPlane(), glEnable(),
glisEnabled()

GL_COEFF

glGetMap*()

GL_COLOR

glCopyPixels()
GL_COLOR_BUFFER_BIT

glClear(), glPushAttrib()
GL_COLOR_CLEAR_VALUE

glGet*()

GL_COLOR_INDEX

glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()
GL_COLOR_INDEXES

glMaterial*(), glGetMaterial*()
GL_COLOR_MATERIAL

glEnable(), glisEnabled(), glGet*()
GL_COLOR_MATERIAL_FACE,
GL_COLOR_MATERIAL_PARAMETER
glGet*()

GL_COLOR_WRITEMASK

glGet*()

GL_COMPILE, GL_COMPILE_AND_EXECUTE
glNewList()
GL_CONSTANT_ATTENUATION
glLight*(), glGetLight*()

GL_COPY, GL_COPY_INVERTED
glLogicOp()

GL_COPY_PIXEL_TOKEN
glPassThrough()

GL_CULL_FACE

glEnable(), glisEnabled(), glGet*()
GL_CULL_FACE_MODE

glGet*()

GL_CURRENT_BIT

glPushAttrib()

GL_CURRENT_COLOR, GL_CURRENT_INDEX,

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 3

GL_CURRENT_NORMAL,
GL_CURRENT_RASTER_COLOR,
GL_CURRENT_RASTER_INDEX,
GL_CURRENT_RASTER_POSITION,
GL_CURRENT_RASTER_POSITION_VALID,
GL_CURRENT_RASTER_TEXTURE_COORDS,
GL_CURRENT_TEXTURE_COORDS
glGet*()

GL_CW

glFrontFace()

GL_DECAL

glTexEnv*(), glGetTexEnv*()
GL_DECR

glStencilOp()

GL_DEPTH

glCopyPixels()

GL_DEPTH_BIAS

glPixelTransfer*(), glGet*()
GL_DEPTH_BITS

glGet*()

GL_DEPTH_BUFFER_BIT

glClear(), glPushAttrib()
GL_DEPTH_CLEAR_VALUE
glGet*()

GL_DEPTH_COMPONENT
glDrawPixels(), gIReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()

GL_DEPTH_FUNC

glGet*()

GL_DEPTH_RANGE

glGet*()

GL_DEPTH_SCALE
glPixelTransfer*(), glGet*()
GL_DEPTH_TEST

glEnable(), glisEnabled(), glGet*()
GL_DEPTH_WRITEMASK

glGet*()

GL_DIFFUSE

glLight*(), glGetLight*(), gIMaterial*(),
glGetMaterial*(), glColorMaterial()
GL_DITHER

glEnable(), glisEnabled(), glGet*()
GL_DOMAIN

glGetMap*()

GL_DONT_CARE

glHint()

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 4

GL_DOUBLEBUFFER

glGet*()

GL_DRAW_BUFFER

glGet*()
GL_DRAW_PIXEL_TOKEN
glPassThrough()
GL_DST_ALPHA, GL_DST_COLOR
glBlendFunc()

GL_EDGE_FLAG

glGet*()

GL_EMISSION

glMaterial*(), glGetMaterial*(),
glColorMaterial()
GL_ENABLE_BIT

glPushAttrib()

GL_EQUAL

glAlphaFunc(), glDepthFunc(), glStencilFunc()
GL_EQUIV

glLogicOp()

GL_EVAL_BIT

glPushAttrib()

GL_EXP, GL_EXP2

glFog*()

GL_EXTENSIONS

glGetString()

GL_EYE_LINEAR

glTexGen*(), glGetTexGen*()
GL_EYE_PLANE

glTexGen*()

GL_FALSE

glColorMask(), glGet*(), glisEnabled(),
glisList()

GL_FASTEST

glHint()

GL_FEEDBACK

glRenderMode()

GL_FILL

glPolygonMode(), glEvalMesh2()
GL_FLAT

glShadeModel()

GL_FLOAT

glCallLists(), glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()

GL_FOG

glEnable(), glisEnabled(), glGet*()
GL_FOG_BIT

glPushAttrib()

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 5

GL_FOG_COLOR, GL_FOG_DENSITY,
GL_FOG_END

glFog*(), glGet*()

GL_FOG_HINT

glHint()

GL_FOG_INDEX, GL_FOG_MODE,
GL_FOG_START

glFog*(), glGet*()

GL_FRONT

glColorMaterial(), glCullFace(), glDrawBuffer(),
glReadBuffer(), glMaterial*(), giGetMaterial*(),
glPolygonMode()

GL_FRONT_AND_BACK

glColorMaterial(), glDrawBuffer(),
glMaterial*(), glPolygonMode()
GL_FRONT_FACE

glGet*()

GL_FRONT_LEFT, GL_FRONT_RIGHT
glDrawBuffer(), gIReadBuffer()
GL_GEQUAL, GL_GREATER
glDepthFunc(), glAlphaFunc(), glStencilFunc()
GL_GREEN

glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()

GL_GREEN_BIAS

glPixelTransfer*(), glGet*()
GL_GREEN_BITS

glGet*()

GL_GREEN_SCALE

glPixelTransfer*(), glGet*()

GL_HINT_BIT

glPushAttrib()

GL_INCR

glStencilOp()

GL_INDEX_BITS, GL_INDEX_CLEAR_VALUE,
GL_INDEX_MODE

glGet*()

GL_INDEX_OFFSET, GL_INDEX_SHIFT
glPixelTransfer*(), glGet*()
GL_INDEX_WRITEMASK

glGet*()

GL_INT

glCallLists(), glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()

GL_INVALID_ENUM,

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 6

GL_INVALID_OPERATION,
GL_INVALID_VALUE
glGetError()

GL_INVERT

glLogicOp(), glStencilOp()
GL_KEEP

glStencilOp()

GL_LEFT

glDrawBuffer(), gIReadBuffer()
GL_LEQUAL, GL_LESS
glDepthFunc(), glAlphaFunc(), glStencilFunc()
GL_LIGHTO through GL_LIGHT7
glLight*(), glGetLight*(), glEnable(),
glisEnabled()

GL_LIGHTING

glEnable(), glisEnabled(), glGet*()
GL_LIGHTING_BIT
glPushAttrib()
GL_LIGHT_MODEL_AMBIENT,
GL_LIGHT_MODEL_LOCAL_VIEWER,
GL_LIGHT_MODEL_TWO_SIDE
glLightModel*(), glGet*()
GL_LINE

glPolygonMode(), glEvalMesh*()
GL_LINEAR

glFog*(), glTexParameter*()
GL_LINEAR_ATTENUATION
glLight*(), glGetLight*()
GL_LINEAR_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST
glTexParameter*()

GL_LINES

glBegin()

GL_LINE_BIT

glPushAttrib()

GL_LINE_LOOP

glBegin()
GL_LINE_RESET_TOKEN
glPassThrough()
GL_LINE_SMOOTH

glEnable(), glisEnabled(), glGet*()
GL_LINE_SMOOTH_HINT
glHint(), glGet*()
GL_LINE_STIPPLE

glEnable(), glisEnabled(), glGet*()
GL_LINE_STIPPLE_PATTERN,
GL_LINE_STIPPLE_REPEAT
glGet*()

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 7

GL_LINE_STRIP

glBegin()

GL_LINE_TOKEN

glPassThrough()
GL_LINE_WIDTH,
GL_LINE_WIDTH_GRANULARITY,
GL_LINE_WIDTH_RANGE

glGet*()

GL_LIST_BASE

glGet*()

GL_LIST_BIT

glPushAttrib()

GL_LIST_INDEX, GL_LIST_MODE
glGet*()

GL_LOAD

glAccum()

GL_LOGIC_OP

glEnable(), glisEnabled(), glGet*()
GL_LOGIC_OP_MODE

glGet*()

GL_LUMINANCE, GL_LUMINANCE_ALPHA
glDrawPixels(), gIReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()
GL_MAP1_COLOR_4

glMap1*(), glEnable(), glisEnabled(),
glGetMap*()
GL_MAP1_GRID_DOMAIN,
GL_MAP1_GRID_SEGMENTS

glGet*()

GL_MAP1_INDEX, GL_MAP1_NORMAL,
GL_MAP1_TEXTURE_COORD_1 through
GL_MAP1_TEXTURE_COORD 4,
GL_MAP1_VERTEX_3, GL_MAP1_VERTEX_ 4
glMap1*(), glEnable(), glisEnabled(),
glGetMap*()

GL_MAP2_COLOR_4

glMap2*(), glEnable(), glisEnabled(), glGet*()
GL_MAP2_GRID_DOMAIN

glGet*()

GL_MAP2_GRID_SEGMENTS

glGet*()

GL_MAP2_INDEX, GL_MAP2_NORMAL,
GL_MAP2_TEXTURE_COORD 1 through
GL_MAP2_TEXTURE_COORD_4,
GL_MAP2_VERTEX_ 3, GL_MAP2_VERTEX_4
glMap2*(), glEnable(), glisEnabled(), glGet*()

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 8

GL_MAP_COLOR, GL_MAP_STENCIL
glPixelTransfer*(), glGet*()
GL_MATRIX_MODE

glGet*()
GL_MAX_ATTRIB_STACK_DEPTH,
GL_MAX_CLIP_PLANES,
GL_MAX_EVAL_ORDER, GL_MAX_LIGHTS,
GL_MAX_LIST_NESTING,
GL_MAX_MODELVIEW_STACK_DEPTH,
GL_MAX_NAME_STACK_DEPTH,
GL_MAX_PIXEL_MAP_TABLE,
GL_MAX_PROJECTION_STACK_DEPTH,
GL_MAX_TEXTURE_SIZE,
GL_MAX_TEXTURE_STACK_DEPTH,
GL_MAX_VIEWPORT_DIMS

glGet*()

GL_MODELVIEW

glMatrixMode()
GL_MODELVIEW_MATRIX,
GL_MODELVIEW_STACK_DEPTH
glGet*()

GL_MODULATE

glTexEnv*(), glGetTexEnv*()

GL_MULT

glAccum()

GL_NAME_STACK_DEPTH

glGet*()

GL_NAND

glLogicOp()

GL_NEAREST, GL_NEAREST_MIPMAP_LINEAR,
GL_NEAREST_MIPMAP_NEAREST
glTexParameter*()

GL_NEVER

glDepthFunc(), glAlphaFunc(), glStencilFunc()
GL_NICEST

glHint()

GL_NONE

glDrawBuffer()

GL_NOOP, GL_NOR

glLogicOp()

GL_NORMALIZE

glEnable(), glisEnabled(), glGet*()
GL_NOTEQUAL

glDepthFunc(), glAlphaFunc(), glStencilFunc()
GL_NO_ERROR

glGetError()

GL_OBJECT_LINEAR

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 9

glTexGen*(), glGetTexGen*()
GL_OBJECT_PLANE

glTexGen*()

GL_ONE, GL_ONE_MINUS_DST_ALPHA,
GL_ONE_MINUS_DST_COLOR,
GL_ONE_MINUS_SRC_ALPHA,
GL_ONE_MINUS_SRC_COLOR
glBlendFunc()

GL_OR, GL_OR_INVERTED, GL_OR_REVERSE
glLogicOp()

GL_ORDER

glGetMap*()
GL_OUT_OF_MEMORY
glGetError()
GL_PACK_ALIGNMENT, GL_PACK_LSB_FIRST,
GL_PACK_ROW_LENGTH,
GL_PACK_SKIP_PIXELS,
GL_PACK_SKIP_ROWS,
GL_PACK_SWAP_BYTES
glPixelStore*(), glGet*()
GL_PASS_THROUGH_TOKEN
glPassThrough()
GL_PERSPECTIVE_CORRECTION_HINT
glHint(), glGet*()
GL_PIXEL_MAP_* TO_*
glPixelMap*(), glGetPixelMap*()
GL_PIXEL_MAP_* TO * SIZE
glGet*()

GL_PIXEL_MODE_BIT
glPushAttrib()

GL_POINT

glPolygonMode(), glEvalMesh*()
GL_POINTS

glBegin()

GL_POINT_BIT

glPushAttrib()

GL_POINT_SIZE,
GL_POINT_SIZE_GRANULARITY,
GL_POINT_SIZE_RANGE

glGet*()

GL_POINT_SMOOTH

glEnable(), glisEnabled(), glGet*()
GL_POINT_SMOOTH_HINT
glHint(), glGet*()
GL_POINT_TOKEN
glPassThrough()

GL_POLYGON

glBegin()

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 10

GL_POLYGON_BIT
glPushAttrib()
GL_POLYGON_MODE

glGet*()
GL_POLYGON_SMOOTH
glEnable(), glisEnabled(), glGet*()
GL_POLYGON_SMOOTH_HINT
glHint(), glGet*()
GL_POLYGON_STIPPLE
glEnable(), glisEnabled(), glGet*()
GL_POLYGON_STIPPLE_BIT
glPushAttrib()
GL_POLYGON_TOKEN
glPassThrough()

GL_POSITION

glLight*(), glGetLight*()
GL_PROJECTION
glMatrixMode()
GL_PROJECTION_MATRIX,
GL_PROJECTION_STACK_DEPTH
glGet*()

GL_Q

glTexGen*(), glGetTexGen*()
GL_QUADRATIC_ATTENUATION
glLight*(), glGetLight*()
GL_QUADS, GL_QUAD_STRIP
glBegin()

GL_R

glTexGen*(), glGetTexGen*()
GL_READ_BUFFER

glGet*()

GL_RED

glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()

GL_RED_BIAS
glPixelTransfer*(), glGet*()
GL_RED_BITS

glGet*()

GL_RED_SCALE
glPixelTransfer*(), glGet*()
GL_RENDER

glRenderMode()
GL_RENDERER

glGetString()
GL_RENDER_MODE

glGet*()

GL_REPEAT

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands — 11

glTexParameter*()

GL_REPLACE

glStencilOp()

GL_RETURN

glAccum()

GL_RGB

glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()

GL_RGBA

glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()
GL_RGBA_MODE

glGet*()

GL_RIGHT

glDrawBuffer(), gIReadBuffer()
GL_S

glTexGen*(), glGetTexGen*()
GL_SCISSOR_BIT

glPushAttrib()
GL_SCISSOR_BOX

glGet*()

GL_SCISSOR_TEST

glEnable(), glisEnabled(), glGet*()
GL_SELECT

glRenderMode()

GL_SET

glLogicOp()

GL_SHININESS

glMaterial*(), glGetMaterial*()
GL_SHADE_MODEL

glGet*()

GL_SHORT

glCallLists(), glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()

GL_SMOOTH

glShadeModel()

GL_SPECULAR

glLight*(), glGetLight*(), glMaterial*(),
glGetMaterial*(), glColorMaterial()
GL_SPHERE_MAP

glTexGen*(), glGetTexGen*()
GL_SPOT_CUTOFF, GL_SPOT_DIRECTION,
GL_SPOT_EXPONENT
glLight*(), glGetLight*()

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands — 12

GL_SRC_ALPHA, GL_SRC_ALPHA_SATURATE,
GL_SRC_COLOR

glBlendFunc()
GL_STACK_OVERFLOW,
GL_STACK_UNDERFLOW
glGetError()

GL_STENCIL

glCopyPixels()

GL_STENCIL_BITS

glGet*()

GL_STENCIL_BUFFER_BIT

glClear(), glPushAttrib()
GL_STENCIL_INDEX

glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()
GL_STENCIL_CLEAR_VALUE,
GL_STENCIL_FAIL, GL_STENCIL_FUNC,
GL_STENCIL_PASS DEPTH_FAIL,
GL_STENCIL_PASS_DEPTH_PASS,
GL_STENCIL_REF

glGet*()

GL_STENCIL_TEST

glEnable(), glisEnabled(), glGet*()
GL_STENCIL_VALUE_MASK,
GL_STENCIL_WRITEMASK

glGet*()

GL_STEREO

glGet*()

GL_SUBPIXEL_BITS

glGet*()

GL_T

glTexGen*(), glGetTexGen*()
GL_TEXTURE

glMatrixMode()

GL_TEXTURE_1D

glTeximagelD(), glGetTeximage(),
glTexParameter*(), glGetTexParameter*(),
glGetTexLevelParameter*(), glEnable(),
glisEnabled(), giGet*()
GL_TEXTURE_2D

glTeximage2D(), glGetTexImage(),
glTexParameter*(), glGetTexParameter*(),
glGetTexLevelParameter*(), glEnable(),
glisEnabled(), glGet*()
GL_TEXTURE_BIT

glPushAttrib()

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 13

GL_TEXTURE_BORDER
glGetTexParameter*(),
glGetTexLevelParameter*()
GL_TEXTURE_BORDER_COLOR
glTexParameter*(), glGetTexParameter*(),
glGetTexLevelParameter*()
GL_TEXTURE_COMPONENTS
glGetTexParameter*(),
glGetTexLevelParameter*()
GL_TEXTURE_ENV,
GL_TEXTURE_ENV_COLOR,
GL_TEXTURE_ENV_MODE

glTexEnv*(), glGetTexEnv*()
GL_TEXTURE_GEN_MODE

glTexGen*()

GL_TEXTURE_GEN_Q, GL_TEXTURE_GEN_R,
GL_TEXTURE_GEN_S, GL_TEXTURE_GEN_T
glEnable(), glisEnabled(), glGet*()
GL_TEXTURE_HEIGHT
glGetTexParameter*(),
glGetTexLevelParameter*()
GL_TEXTURE_MAG_FILTER
glTexParameter*(), glGetTexParameter*(),
glGetTexLevelParameter*()
GL_TEXTURE_MATRIX

glGet*()

GL_TEXTURE_MIN_FILTER
glTexParameter*(), glGetTexParameter*(),
glGetTexLevelParameter*()
GL_TEXTURE_STACK_DEPTH

glGet*()

GL_TEXTURE_WIDTH
glGetTexParameter*(),
glGetTexLevelParameter*()
GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T
glTexParameter*(), glGetTexParameter*(),
glGetTexLevelParameter*()
GL_TRANSFORM_BIT

glPushAttrib()

GL_TRIANGLES, GL_TRIANGLE_FAN,
GL_TRIANGLE_STRIP

glBegin()

GL_TRUE

glColorMask(), glGet*(), gllsEnabled(),
glisList()

GL_UNPACK_ALIGNMENT,
GL_UNPACK_LSB_FIRST,

OpenGL Reference Manual — Chapter 4, Defined Constants and Associated Commands - 14

GL_UNPACK_ROW_LENGTH,
GL_UNPACK_SKIP_PIXELS,
GL_UNPACK_SKIP_ROWS,
GL_UNPACK_SWAP_BYTES
glPixelStore*(), glGet*()
GL_UNSIGNED_BYTE, GL_UNSIGNED_INT,
GL_UNSIGNED_SHORT
glCallLists(), glDrawPixels(), glReadPixels(),
glTeximagelD(), glTeximage2D(),
glGetTexImage()

GL_VENDOR, GL_VERSION
glGetString()

GL_VIEWPORT

glGet*()

GL_VIEWPORT_BIT
glPushAttrib()

GL_XOR

glLogicOp()

GL_ZERO

glBlendFunc(), glStencilOp()
GL_ZOOM_X, GL_ZOOM_Y
glGet*()

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 15

Chapter 5
OpenGL Reference Pages

This chapter contains the reference pages, in alphabetical order, for all the OpenGL commands. E
reference page may describe more than one related command, as shown in the following list of pa
The OpenGL Utility Library routines and those comprising the OpenGL extension to the X Window
System are described in the following chapters

glAccum

NAME

glAccum — operate on the accumulation buffer

C SPECIFICATION

void glAccum(GLenumop, GLfloatvalue)

PARAMETERS

op Specifies the accumulation buffer operation. Symbolic cons&Ent&CCUM ,
GL_LOAD, GL_ADD, GL_MULT , andGL_RETURN are accepted.

value Specifies a floating—point value used in the accumulation buffer operagion.
determines howalueis used.

DESCRIPTION

The accumulation buffer is an extended-range color buffer. Images are not rendered into it. Rath
images rendered into one of the color buffers are added to the contents of the accumulation buffer
after rendering. Effects such as antialiasing (of points, lines, and polygons), motion blur, and deptl
of field can be created by accumulating images generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha values. The number
bits per component in the accumulation buffer depends on the implementation. You can examine t
number by callinglGetintegerv four times, with argumenGL_ACCUM_RED_BITS,
GL_ACCUM_GREEN_BITS, GL_ACCUM_BLUE_BITS , andGL_ACCUM_ALPHA BITS,
respectively. Regardless of the number of bits per component, however, the range of values store
each component is [-1, 1]. The accumulation buffer pixels are mapped one-to—one with frame bu
pixels.

glAccum operates on the accumulation buffer. The first arguroents a symbolic constant that
selects an accumulation buffer operation. The second argurakmd,is a floating—point value to be
used in that operation. Five operations are speciitedACCUM, GL_LOAD , GL_ADD,
GL_MULT , andGL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box and are appliec
identically to the red, green, blue, and alpha components of each pixel. The contents of an
accumulation buffer pixel component are undefined igildecum operation results in a value

outside the range [-1,1]. The operations are as follows:

GL_ACCUM Obtains R, G, B, and A values from the buffer currently selected for reading (see

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 1

"glReadBuffer".) Each component value is divided By-21, whera is the

number of bits allocated to each color component in the currently selected buffel
The result is a floating—point value in the range [0,1], which is multiplied by
valueand added to the corresponding pixel component in the accumulation
buffer, thereby updating the accumulation buffer.

GL_LOAD Similar toGL_ACCUM , except that the current value in the accumulation buffer
is not used in the calculation of the new value. That is, the R, G, B, and A value

from the currently selected buffer are divided dy—2, multiplied byvalug and
then stored in the corresponding accumulation buffer cell, overwriting the curren

value.
GL_ADD Addsvalueto each R, G, B, and A in the accumulation buffer.
GL_MULT Multiplies each R, G, B, and A in the accumulation buffevélyeand returns

the scaled component to its corresponding accumulation buffer location.

GL_RETURN Transfers accumulation buffer values to the color buffer or buffers currently
selected for writing. Each R, G, B, and A component is multipliecahye, then

multiplied by 2'-1, clamped to the range [0} 21], and stored in the
corresponding display buffer cell. The only fragment operations that are applied
to this transfer are pixel ownership, scissor, dithering, and color writemasks.

The accumulation buffer is cleared by specifying R, G, B, and A values to set it to with the

glClearAccum directive, and issuing@Clear command with the accumulation buffer enabled.

NOTES

Only those pixels within the current scissor box are updated bglAogum operation.

ERRORS
GL_INVALID_ENUM is generated ibp is not an accepted value.
GL_INVALID_OPERATION is generated if there is no accumulation buffer.

GL_INVALID_OPERATION is generated ifjlAccum is called between a call giBegin and the
corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_ACCUM_RED_BITS
glGetwith argumenGL_ACCUM_GREEN_BITS
glGetwith argumenGL_ACCUM_BLUE_BITS
glGetwith argumenGL_ACCUM_ALPHA_BITS

SEE ALSO

"gIBlendFunc', "glClear", "gIClearAccum", "glCopyPixels", "glGet" "glLogicOp" ,"glPixelStore",

"glPixelTransfer", "gIReadPixels", "glIReadBuffer", "glScissor", "glStencilOp"

glAlphaFunc

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 2

NAME

glAlphaFunc - specify the alpha test function

C SPECIFICATION

void glAlphaFunc(GLenumfung GLclampfref)

PARAMETERS

func Specifies the alpha comparison function. Symbolic cons@intiNEVER,
GL_LESS,GL_EQUAL, GL_LEQUAL , GL_GREATER,
GL_NOTEQUAL , GL_GEQUAL, andGL_ALWAYS are accepted. The
default function issL_ALWAYS .

ref Specifies the reference value that incoming alpha values are compared to. This
value is clamped to the range 0 through 1, where 0 represents the lowest possik
alpha value and 1 the highest possible value. The default reference is 0.

DESCRIPTION

The alpha test discards fragments depending on the outcome of a comparison between the incom
fragment’s alpha value and a constant reference valiééphaFunc specifies the reference and
comparison function. The comparison is performed only if alpha testing is enabledglE3edle”
andglDisableof GL_ALPHA_TEST .)

funcandref specify the conditions under which the pixel is drawn. The incoming alpha value is
compared toef using the function specified Bync If the comparison passes, the incoming
fragment is drawn, conditional on subsequent stencil and depth buffer tests. If the comparison fail
no change is made to the frame buffer at that pixel location.

The comparison functions are as follows:

GL_NEVER Never passes.

GL_LESS Passes if the incoming alpha value is less than the reference value.
GL_EQUAL Passes if the incoming alpha value is equal to the reference value.
GL_LEQUAL Passes if the incoming alpha value is less than or equal to the reference value.

GL_GREATER
Passes if the incoming alpha value is greater than the reference value.

GL_NOTEQUAL
Passes if the incoming alpha value is not equal to the reference value.

GL_GEQUAL Passes if the incoming alpha value is greater than or equal to the reference valu
GL_ALWAYS Always passes.

glAlphaFunc operates on all pixel writes, including those resulting from the scan conversion of
points, lines, polygons, and bitmaps, and from pixel draw and copy operagiégighaFunc does
not affect screen clear operations.

NOTES

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 3

Alpha testing is done only in RGBA mode.

ERRORS

GL_INVALID_ENUM is generated ifuncis not an accepted value.
GL_INVALID_OPERATION is generated ifjlAlphaFunc is called between a call gBegin and
the corresponding call gEnd.

ASSOCIATED GETS

glGet with argumenGL_ALPHA_TEST_FUNC

glGet with argumenGL_ALPHA_TEST_REF
glisEnabled with argumentGL_ALPHA_TEST

SEE ALSO

"gIBlendFunc’, "glClear", "glDepthFunc", "glEnable", "glStencilFunc"
glBegin

NAME

glBegin, glEnd- delimit the vertices of a primitive or a group of like primitives

C SPECIFICATION

void gIBegin(GLenummode)

PARAMETERS

mode Specifies the primitive or primitives that will be created from vertices presented
betweerglBeginand the subsequegiEnd. Ten symbolic constants are
acceptedGL_POINTS, GL_LINES, GL_LINE_STRIP ,GL_LINE_LOOP ,
GL_TRIANGLES , GL_TRIANGLE_STRIP , GL_TRIANGLE_FAN ,
GL_QUADS, GL_QUAD_STRIP, andGL_POLYGON.

C SPECIFICATION

void glEnd(void)

DESCRIPTION

glBeginandglEnd delimit the vertices that define a primitive or a group of like primitivgiBegin
accepts a single argument that specifies which of ten ways the vertices are interpretedn dsking
an integer count starting at one, awhds the total number of vertices specified, the interpretations are
as follows:

GL_POINTS Treats each vertex as a single point. Venebefines poinh. N points are
drawn.

GL_LINES Treates each pair of vertices as an independent line segment. Vartitesa
2n define linen. N/2 lines are drawn.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 4

GL_LINE_STRIP
Draws a connected group of line segments from the first vertex to the last.
Verticesn andn+1 define linen. N-1 lines drawn.

GL_LINE_LOOP
Draws a connected group of line segments from the first vertex to the last, then
back to the first. Vertices andn+1 define linen. The last line, however, is

defined by vertice® and 1. N lines are drawn.

GL_TRIANGLES
Treates each triplet of vertices as an independent triangle. Ve&tie@8n-,
and3n define trianglen. N/3 triangles are drawn.

GL_TRIANGLE_STRIP
Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. For adderticesn, n+1, andn+2 define
trianglen. For evem, verticesn+1, n, andn+2 define trianglen. N-2triangles
are drawn.

GL_TRIANGLE_FAN
Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. Vertites+1, andn+2 define trianglen.
N-2triangles are drawn.

GL_QUADS Treats each group of four vertices as an independent quadrilateral. VéntiGes
4n-24n-1 and4n define quadrilateral. N/4 quadrilaterals are drawn.

GL_QUAD_STRIP
Draws a connected group of quadrilaterals. One quadrilateral is defined for eacl
pair of vertices presented after the first pair. VertRres] 2n, 2n+2, and2n+1
define quadrilaterah. N/2—1quadrilaterals are drawn. Note that the order in
which vertices are used to construct a quadrilateral from strip data is different
from that used with independent data.

GL_POLYGON

Draws a single, convex polygon. VerticethroughN define this polygon.
Only a subset of GL commands can be used betgl8emgin andglEnd. The commands are
glVertex, glColor, glindex, gINormal, glTexCoord, glEvalCoord, glEvalPoint, giMaterial , and
glEdgeFlag Also, it is acceptable to uggCallList orglCallLists to execute display lists that
include only the preceding commands. If any other GL command is called befiBegm and
glEnd, the error flag is set and the command is ignored.

Regardless of the value chosenrinode there is no limit to the number of vertices that can be
defined betweeglBegin andglEnd. Lines, triangles, quadrilaterals, and polygons that are
incompletely specified are not drawn. Incomplete specification results when either too few vertices
are provided to specify even a single primitive or when an incorrect multiple of vertices is specified
The incomplete primitive is ignored; the rest are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point, 2 for a line, 3
for a triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a certain multiple of
vertices ar&SL_LINES (2),GL_TRIANGLES (3),GL_QUADS (4), andGL_QUAD_STRIP (2).

ERRORS
GL_INVALID_ENUM is generated iodeis set to an unaccepted value.

GL_INVALID_OPERATION is generated if a command other tlig¥ertex, glColor, glindex,

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 5

glNormal, glTexCoord, glEvalCoord, glEvalPoint, giMaterial , glEdgeFlag glCallList , or
glCallLists is called betweeglBegin and the correspondirgiEnd.

GL_INVALID_OPERATION is generated ijlEnd is called before the correspondmi@eginis
called, or ifgIBegin is called within aglBegin/glEnd sequence.

SEE ALSO

"glCallList", "glCallLists", "glColor", "glEdgeFlag", "glEvalCoord", "glEvalPoint", "glindex" ,

"gIMaterial" , "gINormal" , "glTexCoord", "glVertex"

glBitmap

NAME

glBitmap - draw a bitmap

C SPECIFICATION

void gIBitmap (GLsizeiwidth, GLsizeiheight GLfloatxorig, GLfloat yorig, GLfloatxmove
GLfloat ymove const GLubytébitmap)

PARAMETERS

width, height Specify the pixel width and height of the bitmap image.

xorig, yorig Specify the location of the origin in the bitmap image. The origin is measured
from the lower left corner of the bitmap, with right and up being the positive
axes.

Xmove ymove Specify thex andy offsets to be added to the current raster position after the
bitmap is drawn.

bitmap Specifies the address of the bitmap image.

DESCRIPTION

A bitmap is a binary image. When drawn, the bitmap is positioned relative to the current raster
position, and frame buffer pixels corresponding to ones in the bitmap are written using the current
raster color or index. Frame buffer pixels corresponding to zeros in the bitmap are not modified.

glBitmap takes seven arguments. The first pair specify the width and height of the bitmap image.
The second pair specify the location of the bitmap origin relative to the lower left corner of the
bitmap image. The third pair of arguments spexiéndy offsets to be added to the current raster
position after the bitmap has been drawn. The final argument is a pointer to the bitmap image itse

The bitmap image is interpreted like image data fogtbeawPixelscommand, withwidth and
heightcorresponding to the width and height arguments of that command, artgpeitiet to
GL_BITMAP andformatset toGL_COLOR_INDEX . Modes specified usingPixelStore affect
the interpretation of bitmap image data; modes specified ghdigelTransfer do not.

If the current raster position is invaliglBitmap is ignored. Otherwise, the lower left corner of the
bitmap image is positioned at the window coordinates

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 6

Xw =L Xr _xa.l

Yw =LV — Vol

where (X, Yy) is the raster position andXg , Yo) is the bitmap origin. Fragments are then

generated for each pixel corresponding to a one in the bitmap image. These fragments are gener:
using the current rasteicoordinate, color or color index, and current raster texture coordinates.
They are then treated just as if they had been generated by a point, line, or polygon, including text
mapping, fogging, and all per—fragment operations such as alpha and depth testing.

After the bitmap has been drawn, thandy coordinates of the current raster position are offset by
xmoveandymove No change is made to theoordinate of the current raster position, or to the
current raster color, index, or texture coordinates.

ERRORS

GL_INVALID_VALUE is generated ifvidth or heightis negative.

GL_INVALID_OPERATION is generated ifjIBitmap is called between a call giBegin and the
corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_CURRENT_RASTER_POSITION

glGet with argumenGL_CURRENT_RASTER_COLOR

glGet with argumenGL_CURRENT_RASTER_INDEX

glGet with argumenGL_CURRENT_RASTER_TEXTURE_COORDS
glGet with argumenGL_CURRENT_RASTER_POSITION_VALID

SEE ALSO

"gIDrawPixels", "glRasterPos/, "glPixelStore", "glPixelTransfer"

glBlendFunc

NAME

glBlendFunc - specify pixel arithmetic

C SPECIFICATION

void gIBlendFunc(GLenumsfactor GLenumdfactor)

PARAMETERS

sfactor Specifies how the red, green, blue, and alpha source-blending factors are
computed. Nine symbolic constants are acce@¢dZERO, GL_ONE,
GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 7

GL_ONE_MINUS_DST_ALPHA, andGL_SRC_ALPHA_SATURATE.

dfactor Specifies how the red, green, blue, and alpha destination blending factors are
computed. Eight symbolic constants are acce@&dZERO, GL_ONE,
GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, and
GL_ONE_MINUS_DST_ALPHA.

DESCRIPTION

In RGB mode, pixels can be drawn using a function that blends the incoming (source) RGBA value¢
with the RGBA values that are already in the frame buffer (the destination values). By default,
blending is disabled. UsgEnableandglDisablewith argumenGL_BLEND to enable and disable
blending.

glBlendFuncdefines the operation of blending when it is enablgfdctorspecifies which of nine
methods is used to scale the source color compondiatstor specifies which of eight methods is

used to scale the destination color components. The eleven possible methods are described in thi
table below. Each method defines four scale factors, one each for red, green, blue, and alpha.

In the table and in subsequent equations, source and destination color components are referred ta
(Rs, Gs, Bs, As) and(Rq, &, Bd, Ad) They are understood to have integer values between zero

and(kr, kg , 8 , ka), where

__
and(mr , mg, "B, Ma) is the number of red, green, blue, and alpha bitplanes.

Source and destination scale factors are referred(BRasss , B, sa) and(dr, dg, &8 , da).
The scale factors described in the table, den@tedfG , B , fa), represent either source or

destination factors. All scale factors have range [0,1].
parameter fr. fec. fB, fA)

GL_ZERO

0, 0, 0, 0)

GL_ONE

1, 1, 1)

GL_SRC_COLOR

(Rs/kr, Gs/kGg, Bs/'k, Asl/
ka)
GL_ONE_MINUS_SRC_COLOR
1, 1, 1, 1)-(Rs/kr, Gs/ kg,
Bs/ kB, As /ka)
GL_DST_COLOR

(Rd/kr, Gd/kz, Bd/ kB, Ad/
ka)
GL_ONE_MINUS_DST_COLOR
1, 1, 1, 1)- R/kr, Gd/ka,
Bd/kB, Ad /ka)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 8

GL_SRC_ALPHA
(AsTka, Pslka, Aslka, As/
ka)
GL_ONE_MINUS_SRC_ALPHA
1, 1, 1, 1)-(As/ka, As/ka,
As/kn, As/kp)
GL_DST_ALPHA

(Ad/ka, Adlka, Ad/ka, Ad/
ka)
GL_ONE_MINUS_DST_ALPHA
a, 1, 1, 1)-(Ad/ka, Ad/ka,
Ad/ka, Adlkn)
GL_SRC_ALPHA_SATURATE
@, i, i, 1)

In the table,

i = min(As, ka - A) [

To determine the blended RGBA values of a pixel when drawing in RGB mode, the system uses tt
following equations:

Rd = min (R, RR+RJdR)
Gd = min (kz, GG+ Gddg)
Bd = min (k3, Bssg +BddB)
Ad = min (ka , Assa +Adda)

Despite the apparent precision of the above equations, blending arithmetic is not exactly specified.
because blending operates with imprecise integer color values. However, a blend factor that shou
be equal to one is guaranteed not to modify its multiplicand, and a blend factor equal to zero reduc
its multiplicand to zero. Thus, for example, wiséactoris GL_SRC_ALPHA, dfactoris
GL_ONE_MINUS_SRC_ALPHA, andAsis equal tokp, the equations reduce to simple

replacement:

Rd = Rs
Gd = GS
Bd = BS
Ad = As
EXAMPLES

Transparency is best implemented using blend fundan $RC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA) with primitives sorted from farthest to nearest. Note that this
transparency calculation does not require the presence of alpha bitplanes in the frame buffer.

Blend function GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) is also useful for rendering
antialiased points and lines in arbitrary order.

Polygon antialiasing is optimized using blend functiGh (SRC_ALPHA_SATURATE,
GL_ONE) with polygons sorted from nearest to farthest. (Seégllmable”, glDisable reference
page and th&L_POLYGON_SMOOTH argument for information on polygon antialiasing.)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 9

Destination alpha bitplanes, which must be present for this blend function to operate correctly, stor
the accumulated coverage.
NOTES

Incoming (source) alpha is correctly thought of as a material opacity, ranging frokgu),0 (

representing complete opacity, to 0.0 (0), representing completely transparency.

When more than one color buffer is enabled for drawing, blending is done separately for each
enabled buffer, using for destination color the contents of that buffer."dBrawBuffer".)

Blending affects only RGB rendering. It is ignored by color index renderers.

ERRORS

GL_INVALID_ENUM s generated if eithesfactoror dfactoris not an accepted value.
GL_INVALID_OPERATION is generated ifjIBlendFuncis called between a call giBegin and
the corresponding call tglEnd.

ASSOCIATED GETS

glGetwith argumenGL_BLEND_SRC

glGetwith argumenGL_BLEND_DST
glisEnabled with argumentGL_BLEND

SEE ALSO

"glAlphaFunc’, "giIClear" , "glDrawBuffer" , "glEnable", "glLogicOp" , "glStencilFunc"

glCallList

NAME

glCallList — execute a display list

C SPECIFICATION

void glCallList (GLuintlist)

PARAMETERS

list Specifies the integer name of the display list to be executed.

DESCRIPTION

glCallList causes the named display list to be executed. The commands saved in the display list &
executed in order, just as if they were called without using a display ll&t Has not been defined

as a display lisglCallList is ignored.

glCallList can appear inside a display list. To avoid the possibility of infinite recursion resulting
from display lists calling one another, a limit is placed on the nesting level of display lists during
display-list execution. This limit is at least 64, and it depends on the implementation.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 10

GL state is not saved and restored across a ogliCaliList. Thus, changes made to GL state during
the execution of a display list remain after execution of the display list is completed. Use
glPushAttrib , glPopAttrib , glPushMatrix, andglPopMatrix to preserve GL state acrag€allList
calls.

NOTES

Display lists can be executed between a calllBegin and the corresponding callgtEnd, as long
as the display list includes only commands that are allowed in this interval.

ASSOCIATED GETS

glGet with argumenGL_MAX_LIST_NESTING
glisList

SEE ALSO

"glCallLists", "glDeleteLists", "glGenLists", "gINewList" , "glPushAttrib" , "glPushMatrix"

glCallLists

NAME

glCallLists — execute a list of display lists

C SPECIFICATION

void glCallLists(GLsizein, GLenumtype const GLvoidtlists)

PARAMETERS
n Specifies the number of display lists to be executed.
type Specifies the type of valueslists. Symbolic constantSL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT ,GL_2 BYTES, GL_3_BYTES, and
GL_4 BYTES are accepted.

lists Specifies the address of an array of name offsets in the display list. The pointer
type is void because the offsets can be bytes, shorts, ints, or floats, depending ¢
the value otype

DESCRIPTION

glCallLists causes each display list in the list of names passkstst® be executed. As a result, the
commands saved in each display list are executed in order, just as if they were called without usin
display list. Names of display lists that have not been defined are ignored.

glCallLists provides an efficient means for executing display listallows lists with various name
formats to be accepted. The formats are as follows:

GL_BYTE listsis treated as an array of signed bytes, each in the range —128 through 127.

GL_UNSIGNED_BYTE

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 11

listsis treated as an array of unsigned bytes, each in the range 0 through 255.

GL_SHORT listsis treated as an array of signed two—byte integers, each in the range —3276¢
through 32767.

GL_UNSIGNED_SHORT
listsis treated as an array of unsigned two-byte integers, each in the range 0
through 65535.

GL_INT listsis treated as an array of signed four—byte integers.

GL_UNSIGNED_INT
listsis treated as an array of unsigned four—byte integers.

GL_FLOAT listsis treated as an array of four—byte floating—point values.

GL_2 BYTES listsis treated as an array of unsigned bytes. Each pair of bytes specifies a sing
display-list name. The value of the pair is computed as 256 times the unsigned
value of the first byte plus the unsigned value of the second byte.

GL_3 BYTES listsis treated as an array of unsigned bytes. Each triplet of bytes specifies a
single display-list name. The value of the triplet is computed as 65536 times th
unsigned value of the first byte, plus 256 times the unsigned value of the seconc
byte, plus the unsigned value of the third byte.

GL_4 BYTES listsis treated as an array of unsigned bytes. Each quadruplet of bytes specifies
single display-list name. The value of the quadruplet is computed as 16777216
times the unsigned value of the first byte, plus 65536 times the unsigned value ¢
the second byte, plus 256 times the unsigned value of the third byte, plus the
unsigned value of the fourth byte.

The list of display list names is not null-terminated. Rathgecifies how many names are to be
taken fromlists.

An additional level of indirection is made available with gieistBasecommand, which specifies
an unsigned offset that is added to each display-list name spedifi¢sidafore that display list is
executed.

glCallLists can appear inside a display list. To avoid the possibility of infinite recursion resulting
from display lists calling one another, a limit is placed on the nesting level of display lists during
display-list execution. This limit must be at least 64, and it depends on the implementation.

GL state is not saved and restored across a ogliCaliLists. Thus, changes made to GL state
during the execution of the display lists remain after execution is completed)Rus@Attrib ,
glPopAttrib , glPushMatrix, andglPopMatrix to preserve GL state acrogiCallLists calls.

NOTES

Display lists can be executed between a calllBegin and the corresponding callgtEnd, as long
as the display list includes only commands that are allowed in this interval.

ASSOCIATED GETS
glGetwith argumenGL_LIST _BASE

glGetwith argumenGL_MAX_LIST_NESTING
glisList

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 12

SEE ALSO

"glCallList", "glDeleteLists", "glGenLists", "glListBase", "gINewList" , "glPushAttrib",
"glPushMatrix"

glClear

NAME

glClear - clear buffers within the viewport

C SPECIFICATION

void glClear(GLbitfield mask)

PARAMETERS

mask Bitwise OR of masks that indicate the buffers to be cleared. The four masks are
GL_COLOR_BUFFER _BIT,GL _DEPTH_BUFFER_BIT,
GL_ACCUM_BUFFER_BIT , andGL_STENCIL_BUFFER_BIT .

DESCRIPTION

glClear sets the bitplane area of the window to values previously selectg@lbegrColor,
glClearindex, glClearDepth, glClearStencil andglClearAccum. Multiple color buffers can be
cleared simultaneously by selecting more than one buffer at a timegliSiragvBuffer.

The pixel ownership test, the scissor test, dithering, and the buffer writemasks affect the operation
glClear. The scissor box bounds the cleared region. Alpha function, blend function, logical
operation, stenciling, texture mapping, and z-buffering are ignorgiClzar.

glClear takes a single argument that is the bitwise OR of several values indicating which buffer is t
be cleared.

The values are as follows:

GL_COLOR_BUFFER_BIT
Indicates the buffers currently enabled for color writing.

GL_DEPTH_BUFFER_BIT
Indicates the depth buffer.

GL_ACCUM_BUFFER_BIT
Indicates the accumulation buffer.

GL_STENCIL_BUFFER_BIT
Indicates the stencil buffer.

The value to which each buffer is cleared depends on the setting of the clear value for that buffer.

NOTES

If a buffer is not present, thergéClear directed at that buffer has no effect.

ERRORS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 13

GL_INVALID_VALUE is generated if any bit other than the four defined bits is saagk

GL_INVALID_OPERATION is generated ifjIClear is called between a call tgiBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_ACCUM_CLEAR_VALUE
glGet with argumenGL_DEPTH_CLEAR_VALUE
glGet with argumenGL_INDEX_CLEAR_VALUE

glGet with argumenGL_COLOR_CLEAR_VALUE
glGet with argumenGL_STENCIL_CLEAR_VALUE

SEE ALSO

"glClearAccum} "glClearColor", "glClearDepth", "glClearindex", "glClearStencil",
"glDrawBuffer", "glScissor"

glClearAccum

NAME

glClearAccum - specify clear values for the accumulation buffer

C SPECIFICATION

void glClearAccum(GLfloatred, GLfloatgreen GLfloatblue, GLfloatalpha)

PARAMETERS

red, green blug alpha
Specify the red, green, blue, and alpha values used when the accumulation buff
is cleared. The default values are all zero.

DESCRIPTION

glClearAccum specifies the red, green, blue, and alpha values usgi€kpar to clear the
accumulation buffer.

Values specified bglClearAccum are clamped to the range [-1,1].

ERRORS

GL_INVALID_OPERATION is generated ifjIClearAccum is called between a call ¢ggBegin
and the corresponding call ¢tEnd.

ASSOCIATED GETS

glGetwith argumenGL_ACCUM_CLEAR_VALUE

SEE ALSO

"gIClear"

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 14

glClearColor

NAME

glClearColor - specify clear values for the color buffers

C SPECIFICATION

void glClearColor(GLclampfred, GLclampfgreen GLclampfblue GLclampfalpha)

PARAMETERS

red, green blug alpha
Specify the red, green, blue, and alpha values used when the color buffers are
cleared. The default values are all zero.

DESCRIPTION

glClearColor specifies the red, green, blue, and alpha values usgi€laar to clear the color
buffers. Values specified lgiClearColor are clamped to the range [0,1].

ERRORS

GL_INVALID_OPERATION is generated ifjiClearColor is called between a call gBegin and
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_COLOR_CLEAR_VALUE

SEE ALSO
"glClear"

glClearDepth

NAME

glClearDepth - specify the clear value for the depth buffer

C SPECIFICATION

void glClearDepth(GLclampddepth)

PARAMETERS

depth Specifies the depth value used when the depth buffer is cleared.

DESCRIPTION

glClearDepth specifies the depth value useddi€lear to clear the depth buffer. Values specified
by glClearDepth are clamped to the range [0,1].

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 15

ERRORS

GL_INVALID_OPERATION is generated ifjIClearDepth is called between a call gdBeginand
the corresponding call gEnd.

ASSOCIATED GETS

glGet with argumenGL_DEPTH_CLEAR_VALUE

SEE ALSO

"gIClear"

glClearindex

NAME

glClearindex — specify the clear value for the color index buffers

C SPECIFICATION

void glClearindex(GLfloatc)

PARAMETERS

C Specifies the index used when the color index buffers are cleared. The default
value is zero.

DESCRIPTION

glClearindex specifies the index used byClear to clear the color index buffers.is not clamped.
Rather,cis converted to a fixed—point value with unspecified precision to the right of the binary

point. The integer part of this value is then masked Wilr12 wheremis the number of bits in a
color index stored in the frame buffer.

ERRORS

GL_INVALID_OPERATION is generated ifjIClearIindex is called between a call gBegin and
the corresponding call gEnd.

ASSOCIATED GETS

glGet with argumenGL_INDEX CLEAR_VALUE
glGet with argumenGL_INDEX_BITS

SEE ALSO

"glClear"

glClearStencil

NAME

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 16

glClearStencil — specify the clear value for the stencil buffer

C SPECIFICATION

void glClearStencil(GLints)

PARAMETERS

S Specifies the index used when the stencil buffer is cleared. The default value is
zero.

DESCRIPTION

glClearStencil specifies the index used biClear to clear the stencil buffers is masked with ' -
1, wheremis the number of bits in the stencil buffer.

ERRORS

GL_INVALID_OPERATION is generated iflClearStencil is called between a call ¢ggBeginand
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_STENCIL_CLEAR_VALUE
glGet with argumenGL_STENCIL_BITS

SEE ALSO

"glClear"

glClipPlane

NAME

glClipPlane — specify a plane against which all geometry is clipped

C SPECIFICATION

void gIClipPlane(GLenumplang const GLdoublé&equation)

PARAMETERS

plane Specifies which clipping plane is being positioned. Symbolic nhames of the form
GL_CLIP_PLANE i, wherei is an integer between 0 and
GL_MAX_CLIP_PLANES -1, are accepted.

equation Specifies the address of an array of four double—precision floating—point values.
These values are interpreted as a plane equation.

DESCRIPTION

Geometry is always clipped against the boundaries of a six—plane frustuymandz. glClipPlane
allows the specification of additional planes, not necessarily perpendiculandg/tioez axis,

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 17

against which all geometry is clipped. UpGh_MAX_CLIP_PLANES planes can be specified,
whereGL_MAX_CLIP_PLANES is at least six in all implementations. Because the resulting
clipping region is the intersection of the defined half-spaces, it is always convex.

glClipPlane specifies a half-space using a four-component plane equationgl@liiane is
called,equationis transformed by the inverse of the modelview matrix and stored in the resulting ey
coordinates. Subsequent changes to the modelview matrix have no effect on the stored
plane—equation components. If the dot product of the eye coordinates of a vertex with the stored
plane equation components is positive or zero, the vertaxiith respect to that clipping plane.
Otherwise, it iout.

Clipping planes are enabled and disabled giEnable andglDisable, and called with the argument
GL_CLIP_PLANE i, wherei is the plane number.

By default, all clipping planes are defined as (0,0,0,0) in eye coordinates and are disabled.

NOTES

It is always the case thét._CLIP_PLANE i = GL_CLIP_PLANEO +i.

ERRORS
GL_INVALID_ENUM is generated iplaneis not an accepted value.

GL_INVALID_OPERATION is generated ifjIClipPlane is called between a call giBeginand
the corresponding call tglEnd.

ASSOCIATED GETS

glGetClipPlane
glisEnabled with argumenGL_CLIP_PLANE i

SEE ALSO

"glEnable”

glColor

NAME

glColor3b, glColor3d, glColor3f, glColor3i, glColor3s, glColor3ub, glColor3ui, glColor3us,
glColor4b, glColor4d, glColora4f, glColor4i, glColor4s, glColor4ub, glColor4ui, glColordus,
glColor3bv, glColor3dv, glColor3fv, glColor3iv, glColor3sv, glColor3ubv, glColor3uiv,
glColor3usv, glColor4bv, glColor4dv, glColor4fv, glColor4iv, giColor4dsv, giColor4ubv,
glColor4uiv, glColordusv - set the current color

C SPECIFICATION

void glColor3b(GLbytered, GLbytegreen GLbyteblue)

void glColor3d(GLdoublered, GLdoublegreen GLdoubleblue)
void glColor3f(GLfloatred, GLfloatgreen GLfloatblue)

void glColor3i(GLint red, GLintgreen GLintblue)

void glColor3s(GLshortred, GLshortgreen GLshortblue)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 18

void glColor3ub(GLubytered, GLubytegreen GLubyteblue)

void glColor3ui(GLuintred, GLuint green GLuintblue)

void glColor3us(GLushortred, GLushortgreen GLushorblue)

void glColordb(GLbytered, GLbytegreen GLbyteblug GLbytealpha)

void glColor4d(GLdoublered, GLdoublegreen GLdoubleblue GLdoublealpha)
void glColor4f(GLfloatred, GLfloatgreen GLfloatblue GLfloat alpha)

void glColor4i(GLint red, GLintgreen GLintblue, GLintalpha)

void glColor4s(GLshortred, GLshortgreen GLshortblug GLshortalpha)

void glColor4ub(GLubytered, GLubytegreen GLubyteblue GLubytealpha)
void glColor4ui(GLuintred, GLuint green GLuintblug GLuint alpha)

void glColor4us(GLushortred, GLushortgreen GLushorblue, GLushortalpha)

PARAMETERS

red, green blue Specify new red, green, and blue values for the current color.

alpha Specifies a new alpha value for the current color. Included only in the
four—argumerglColor4 command.

C SPECIFICATION

void glColor3bv(const GLbyte*v)
void glColor3dv(const GLdoublév)
void glColor3fv(const GLfloatv)
void glColor3iv(const GLint*v)
void glColor3s\ const GLshortv)
void glColor3ubv(const GLubytév)
void glColor3uiv(const GLuint*v)
void glColor3usv(const GLushortv)
void glColor4bv(const GLbyte*v)
void glColor4dv(const GLdoublév)
void glColor4fv(const GLfloatv)
void glColor4iv(const GLint*v)

void glColor4s\y const GLshortv)
void glColor4ubv(const GLubytév)
void glColor4uiv (const GLuint*v)
void glColor4usv(const GLushortv)

PARAMETERS

% Specifies a pointer to an array that contains red, green, blue, and (sometimes)
alpha values.

DESCRIPTION

The GL stores both a current single—valued color index and a current four-valued RGBA color.
glColor sets a new four-valued RGBA colgiColor has two major variantglColor3 and

glColor4. glColor3 variants specify new red, green, and blue values explicitly, and set the current
alpha value to 1.0 implicitlyglColor4 variants specify all four color components explicitly.

glColor3b, glColor4b, glColor3s, glColor4s, glColor3i, andglColor4i take three or four unsigned
byte, short, or long integers as arguments. When v is appended to the name, the color commands
take a pointer to an array of such values.

Current color values are stored in floating—point format, with unspecified mantissa and exponent
sizes. Unsigned integer color components, when specified, are linearly mapped to floating—point

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 19

values such that the largest representable value maps to 1.0 (full intensity), and zero maps to 0.0 |
intensity). Signed integer color components, when specified, are linearly mapped to floating—point
values such that the most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating—point values are mapped directly.

Neither floating—point nor signed integer values are clamped to the range [0,1] before updating the
current color. However, color components are clamped to this range before they are interpolated «
written into a color buffer.

NOTES

The current color can be updated at any time. In partigi@olor can be called between a call to
glBeginand the corresponding callgtEnd.

ASSOCIATED GETS

glGet with argumenGL_CURRENT_COLOR
glGetwith argumenGL_RGBA_MODE

SEE ALSO

"glindex"

glColorMask

NAME

glColorMask - enable and disable writing of frame buffer color components

C SPECIFICATION

void glColorMask(GLbooleanred, GLbooleangreen GLboolearblug GLboolearnalpha)

PARAMETERS

red, green blue alpha
Specify whether red, green, blue, and alpha can or cannot be written into the
frame buffer. The default values are@ll_TRUE, indicating that the color
components can be written.

DESCRIPTION

glColorMask specifies whether the individual color components in the frame buffer can or cannot t
written. Ifredis GL_FALSE, for example, no change is made to the red component of any pixel in
any of the color buffers, regardless of the drawing operation attempted.

Changes to individual bits of components cannot be controlled. Rather, changes are either enable
disabled for entire color components.

ERRORS

GL_INVALID_OPERATION is generated ifjilColorMask is called between a call gBegin and
the corresponding call tglEnd.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 20

ASSOCIATED GETS

glGet with argumenGL_COLOR_WRITEMASK
glGet with argumenGL_RGBA_MODE

SEE ALSO

"glColor", "glindex", "glindexMask", "gIDepthMask", "glStencilMask"

glColorMaterial

NAME

glColorMaterial — cause a material color to track the current color

C SPECIFICATION

void glColorMaterial (GLenumface GLenummode)

PARAMETERS

face Specifies whether front, back, or both front and back material parameters shoulc
track the current color. Accepted values@te FRONT, GL_BACK, and
GL_FRONT_AND_BACK . The default value i§L_FRONT_AND_BACK.

mode Specifies which of several material parameters track the current color. Acceptec
values aré&sL_EMISSION, GL_AMBIENT , GL_DIFFUSE,
GL_SPECULAR, andGL_AMBIENT_AND_DIFFUSE . The default value is
GL_AMBIENT_AND_DIFFUSE .

DESCRIPTION

glColorMaterial specifies which material parameters track the current color. When
GL_COLOR_MATERIAL is enabled, the material parameter or parameters specifiaaddy of
the material or materials specified fage track the current color at all times.
GL_COLOR_MATERIAL is enabled and disabled using the commatEsable andgIDisable,
called withGL_COLOR_MATERIAL as their argument. By default, it is disabled.

NOTES

glColorMaterial allows a subset of material parameters to be changed for each vertex using only tl
glColor command, without callinglMaterial . If only such a subset of parameters is to be specified
for each vertexglColorMaterial is preferred over callinglMaterial .

ERRORS
GL_INVALID_ENUM is generated iface or modeis not an accepted value.

GL_INVALID_OPERATION is generated ifjiColorMaterial is called between a call giBegin
and the corresponding call ¢dEnd.

ASSOCIATED GETS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 21

gllsEnabled with argumenGL_COLOR_MATERIAL
glGet with argumenGL_COLOR_MATERIAL_PARAMETER
glGetwith argumenGL_COLOR_MATERIAL_FACE

SEE ALSO

"glColor", "glEnable", "glLight" ,"glLightModel" , "gIMaterial"

glCopyPixels

NAME

glCopyPixels— copy pixels in the frame buffer

C SPECIFICATION

void glCopyPixelq GLint x, GLinty, GLsizeiwidth, GLsizeiheight GLenumtype)

PARAMETERS

XY Specify the window coordinates of the lower left corner of the rectangular region
of pixels to be copied.

width, height Specify the dimensions of the rectangular region of pixels to be copied. Both
must be nonnegative.

type Specifies whether color values, depth values, or stencil values are to be copied.
Symbolic constant&L_COLOR, GL_DEPTH, andGL_STENCIL are
accepted.

DESCRIPTION

glCopyPixelscopies a screen—aligned rectangle of pixels from the specified frame buffer location t
region relative to the current raster position. Its operation is well defined only if the entire pixel
source region is within the exposed portion of the window. Results of copies from outside the
window, or from regions of the window that are not exposed, are hardware dependent and undefin

x andy specify the window coordinates of the lower left corner of the rectangular region to be copie
width andheightspecify the dimensions of the rectangular region to be copied. whdttihand
heightmust not be negative.

Several parameters control the processing of the pixel data while it is being copied. These param
are set with three commandgPixelTransfer, glPixelMap, andglPixelZoom. This reference page
describes the effects ghCopyPixelsof most, but not all, of the parameters specified by these three
commands.

glCopyPixelscopies values from each pixel with the lower left—hand corner-aty +j) for
O<i<width and &j<height This pixel is said to be th#h pixel in thejth row. Pixels are copied in
row order from the lowest to the highest row, left to right in each row.

type specifies whether color, depth, or stencil data is to be copied. The details of the transfer for ei
data type are as follows:

GL_COLOR Indices or RGBA colors are read from the buffer currently specified as the read

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 22

source buffer (se@lReadBuffer".) If the GL is in color index mode, each index
that is read from this buffer is converted to a fixed—point format with an
unspecified number of bits to the right of the binary point. Each index is then
shifted left byGL_INDEX_SHIFT bits, and added @L_INDEX_OFFSET.

If GL_INDEX_SHIFT is negative, the shift is to the right. In either case, zero
bits fill otherwise unspecified bit locations in the resultGlf MAP_COLOR

is true, the index is replaced with the value that it references in lookup table
GL_PIXEL_MAP_I_TO_I . Whether the lookup replacement of the index is

done or not, the integer part of the index is then ANDed vt 2whereb is
the number of bits in a color index buffer.

If the GL is in RGBA mode, the red, green, blue, and alpha components of each
pixel that is read are converted to an internal floating—point format with
unspecified precision. The conversion maps the largest representable compone
value to 1.0, and component value zero to 0.0. The resulting floating—point colo
values are then multiplied byL_c_SCALE and added t&L_c_BIAS, wherec

is RED, GREEN, BLUE, andALPHA for the respective color components.

The results are clamped to the range [0,1izUf MAP_COLOR is true, each

color component is scaled by the size of lookup table
GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references in that
table. cis R, G, B, or A, respectively.

The resulting indices or RGBA colors are then converted to fragments by
attaching the current raster positoooordinate and texture coordinates to each
pixel, then assigning window coordinateg< i, yr + j), where Xy, y) is the

current raster position, and the pixel wasitheixel in thejth row. These pixel
fragments are then treated just like the fragments generated by rasterizing point
lines, or polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

GL_DEPTH Depth values are read from the depth buffer and converted directly to an interna
floating—point format with unspecified precision. The resulting floating—point
depth value is then multiplied &yL_ DEPTH_SCALE and added to
GL_DEPTH_BIAS. The result is clamped to the range [0,1].

The resulting depth components are then converted to fragments by attaching tt
current raster position color or color index and texture coordinates to each pixel,
then assigning window coordinateg € i , yr + j), where Xy, y) is the current

raster position, and the pixel was tlie pixel in thgth row. These pixel

fragments are then treated just like the fragments generated by rasterizing point
lines, or polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

GL_STENCIL Stencil indices are read from the stencil buffer and converted to an internal
fixed—point format with an unspecified number of bits to the right of the binary
point. Each fixed—point index is then shifted lefGdy INDEX_SHIFT bits,
and added t&L_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the
shift is to the right. In either case, zero bits fill otherwise unspecified bit

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 23

locations in the result. BGL_MAP_STENCIL is true, the index is replaced
with the value that it references in lookup taBle PIXEL MAP_S TO_S.
Whether the lookup replacement of the index is done or not, the integer part of

the index is then ANDed withbz—l, whereb is the number of bits in the stencil
buffer. The resulting stencil indices are then written to the stencil buffer such
that the index read from tlith location of thgth row is written to locationx +

i,yr+]), whereXr, y) is the current raster position. Only the pixel ownership
test, the scissor test, and the stencil writemask affect these writes.

The rasterization described thus far assumes pixel zoom factors of dIBixélZoom is used to
change thexandy pixel zoom factors, pixels are converted to fragments as followsy, ¥ is the

current raster position, and a given pixel is inithdocation in thgth row of the source pixel
rectangle, then fragments are generated for pixels whose centers are in the rectangle with corners

(Xr + zoony i, yy + zoony j)
and
(xy + zoony (i + 1), yr + zoony (j + 1))

wherezoony is the value o6L_ZOOM_X andzoony is the value olGL_ZOOM_Y .

EXAMPLES

To copy the color pixel in the lower left corner of the window to the current raster position, use
gl CopyPi xel s(0,0, 1, 1, GL_COLOR);

NOTES

Modes specified bglPixelStorehave no effect on the operationgb€opyPixels

ERRORS

GL_INVALID_ENUM is generated ifypeis not an accepted value.

GL_INVALID_VALUE is generated if eithevidth or heightis negative.
GL_INVALID_OPERATION is generated ifypeisGL_DEPTH and there is no depth buffer.
GL_INVALID_OPERATION is generated ifypeisGL_STENCIL and there is no stencil buffer.

GL_INVALID_OPERATION is generated ifjilCopyPixelsis called between a call gBegin and
the corresponding call tglEnd.

ASSOCIATED GETS

glGetwith argumenGL_CURRENT_RASTER_POSITION
glGetwith argumenGL_CURRENT_RASTER_POSITION_VALID

SEE ALSO

"glDepthFunc; "glDrawBuffer" , "glDrawPixels", "glPixelMap", "glPixelTransfer", "glPixelZoom"

, "gIRasterPos’ "gIReadBuffer", "glReadPixels’, "glStencilFunc"

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 24

glCullFace

NAME

glCullFace - specify whether front— or back—facing facets can be culled

C SPECIFICATION

void glCullFace(GLenummode)

PARAMETERS

mode Specifies whether front— or back—facing facets are candidates for culling.
Symbolic constant&L_FRONT andGL_BACK are accepted. The default
value isGL_BACK .

DESCRIPTION

glCullFace specifies whether front— or back—facing facets are culled (as specifiedéyhen

facet culling is enabled. Facet culling is enabled and disabled usigtitieble andglDisable
commands with the argume®@t. CULL_FACE . Facets include triangles, quadrilaterals, polygons,
and rectangles.

glFrontFace specifies which of the clockwise and counterclockwise facets are front—facing and
back-facing. SéglFrontFace”.

ERRORS
GL_INVALID_ENUM is generated iodeis not an accepted value.

GL_INVALID_OPERATION is generated i§lCullFaceis called between a call ggBeginand
the corresponding call tglEnd.

ASSOCIATED GETS

gllsEnabled with argumenGL_CULL_FACE
glGet with argumenGL_CULL_FACE_MODE

SEE ALSO

"glEnable’, "glFrontFace"

glDeleteLists

NAME

glDeleteLists— delete a contiguous group of display lists

C SPECIFICATION

void glDeleteList{ GLuintlist, GLsizeirange)

PARAMETERS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 25

list Specifies the integer name of the first display list to delete.

range Specifies the number of display lists to delete.

DESCRIPTION

glDeleteListscauses a contiguous group of display lists to be delédittds the name of the first
display list to be deleted, amangeis the number of display lists to delete. All display latsith
list< cklist + range— 1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names are available
reuse at a later time. Names within the range that do not have an associated display list are ignor:
If rangeis zero, nothing happens.

ERRORS
GL_INVALID_VALUE is generated ifangeis negative.
GL_INVALID_OPERATION is generated ifjiDeleteListsis called between a call ghBegin and

the corresponding call tglEnd.

SEE ALSO

"glCallList", "gICallLists" , "glGenLists", "glIsList" , "gINewList"

glDepthFunc

NAME

glDepthFunc - specify the value used for depth buffer comparisons

C SPECIFICATION

void gIDepthFunc(GLenumfunc)

PARAMETERS

func Specifies the depth comparison function. Symbolic cons@ntdNEVER ,
GL_LESS, GL_EQUAL,GL_LEQUAL ,GL_GREATER,
GL_NOTEQUAL , GL_GEQUAL, andGL_ALWAYS are accepted. The
default value isGL_LESS.

DESCRIPTION

glDepthFunc specifies the function used to compare each incoming puadle with thez value
present in the depth buffer. The comparison is performed only if depth testing is enabled. (See
"glEnable" andglDisableof GL_DEPTH_TEST.)

funcspecifies the conditions under which the pixel will be drawn. The comparison functions are as
follows:

GL_NEVER Never passes.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 26

GL_LESS Passes if the incomirmvalue is less than the storegalue.
GL_EQUAL Passes if the incomirgvalue is equal to the storedialue.
GL_LEQUAL Passes if the incomimgvalue is less than or equal to the staredlue.

GL_GREATER
Passes if the incomimgvalue is greater than the storedalue.

GL_NOTEQUAL
Passes if the incomirgvalue is not equal to the storedalue.

GL_GEQUAL Passes if the incomirgvalue is greater than or equal to the staredlue.
GL_ALWAYS Always passes.

The default value duncisGL_LESS. Initially, depth testing is disabled.

ERRORS
GL_INVALID_ENUM is generated ifuncis not an accepted value.

GL_INVALID_OPERATION is generated i§lDepthFunc is called between a call gdBeginand
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_DEPTH_FUNC
gllsEnabled with argumenGL_DEPTH_TEST

SEE ALSO

"gIDepthRange™glEnable"

glDepthMask

NAME

glDepthMask — enable or disable writing into the depth buffer

C SPECIFICATION

void gIDepthMask(GLboolearflag)

PARAMETERS

flag Specifies whether the depth buffer is enabled for writindladfis zero, depth
buffer writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing
is enabled.

DESCRIPTION

glDepthMask specifies whether the depth buffer is enabled for writin§ladfis zero, depth buffer
writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing is enabled.

ERRORS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 27

GL_INVALID_OPERATION is generated iflIDepthMask is called between a call gdBegin and
the corresponding call tglEnd.
ASSOCIATED GETS

glGet with argumenGL_DEPTH_WRITEMASK

SEE ALSO

"glColorMask", "glDepthFunc", "glDepthRange", "glindexMask", "glStencilMask"

glDepthRange

NAME

glDepthRange- specify the mapping pf/alues from normalized device coordinates to window
coordinates

C SPECIFICATION

void gIDepthRangd€ GLclampdnear, GLclampdfar)

PARAMETERS

near Specifies the mapping of the near clipping plane to window coordinates. The
default value is 0.

far Specifies the mapping of the far clipping plane to window coordinates. The
default value is 1.

DESCRIPTION

After clipping and division byv, z coordinates range from —1.0 to 1.0, corresponding to the near and
far clipping planesglDepthRangespecifies a linear mapping of the normalizembordinates in this
range to window coordinates. Regardless of the actual depth buffer implementation, window
coordinate depth values are treated as though they range from 0.0 through 1.0 (like color
components). Thus, the values acceptedlbgpthRangeare both clamped to this range before

they are accepted.

The default mapping of 0,1 maps the near plane to 0 and the far plane to 1. With this mapping, the
depth buffer range is fully utilized.

NOTES

It is not necessary thaearbe less thafar. Reverse mappings such as 1,0 are acceptable.

ERRORS

GL_INVALID_OPERATION is generated ifjiDepthRangeis called between a call ggBegin
and the corresponding call ¢gdEnd.

ASSOCIATED GETS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 28

glGet with argumenGL_DEPTH_RANGE

SEE ALSO

"glDepthFunc; "glViewport"

glDrawBuffer

NAME

glDrawBuffer — specify which color buffers are to be drawn into

C SPECIFICATION

void glDrawBuffer (GLenummode)

PARAMETERS

mode Specifies up to four color buffers to be drawn into. Symbolic constants
GL_NONE, GL_FRONT_LEFT ,GL_FRONT_RIGHT , GL_BACK_LEFT,
GL_BACK_RIGHT , GL_FRONT, GL_BACK,GL_LEFT, GL_RIGHT ,
GL_FRONT_AND_BACK, andGL_AUXi, wherei is between 0 and
GL_AUX_ BUFFERS -1, are accepte@l(AUX BUFFERS is not the upper
limit; useglGetto query the number of available aux buffers.) The default value
is GL_FRONT for single—-buffered contexts, aBd_BACK for
double-buffered contexts.

DESCRIPTION

When colors are written to the frame buffer, they are written into the color buffers specified by
glDrawBuffer. The specifications are as follows:

GL_NONE No color buffers are written.

GL_FRONT_LEFT
Only the front left color buffer is written.

GL_FRONT_RIGHT
Only the front right color buffer is written.

GL_BACK_LEFT
Only the back left color buffer is written.

GL_BACK_RIGHT
Only the back right color buffer is written.

GL_FRONT Only the front left and front right color buffers are written. If there is no front
right color buffer, only the front left color buffer is written.

GL_BACK Only the back left and back right color buffers are written. If there is no back
right color buffer, only the back left color buffer is written.

GL_LEFT Only the front left and back left color buffers are written. If there is no back left
color buffer, only the front left color buffer is written.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 29

GL_RIGHT Only the front right and back right color buffers are written. If there is no back

right color buffer, only the front right color buffer is written.
GL_FRONT_AND_BACK

All the front and back color buffers (front left, front right, back left, back right)

are written. If there are no back color buffers, only the front left and front right

color buffers are written. If there are no right color buffers, only the front left

and back left color buffers are written. If there are no right or back color buffers,

only the front left color buffer is written.

GL_AUXi Only auxiliary color buffei is written.

If more than one color buffer is selected for drawing, then blending or logical operations are
computed and applied independently for each color buffer and can produce different results in eac
buffer.

Monoscopic contexts include orligft buffers, and stereoscopic contexts include bettandright
buffers. Likewise, single—buffered contexts include @iyt buffers, and double—buffered contexts
include bothront andbackbuffers. The context is selected at GL initialization.

NOTES

It is always the case th&. AUXi = GL_AUXO +i.

ERRORS

GL_INVALID_ENUM is generated iodeis not an accepted value.
GL_INVALID_OPERATION is generated if none of the buffers indicatedrmdeexists.

GL_INVALID_OPERATION is generated ifjiIDrawBuffer is called between a call gdBegin and
the corresponding call gEnd.

ASSOCIATED GETS

glGet with argumenGL_DRAW_BUFFER
glGet with argumenGL_AUX_BUFFERS

SEE ALSO

"gIBlendFunc'; "glColorMask", "glindexMask", "glLogicOp", gIReadSource

glDrawPixels

NAME

glDrawPixels — write a block of pixels to the frame buffer

C SPECIFICATION

void gIDrawPixels(GLsizeiwidth, GLsizeiheight GLenumformat, GLenumtype, const GLvoid

*pixels)
PARAMETERS
width, height Specify the dimensions of the pixel rectangle that will be written into the frame

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 30

buffer.

format Specifies the format of the pixel data. Symbolic constants
GL_COLOR_INDEX , GL_STENCIL_INDEX ,
GL_DEPTH_COMPONENT, GL_RGBA, GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_RGB, GL_LUMINANCE , and
GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type fpixels Symbolic constantSL._UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP , GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, andGL_FLOAT are accepted.

pixels Specifies a pointer to the pixel data.

DESCRIPTION

glDrawPixels reads pixel data from memory and writes it into the frame buffer relative to the curren
raster position. UsgliRasterPosto set the current raster position, andgl&et with argument
GL_CURRENT_RASTER_POSITION to query the raster position.

Several parameters define the encoding of pixel data in memory and control the processing of the
pixel data before it is placed in the frame buffer. These parameters are set with four commands:
glPixelStore, glPixelTransfer, glPixelMap, andglPixelZoom. This reference page describes the
effects onglDrawPixels of many, but not all, of the parameters specified by these four commands.

Data is read frompixelsas a sequence of signed or unsigned bytes, signed or unsigned shorts, sign
or unsigned integers, or single—precision floating—point values, depentiipg oBach of these

bytes, shorts, integers, or floating—point values is interpreted as one color or depth component, or
index, depending oformat Indices are always treated individually. Color components are treated
as groups of one, two, three, or four values, again baskdmat Both individual indices and

groups of components are referred to as pixelyyp#isGL_BITMAP , the data must be unsigned
bytes, andormat must be eithe6L_COLOR_INDEX orGL_STENCIL_INDEX . Each unsigned
byte is treated as eight 1-bit pixels, with bit ordering determin@&@LbYNPACK_LSB_FIRST
(see"glPixelStore".)

widthxheightpixels are read from memory, starting at locaporels By default, these pixels are

taken from adjacent memory locations, except that afterdth pixels are read, the read pointer is
advanced to the next four—byte boundary. The four—byte row alignment is spedifieokdiptore

with argumeniGL_UNPACK_ALIGNMENT , and it can be set to one, two, four, or eight bytes.
Other pixel store parameters specify different read pointer advancements, both before the first pixe
read, and after allidth pixels are read. Refer to tgiPixelStorereference page for details on these
options.

Thewidthxheightpixels that are read from memory are each operated on in the same way, based o
the values of several parameters specifiedIBjxelTransfer andglPixelMap. The details of these
operations, as well as the target buffer into which the pixels are drawn, are specific to the format o
the pixels, as specified Bgrmat formatcan assume one of eleven symbolic values:
GL_COLOR_INDEX

Each pixel is a single value, a color index. It is converted to fixed—point format,

with an unspecified number of bits to the right of the binary point, regardless of
the memory data type. Floating—point values convert to true fixed—point values.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 31

Signed and unsigned integer data is converted with all fraction bits set to zero.
Bitmap data convert to either 0.0 or 1.0.

Each fixed—point index is then shifted left®ly INDEX_SHIFT bits and

added toGL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is

to the right. In either case, zero bits fill otherwise unspecified bit locations in the
result.

If the GL is in RGBA mode, the resulting index is converted to an RGBA pixel
using theGL_PIXEL_MAP_I_TO_R,GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO B, andGL_PIXEL_MAP_| TO_A tables. If the

GL is in color index mode, and@L_MAP_COLOR is true, the index is
replaced with the value that it references in lookup table
GL_PIXEL_MAP_I_TO_I . Whether the lookup replacement of the index is

done or not, the integer part of the index is then ANDed vt 2whereb is
the number of bits in a color index buffer.

The resulting indices or RGBA colors are then converted to fragments by
attaching the current raster positioocoordinate and texture coordinates to each
pixel, then assigning andy window coordinates to theth fragment such that

X, = X, + n mod width

Yn = ¥, +| n/width |

where Ky, W) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or polygons
Texture mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

GL_STENCIL_INDEX
Each pixel is a single value, a stencil index. It is converted to fixed—point format
with an unspecified number of bits to the right of the binary point, regardless of
the memory data type. Floating—point values convert to true fixed—point values.
Signed and unsigned integer data is converted with all fraction bits set to zero.
Bitmap data convert to either 0.0 or 1.0.

Each fixed—point index is then shifted left®ly INDEX_ SHIFT bits, and

added toGL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is

to the right. In either case, zero bits fill otherwise unspecified bit locations in the
result. IfGL_MAP_STENCIL is true, the index is replaced with the value that

it references in lookup tab8L_PIXEL_MAP_S TO_S. Whether the lookup
replacement of the index is done or not, the integer part of the index is then
ANDed with D -4, whereb is the number of bits in the stencil buffer. The

resulting stencil indices are then written to the stencil buffer such thaththe
index is written to location

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 32

X, = X, + n mod width

Yn = ¥, +| n/width |

where Ky, W) is the current raster position. Only the pixel ownership test, the
scissor test, and the stencil writemask affect these writes.

GL_DEPTH_COMPONENT
Each pixel is a single-depth component. Floating—point data is converted direct
to an internal floating—point format with unspecified precision. Signed integer
data is mapped linearly to the internal floating—point format such that the most
positive representable integer value maps to 1.0, and the most negative
representable value maps to —1.0. Unsigned integer data is mapped similarly: tt
largest integer value maps to 1.0, and zero maps to 0.0. The resulting
floating—point depth value is then multiplied®y DEPTH_SCALE and added
toGL_DEPTH_BIAS. The result is clamped to the range [0,1].

The resulting depth components are then converted to fragments by attaching tt
current raster position color or color index and texture coordinates to each pixel,
then assigning andy window coordinates to thah fragment such that

X, = X, + n mod width

Y = ¥ +| n/width |

where Ky, W) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or polygons
Texture mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

GL_RGBA Each pixel is a four-component group: red first, followed by green, followed by
blue, followed by alpha. Floating—point values are converted directly to an
internal floating—point format with unspecified precision. Signed integer values
are mapped linearly to the internal floating—point format such that the most
positive representable integer value maps to 1.0, and the most negative
representable value maps to —1.0. Unsigned integer data is mapped similarly: tt
largest integer value maps to 1.0, and zero maps to 0.0. The resulting
floating—point color values are then multiplieddly ¢ SCALE and added to
GL_c_BIAS, wherec isSRED, GREEN, BLUE, andALPHA for the respective
color components. The results are clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size of
lookup tableGL_PIXEL_MAP_c_TO_c, then replaced by the value that it
references in that table.isR, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching the
current raster positioncoordinate and texture coordinates to each pixel, then

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 33

assigning andy window coordinates to theh fragment such that

X, = X, + n mod width

Y = ¥, +| n/width |

where Ky, W) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or polygons
Texture mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

GL_RED Each pixel is a single red component. This component is converted to the
internal floating—point format in the same way as the red component of an RGB!/
pixel is, then it is converted to an RGBA pixel with green and blue set to 0.0, anc
alpha set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an RGBA pixel.

GL_GREEN Each pixel is a single green component. This component is converted to the
internal floating—point format in the same way as the green component of an
RGBA pixel is, then it is converted to an RGBA pixel with red and blue set to
0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it ha
been read as an RGBA pixel.

GL_BLUE Each pixel is a single blue component. This component is converted to the
internal floating—point format in the same way as the blue component of an
RGBA pixel is, then it is converted to an RGBA pixel with red and green set to
0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it ha
been read as an RGBA pixel.

GL_ALPHA Each pixel is a single alpha component. This component is converted to the
internal floating—point format in the same way as the alpha component of an
RGBA pixel is, then it is converted to an RGBA pixel with red, green, and blue
set to 0.0. After this conversion, the pixel is treated just as if it had been read as
an RGBA pixel.

GL_RGB Each pixel is a three—component group: red first, followed by green, followed by
blue. Each component is converted to the internal floating—point format in the
same way as the red, green, and blue components of an RGBA pixel are. The
color triple is converted to an RGBA pixel with alpha set to 1.0. After this
conversion, the pixel is treated just as if it had been read as an RGBA pixel.

GL_LUMINANCE
Each pixel is a single luminance component. This component is converted to th
internal floating—point format in the same way as the red component of an RGB!
pixel is, then it is converted to an RGBA pixel with red, green, and blue set to the
converted luminance value, and alpha set to 1.0. After this conversion, the pixel
is treated just as if it had been read as an RGBA pixel.

GL_LUMINANCE_ALPHA
Each pixel is a two—component group: luminance first, followed by alpha. The

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 34

two components are converted to the internal floating—point format in the same
way as the red component of an RGBA pixel is, then they are converted to an
RGBA pixel with red, green, and blue set to the converted luminance value, and
alpha set to the converted alpha value. After this conversion, the pixel is treatec
just as if it had been read as an RGBA pixel.

The following table summarizes the meaning of the valid constants ftypiaparameter:
type corresponding type
GL_UNSIGNED_BYTE

unsigned 8-hit integer

GL_BYTE

signed 8-bit integer

GL_BITMAP

single bits in unsigned 8-bit integers
GL_UNSIGNED_SHORT

unsigned 16-bit integer

GL_SHORT

signed 16-bit integer

GL_UNSIGNED_INT

unsigned 32-hit integer

GL_INT

32-bit integer

GL_FLOAT

single—precision floating—point

The rasterization described thus far assumes pixel zoom factors of glPixédZoom is used to
change thexandy pixel zoom factors, pixels are converted to fragments as followsy, ¥ is the

current raster position, and a given pixel is inrttecolumn andnth row of the pixel rectangle, then
fragments are generated for pixels whose centers are in the rectangle with corners at

(Xr +zoonx n, yr +zoony m)
(Xr +zoony (n + 1),yr + zoong (m+ 1))

wherezoony is the value o6L_ZOOM_X andzoony is the value ofSL_ZOOM_Y .

ERRORS
GL_INVALID_VALUE is generated if eithavidth or heightis negative.
GL_INVALID_ENUM s generated iformatortypeis not one of the accepted values.

GL_INVALID_OPERATION is generated iformatisGL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA,GL _RGB, GL_RGBA, GL_LUMINANCE , orGL_LUMINANCE_ALPHA , and
the GL is in color index mode.

GL_INVALID_ENUM s generated ifypeisGL_BITMAP andformatis not either
GL_COLOR_INDEX or GL_STENCIL_INDEX .

GL_INVALID_OPERATION is generated iformatisGL_STENCIL_INDEX and there is no
stencil buffer.

GL_INVALID_OPERATION is generated ifjIDrawPixels is called between a call ggBeginand
the corresponding call gEnd.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 35

ASSOCIATED GETS

glGet with argumenGL_CURRENT_RASTER_POSITION
glGet with argumenGL_CURRENT_RASTER_POSITION_VALID

SEE ALSO

"glAlphaFunc’ "gIBlendFunc", "glCopyPixels", "gIDepthFunc", "glLogicOp" , "gIPixelMap" ,
"glPixelStore", "glPixelTransfer", "glPixelZoom", "glRasterPos "glReadPixels", "glScissor",
"glStencilFunc"

glEdgeFlag

NAME

glEdgeFlag, glEdgeFlagv- flag edges as either boundary or nonboundary

C SPECIFICATION

void glEdgeFlag(GLboolearflag)

PARAMETERS

flag Specifies the current edge flag value, either true or false.

C SPECIFICATION

void glEdgeFlagy const GLbooleafflag)

PARAMETERS
flag Specifies a pointer to an array that contains a single Boolean element, which

replaces the current edge flag value.

DESCRIPTION

Each vertex of a polygon, separate triangle, or separate quadrilateral specified between a
gIBegir/glEnd pair is marked as the start of either a boundary or nonboundary edge. If the current
edge flag is true when the vertex is specified, the vertex is marked as the start of a boundary edge
Otherwise, the vertex is marked as the start of a nonboundary gi@gigeFlagsets the edge flag to
true if flag is nonzero, false otherwise.

The vertices of connected triangles and connected quadrilaterals are always marked as boundary,
regardless of the value of the edge flag.

Boundary and nonboundary edge flags on vertices are significant @&illy FOLYGON_MODE is
set toGL_POINT orGL_LINE . See'glPolygonMode™.

Initially, the edge flag bit is true.

NOTES

The current edge flag can be updated at any time. In partiglfgigeFlagcan be called between a

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 36

call toglBeginand the corresponding call ¢ghEnd.

ASSOCIATED GETS

glGet with argumenGL_EDGE_FLAG

SEE ALSO
"gIBegin”, "glPolygonMode"

glEnable

NAME

glEnable, glDisable— enable or disable GL capabilities

C SPECIFICATION

void glEnable(GLenumcap)

PARAMETERS

cap Specifies a symbolic constant indicating a GL capability.

C SPECIFICATION

void glDisable(GLenumcap)

PARAMETERS

cap Specifies a symbolic constant indicating a GL capability.

DESCRIPTION

glEnable andglIDisable enable and disable various capabilities. glsgEnabled orglGetto
determine the current setting of any capability.

Both glEnable andglIDisable take a single argumergp, which can assume one of the following
values:

GL_ALPHA_TEST
If enabled, do alpha testing. SegAlphaFunc"

GL_AUTO_NORMAL
If enabled, compute surface normal vectors analytically when either
GL_MAP2_VERTEX_3 orGL_MAP2_VERTEX_4 is used to generate
vertices. Seé&glMap2".

GL_BLEND If enabled, blend the incoming RGBA color values with the values in the color
buffers. SeéglBlendFunc".

GL_CLIP_PLANE i
If enabled, clip geometry against user—defined clipping plaSee
"gIClipPlane".

GL_COLOR_MATERIAL

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 37

If enabled, have one or more material parameters track the current color. See
"glColorMaterial".

GL_CULL_FACE
If enabled, cull polygons based on their winding in window coordinates. See
"glCullFace'

GL_DEPTH_TEST
If enabled, do depth comparisons and update the depth buffer. See
"glDepthFunc"and "glDepthRange"

GL_DITHER If enabled, dither color components or indices before they are written to the colo
buffer.

GL_FOG If enabled, blend a fog color into the posttexturing color. "§k&®g" .

GL_LIGHT i If enabled, include lightin the evaluation of the lighting equation. See

"glLightModel" and"glLight" .

GL_LIGHTING
If enabled, use the current lighting parameters to compute the vertex color or
index. Otherwise, simply associate the current color or index with each vertex.

See"gIMaterial”, "glLightModel" and"glLight" .

GL_LINE_SMOOTH
If enabled, draw lines with correct filtering. Otherwise, draw aliased lines. See
"glLineWidth".

GL_LINE_STIPPLE
If enabled, use the current line stipple pattern when drawing lines. See
"glLineStipple".

GL_LOGIC_OP
If enabled, apply the currently selected logical operation to the incoming and
color buffer indices. SeglLogicOp™.

GL_MAP1_COLOR_4
If enabled, calls tglEvalCoord1, glEvalMesh1, andglEvalPointl will generate
RGBA values. Se@lMapl” .

GL_MAP1_INDEX
If enabled, calls tglEvalCoord1, glEvalMeshl, andglEvalPointl will generate
color indices. SeglMapl".

GL_MAP1_NORMAL
If enabled, calls tglEvalCoord1, glEvalMeshl, andglEvalPoint1 will generate
normals. SeéglMapl"”.

GL_MAP1_TEXTURE_COORD 1
If enabled, calls tglEvalCoord1, glEvalMesh1, andglEvalPointl will generate
stexture coordinates. SégiMapl".

GL_MAP1_TEXTURE_COORD_2
If enabled, calls tglEvalCoord1, glEvalMeshl, andglEvalPointl will generate
s andt texture coordinates. StgiMapl" .

GL_MAP1_TEXTURE_COORD_3
If enabled, calls tglEvalCoord1, glEvalMeshl, andglEvalPoint1 will generate
s, t, andr texture coordinates. SégMapl".

GL_MAP1_TEXTURE_COORD 4
If enabled, calls tglEvalCoord1, glEvalMesh1, andglEvalPointl will generate
s, t, r, andg texture coordinates. SégMapl".

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 38

GL_MAP1_VERTEX_3
If enabled, calls tglEvalCoord1, glEvalMeshl, andglEvalPoint1 will generate
will generatex, y, andz vertex coordinates. SéglMapl".

GL_MAP1_VERTEX 4
If enabled, calls tglEvalCoord1, glEvalMesh1, andglEvalPointl will generate
homogeneous y, z, andw vertex coordinates. SéglMapl".

GL_MAP2_COLOR_4
If enabled, calls tglEvalCoord2, glEvalMesh2 andglEvalPoint2 will generate
RGBA values. Se@lMap2" .

GL_MAP2_INDEX
If enabled, calls tglEvalCoord2, glEvalMesh2 andglEvalPoint2 will generate
color indices. SeglMap2".

GL_MAP2_NORMAL
If enabled, calls tglEvalCoord2, glEvalMesh2 andglEvalPoint2 will generate
normals. SeéglMap2".

GL_MAP2_TEXTURE_COORD_1
If enabled, calls tglEvalCoord2, glEvalMesh2 andglEvalPoint2 will generate
stexture coordinates. SégiMap2".

GL_MAP2_TEXTURE_COORD_2
If enabled, calls tglEvalCoord?2, glEvalMesh2 andglEvalPoint2 will generate
s andt texture coordinates. SégiMap2"

GL_MAP2_TEXTURE_COORD 3
If enabled, calls tglEvalCoord2, glEvalMesh2 andglEvalPoint2 will generate
s, t, andr texture coordinates. SégiMap2".

GL_MAP2_TEXTURE_COORD_4
If enabled, calls tglEvalCoord2, glEvalMesh2 andglEvalPoint2 will generate
s, t, r, andg texture coordinates. StgiMap2".

GL_MAP2_VERTEX_3
If enabled, calls tglEvalCoord?2, glEvalMesh2 andglEvalPoint2 will generate
will generatex, y, andz vertex coordinates. SéglMap2".

GL_MAP2_VERTEX_4
If enabled, calls tglEvalCoord2, glEvalMesh2 andglEvalPoint2 will generate
homogeneous, y, z, andw vertex coordinates. SéglMap2".

GL_NORMALIZE
If enabled, normal vectors specified wifNormal are scaled to unit length after
transformation. SetgIiNormal” .

GL_POINT_SMOOTH
If enabled, draw points with proper filtering. Otherwise, draw aliased points.
See'glPointSize!

GL_POLYGON_SMOOTH
If enabled, draw polygons with proper filtering. Otherwise, draw aliased
polygons. Se#glPolygonMode®

GL_POLYGON_STIPPLE
If enabled, use the current polygon stipple pattern when rendering polygons. Se
"glPolygonStipple!

GL_SCISSOR_TEST
If enabled, discard fragments that are outside the scissor rectangle. See
"glScissor".

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 39

GL_STENCIL_TEST
If enabled, do stencil testing and update the stencil buffer.'gE&encilFunc"
and"glIStencilOp".

GL_TEXTURE_1D
If enabled, one—dimensional texturing is performed (unless two—dimensional
texturing is also enabled). S&gTeximagelD®

GL_TEXTURE_2D
If enabled, two—dimensional texturing is performed. "§8@xlmage2D'

GL_TEXTURE_GEN_Q
If enabled, they texture coordinate is computed using the texture generation
function defined witlglTexGen Otherwise, the curreqttexture coordinate is
used. SeéglTexGen".

GL_TEXTURE_GEN_R
If enabled, the texture coordinate is computed using the texture generation

function defined witlglTexGen Otherwise, the currenttexture coordinate is
used. SeéglTexGen".

GL_TEXTURE_GEN_S
If enabled, thes texture coordinate is computed using the texture generation
function defined witlglTexGen Otherwise, the curresttexture coordinate is
used. SeéglTexGen".

GL_TEXTURE_GEN_T
If enabled, the texture coordinate is computed using the texture generation
function defined witlglTexGen Otherwise, the currentexture coordinate is
used. SeéglTexGen".

ERRORS
GL_INVALID_ENUM is generated itapis not one of the values listed above.

GL_INVALID_OPERATION is generated ifjlEnable is called between a call giBegin and the
corresponding call tglEnd.

SEE ALSO

"glAlphaFunc’, "glBlendFunc", "gIClipPlane", "glColorMaterial", "glCullFace", "glDepthFunc",

"gIDepthRange’; "glFog" , "glGet" , "glisEnabled", "glLight" , "glLightModel" , "glLineWidth" ,

"glLineStipple", "glLogicOp" , "giMapl1", "giMap2", "glMaterial", "gINormal", "glPointSize",

"glPolygonMode", "glPolygonStipple", "glScissor”, "glStencilFunc", "glStencilOp", "glTexGen",
"glTexlmagelD", "glTexlmage2D"

glEvalCoord

NAME

glEvalCoord1d, glEvalCoord1f, glEvalCoord2d, glEvalCoord2f, glEvalCoord1dv,
glEvalCoord1fv, glEvalCoord2dv, glEvalCoord2fv- evaluate enabled one- and two—dimensional
maps

C SPECIFICATION

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 40

void glEvalCoord1d(GLdoubleu)

void glEvalCoord1f(GLfloatu)

void glEvalCoord2d(GLdoubleu, GLdoublev)
void glEvalCoord2f(GLfloat u, GLfloatv)

PARAMETERS

u Specifies a value that is the domain coordinsti® the basis function defined in a
previousglMapl orglMap2 command.

% Specifies a value that is the domain coordiwvdtethe basis function defined in a
previousglMap2 command. This argument is not present iigl&valCoordl
command.

C SPECIFICATION

void glEvalCoordldv(const GLdoubléu)
void glEvalCoord1fv(const GLfloatu)
void glEvalCoord2dv(const GLdoubléu)

void glEvalCoord2fv(const GLfloatu)

PARAMETERS

u Specifies a pointer to an array containing either one or two domain coordinates.
The first coordinate is. The second coordinateviswhich is present only in
glEvalCoord2 versions.

DESCRIPTION

glEvalCoord1 evaluates enabled one—dimensional maps at argumgltEvalCoord2 does the
same for two—dimensional maps using two domain values]v. Maps are defined withiMapl
andglMap?2 and enabled and disabled wifEnable andglDisable

When one of thglEvalCoord commands is issued, all currently enabled maps of the indicated
dimension are evaluated. Then, for each enabled map, it is as if the corresponding GL command
issued with the computed value. That isGif MAP1_INDEX orGL_MAP2_INDEX is enabled,
aglindex command is simulated. L_MAP1 COLOR_4 or GL_MAP2_ COLOR_4is enabled,
aglColor command is simulated. GL_MAP1_NORMAL orGL_MAP2_NORMAL is enabled,
a normal vector is produced, and if anyGif MAP1 TEXTURE_COORD 1,
GL_MAP1_TEXTURE_COORD_2,GL_MAP1_TEXTURE_COORD_3,
GL_MAP1_TEXTURE_COORD_4, GL_MAP2_TEXTURE_COORD_1,
GL_MAP2_TEXTURE_COORD_2,GL_MAP2_TEXTURE_COORD_3, or

GL_MAP2_ TEXTURE_COORD 4 is enabled, then an approprigt€exCoord command is
simulated.

The GL uses evaluated values instead of current values for those evaluations that are enabled, an
current values otherwise, for color, color index, normal, and texture coordinates. However, the
evaluated values do not update the current values. Tlglggiftex commands are interspersed with
glEvalCoord commands, the color, normal, and texture coordinates associated vgthehex
commands are not affected by the values generated giEbeCoord commands, but rather only

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 41

by the most recemiColor, glindex, gINormal, andglTexCoord commands.

No commands are issued for maps that are not enabled. If more than one texture evaluation is
enabled for a particular dimension (for exam@e, MAP2_TEXTURE_COORD_1 and
GL_MAP2_TEXTURE_COORD_2), then only the evaluation of the map that produces the larger
number of coordinates (in this ca&d, MAP2_TEXTURE_COORD_2) is carried out.
GL_MAP1_VERTEX_4 overridesGL_MAP1_VERTEX_3, andGL_MAP2_VERTEX_4
overridesGL_MAP2_VERTEX_ 3, in the same manner. If neither a three— nor four-component
vertex map is enabled for the specified dimensiongtBealCoord command is ignored.

If automatic normal generation is enabled, by caljtienable with argument
GL_AUTO_NORMAL , glEvalCoord2 generates surface normals analytically, regardless of the
contents or enabling of tt&L_MAP2_NORMAL map. Let

p 2
m= ¥

du dv

Then the generated nornralis

m
n = ——
[

If automatic normal generation is disabled, the corresponding normabmaf@AP2_NORMAL , if
enabled, is used to produce a normal. If neither automatic normal generation nor a normal map is
enabled, no normal is generateddtifvalCoord2 commands.

ASSOCIATED GETS

gllsEnabled with argumenGL_MAP1_VERTEX_3
gllsEnabled with argumenGL_MAP1_VERTEX_4
gllsEnabled with argumenGL_MAP1_INDEX

gllsEnabled with argumenGL_MAP1_COLOR_4
gllsEnabled with argumenGL_MAP1_NORMAL

glisEnabled with argumenGL_MAP1 _TEXTURE_COORD_1
glisEnabled with argumenGL_MAP1_TEXTURE_COORD_2
glisEnabled with argumenGL_MAP1_TEXTURE_COORD_3
glisEnabled with argumenGL_MAP1_TEXTURE_COORD_4
glisEnabled with argumentGL_MAP2_VERTEX_3
glisEnabled with argumenGL_MAP2_VERTEX 4
glisEnabled with argumentGL_MAP2_INDEX

glisEnabled with argumentGGL_MAP2_COLOR_4
gllsEnabled with argumenGL_MAP2_NORMAL

gllsEnabled with argumenGL_MAP2_TEXTURE_COORD_1
gllsEnabled with argumenGL_MAP2_TEXTURE_COORD_2
glisEnabled with argumenGL_MAP2_TEXTURE_COORD_3
glisEnabled with argumenGL_MAP2_TEXTURE_COORD_4
glisEnabled with argumenGL_AUTO_NORMAL

glGetMap

SEE ALSO

"glBegin”, "glColor" , "glEnable", "glEvalMesh", "glEvalPoint", "glindex" , "gIMapl1" , "gIMap2",

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 42

"gIMapGrid" , "gINormal” ,"glTexCoord", "glVertex"

glEvalMesh

NAME

glEvalMeshl, glEvalMesh2- compute a one- or two—dimensional grid of points or lines

C SPECIFICATION

void glEvalMesh1(GLenummode GLint i1, GLinti2)

PARAMETERS

mode In glEvalMesh}, specifies whether to compute a one—dimensional mesh of points
or lines. Symbolic constan@L_POINT andGL_LINE are accepted.

i1,i2 Specify the first and last integer values for grid domain variable

C SPECIFICATION

void glEvalMesh2(GLenummode GLint i1, Linti2, GLintj1, GLintj2)

PARAMETERS

mode In glEvalMesh2 specifies whether to compute a two-dimensional mesh of
points, lines, or polygons. Symbolic consta@ts POINT, GL_LINE , and
GL_FILL are accepted.

i1,i2 Specify the first and last integer values for grid domain variable
i1,j2 Specify the first and last integer values for grid domain varjable
DESCRIPTION

glMapGrid andglEvalMeshare used in tandem to efficiently generate and evaluate a series of
evenly spaced map domain valugéEvalMesh steps through the integer domain of a one— or
two—dimensional grid, whose range is the domain of the evaluation maps speafidd iy and
glMap2. modedetermines whether the resulting vertices are connected as points, lines, or filled
polygons.

In the one—-dimensional cagi;valMeshl, the mesh is generated as if the following code fragment
were executed:

gl Begi n(type);

for(i = il; i <= i2; i +=1)
gl Eval Coord1(i- Au + u 1)

gl End();

where

Au = (p-u)/n

andn, u1, andu2 are the arguments to the most recghtapGridl command.typeis GL_POINTS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 43

if modeis GL_POINT, orGL_LINES if modeis GL_LINE . The one absolute numeric
requirement is that if= n, then the value computed framAu + uj is exactlyup.

In the two—dimensional caggf-valMesh2, let
Au = (u2—u)/n
Av = (v2 =\)/m,

wheren, u1, u2, m, v1, andv2 are the arguments to the most regghtapGrid2 command. Then, if

modeisGL_FILL , theglEvalMesh2command is equivalent to:

for(j=J1; J < j2;j+=1{
gl Begi n(G._QUAD_STRI P);
for (=01 0 <= 02 i +=1){
gl Eval Coord2(i- Au +u 1, j- Av +v 1)
gl Eval Coord2(i- Au + u 1, (+1)- Av + v 1)
}
gl End();
}
If modeisGL_LINE , then a call tglEvalMesh2is equivalent to:
for(j=1J1; J <= j2;)+=1{
gl Begi n(GL_LI NE_STRI P);
for (i=il; i <= i2; i +=1)
gl Eval Coord2(i- Au +u 1, j- Av + Vv 1);
gl End();
}
for(i = il; i <= i2; i +=1){
gl Begi n(GL_LI NE_STRI P);
for (j= g1y) <= 15] +=1)
gl Eval Coord2(i- Au +u 1, j- Av + Vv 1);
gl End();
}

And finally, if modeis GL_POINT, then a call tglEvalMesh2is equivalent to:
gl Begi n(G_PQA NTS);

for(j=1J1; j <= j2;) +=1{
for (i= il 0 <= i2; i +=1){
gl Eval Coord2(i- Au +u 1, j- Av + Vv 1);
}
}
gl End();

In all three cases, the only absolute numeric requirements areithat,ithen the value computed
fromi-Au + up is exactlyup, and iff = m, then the value computed frgrmAv + vq is exactlywo.

ERRORS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 44

GL_INVALID_ENUM is generated ifnodeis not an accepted value.

GL_INVALID_OPERATION is generated ifjlEvalMesh is called between a call ggBegin and
the corresponding call tglEnd.

ASSOCIATED GETS
glGet with argumenGL_MAP1_GRID_DOMAIN
glGet with argumenGL_MAP2_GRID_DOMAIN

glGet with argumenGL_MAP1_GRID_SEGMENTS
glGet with argumenGL_MAP2_GRID_SEGMENTS

SEE ALSO

"gIBegin”, "glEvalCoord", "glEvalPoint", "giMap1" , "giMap2" , "gIMapGrid"

glEvalPoint

NAME

glEvalPointl, glEvalPoint2 — generate and evaluate a single point in a mesh

C SPECIFICATION

void glEvalPointl(GLint i)
void glEvalPoint2(GLint i, GLint j)

PARAMETERS
i Specifies the integer value for grid domain variable

] Specifies the integer value for grid domain varighigiEvalPoint2 only).

DESCRIPTION

glMapGrid andglEvalMeshare used in tandem to efficiently generate and evaluate a series of
evenly spaced map domain valugéEvalPoint can be used to evaluate a single grid point in the
same gridspace that is traversedjtiyvalMesh. CallingglEvalPointl is equivalent to calling

gl Eval Coordl1(i -Au + u 1)
where
Au = (l-u)/n

andn, u1, andu2 are the arguments to the most reaghtapGridl command. The one absolute

numeric requirement is thatiiE n, then the value computed framAu + up is exactlyup.
In the two—dimensional caggEvalPoint2, let

Au=(u2—u)n

Av=(v2-Vv)/m

wheren, u1, u, m, v1, andvo are the arguments to the most regghtapGrid2 command. Then the

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 45

glEvalPoint2 command is equivalent to calling
gl Eval Coord2(i -Au +u 1, j -Av + Vv 1);

The only absolute numeric requirements are that i, then the value computed frarmAu + w is

exactlyup, and ifj = m, then the value computed frgmAv + v1 is exactiyvp.

ASSOCIATED GETS

glGet with argumenGL_MAP1_GRID_DOMAIN
glGet with argumenGL_MAP2_GRID_DOMAIN
glGet with argumenGL_MAP1_GRID_SEGMENTS
glGet with argumenGL_MAP2_GRID_SEGMENTS

SEE ALSO
"glEvalCoord', "glEvalMesh", "gIMapl1" , "gIMap2", "gIMapGrid"

glFeedbackBuffer

NAME

glFeedbackBuffer— controls feedback mode

C SPECIFICATION

void glFeedbackBuffer(GLsizeisize GLenumtype GLfloat*buffer)

PARAMETERS
size Specifies the maximum number of values that can be writterbirfter
type Specifies a symbolic constant that describes the information that will be returnec

for each vertexGL_2D, GL_3D, GL_3D_COLOR,
GL_3D_COLOR_TEXTURE, andGL_4D_COLOR_TEXTURE are

accepted.
buffer Returns the feedback data.
DESCRIPTION

TheglFeedbackBuffer function controls feedback. Feedback, like selection, is a GL mode. The
mode is selected by calligfRenderMode with GL_FEEDBACK . When the GL is in feedback
mode, no pixels are produced by rasterization. Instead, information about primitives that would ha
been rasterized is fed back to the application using the GL.

glFeedbackBuffer has three argumentsufferis a pointer to an array of floating—point values into
which feedback information is placedizeindicates the size of the arratypeis a symbolic constant
describing the information that is fed back for each vertgixeedbackBuffer must be issued before
feedback mode is enabled (by callgiiRenderMode with argumenGL_FEEDBACK). Setting
GL_FEEDBACK without establishing the feedback buffer, or calliigeedbackBuffer while the
GL is in feedback mode, is an error.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 46

The GL is taken out of feedback mode by callifigenderMode with a parameter value other than
GL_FEEDBACK . When this is done while the GL is in feedback mgtRenderMode returns the
number of entries placed in the feedback array. The returned value never ekcedtithe
feedback data required more room than was availaltleffer, gIRenderMode returns a negative
value.

While in feedback mode, each primitive that would be rasterized generates a block of values that ¢
copied into the feedback array. If doing so would cause the number of entries to exceed the
maximum, the block is partially written so as to fill the array (if there is any room left at all), and an
overflow flag is set. Each block begins with a code indicating the primitive type, followed by values
that describe the primitive’s vertices and associated data. Entries are also written for bitmaps and
pixel rectangles. Feedback occurs after polygon cullinggf#alyMode interpretation of polygons

has taken place, so polygons that are culled are not returned in the feedback buffer. It can also oc
after polygons with more than three edges are broken up into triangles, if the GL implementation
renders polygons by performing this decomposition.

TheglPassThroughcommand can be used to insert a marker into the feedback buffer. See
"glPassThrough!

Following is the grammar for the blocks of values written into the feedback buffer. Each primitive i
indicated with a unique identifying value followed by some number of vertices. Polygon entries
include an integer value indicating how many vertices follow. A vertex is fed back as some numbe
of floating—point values, as determinedygye Colors are fed back as four values in RGBA mode
and one value in color index mode.

feedbackList <—— feedbackltem feedbackList | feedbackltem

feedbackltem <—— point | lineSegment | polygon | bitmap | pixelRectangle | passThru
point <—GL_POINT_TOKEN vertex

lineSegment <-GL_LINE_TOKEN vertex vertex GL_LINE_RESET_TOKEN vertex vertex
polygon <—-6L_POLYGON_TOKEN n polySpec

polySpec <-- polySpec vertex | vertex vertex vertex

bitmap <-6L_BITMAP_TOKEN vertex

pixelRectangle <-GL._ DRAW_PIXEL_TOKEN vertex |GL_COPY_PIXEL_TOKEN vertex
passThru <-GL_PASS_THROUGH_TOKEN value

vertex <—— 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture

2d <—- value value

3d <—- value value value

3dColor <—- value value value color

3dColorTexture <—- value value value color tex

4dColorTexture <—- value value value value color tex

color <—-rgba | index

rgba <—— value value value value

index <—- value

tex <—- value value value value

valueis a floating—point number, ands a floating—point integer giving the number of vertices in the
polygon. GL_POINT_TOKEN , GL_LINE_TOKEN , GL_LINE_RESET_TOKEN,
GL_POLYGON_TOKEN, GL_BITMAP_TOKEN , GL_DRAW_PIXEL_TOKEN ,
GL_COPY_PIXEL_TOKEN andGL_PASS THROUGH_TOKEN are symbolic floating—point
constants.GL_LINE_RESET_TOKEN is returned whenever the line stipple pattern is reset. The
data returned as a vertex depends on the feedygaek

The following table gives the correspondence betvigeeand the number of values per vertéods

1 in color index mode and 4 in RGBA mode.
type coordinates color texture total number of values

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 47

GL_2D 2

Xy
GL_3D 3

XY,z
GL_3D_CO k 3+k
LOR

XY,z
GL_3D_CO k 7+k

LO

R_TEXTUR

E

XY, Z

GL_4D_CO k 8+k

LO 4

R_TEXTUR

E

XY, Z, W

Feedback vertex coordinates are in window coordinates, excegtich is in clip coordinates.
Feedback colors are lighted, if lighting is enabled. Feedback texture coordinates are generated, if
texture coordinate generation is enabled. They are always transformed by the texture matrix.

NOTES

glFeedbackBuffer, when used in a display list, is not compiled into the display list but rather is
executed immediately.

ERRORS

GL_INVALID_ENUM is generated ifypeis not an accepted value.

GL_INVALID_VALUE is generated Hizeis negative.

GL_INVALID_OPERATION is generated ifjiIFeedbackBufferis called while the render mode is
GL_FEEDBACK, or if glRenderModeis called with argumensL._ FEEDBACK before
glFeedbackBufferis called at least once.

GL_INVALID_OPERATION is generated ifjIFeedbackBufferis called between a call gdBegin
and the corresponding call ¢tEnd.

ASSOCIATED GETS

glGet with argumenGL_RENDER_MODE

SEE ALSO

"gIBegin”, "glLineStipple", "glPassThrough; "glPolygonMode", "gIRenderMode",
"glSelectBuffer"

glFinish

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 48

NAME

glFinish — block until all GL execution is complete

C SPECIFICATION

void glFinish(void)

DESCRIPTION

glFinish does not return until the effects of all previously called GL commands are complete. Such
effects include all changes to GL state, all changes to connection state, and all changes to the frar
buffer contents.

NOTES

glFinish requires a round trip to the server.

ERRORS

GL_INVALID_OPERATION is generated ifjlFinish is called between a call ggBegin and the
corresponding call tglEnd.

SEE ALSO

"gIFlush”, "gIXWaitGL" , "gIXWaitX"

glFlush

NAME

glFlush - force execution of GL commands in finite time

C SPECIFICATION

void glFlush(void)

DESCRIPTION

Different GL implementations buffer commands in several different locations, including network
buffers and the graphics accelerator itsgh-lush empties all of these buffers, causing all issued
commands to be executed as quickly as they are accepted by the actual rendering engine. Thoug
this execution may not be completed in any particular time period, it does complete in finite time.

Because any GL program might be executed over a network, or on an accelerator that buffers
commands, all programs should agiflush whenever they count on having all of their previously
issued commands completed. For example gtlush before waiting for user input that depends
on the generated image.

NOTES

glFlush can return at any time. It does not wait until the execution of all previously issued OpenGL
commands is complete.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 49

ERRORS

GL_INVALID_OPERATION is generated ifjlFlush is called between a call ggBeginand the
corresponding call tglEnd.

SEE ALSO

"glFinish"

glFog

NAME

glFogf, glFogi, glFogfv, glFogiv- specify fog parameters

C SPECIFICATION

void glFogf(GLenumpname GLfloat param)

void glFogi(GLenumpname GLint param)

PARAMETERS

pname Specifies a single-valued fog parame@k. FOG_MODE,
GL_FOG_DENSITY, GL_FOG_START, GL_FOG_END, and
GL_FOG_INDEX are accepted.

param Specifies the value thanamewill be set to.

C SPECIFICATION
void glFogfv(GLenumpname const GLfloatparams)

void glFogiv(GLenumpname const GLint'params)

PARAMETERS

pname Specifies a fog parameteGL. FOG_MODE , GL_FOG_DENSITY,
GL_FOG_START, GL_FOG_END, GL_FOG_INDEX, and
GL_FOG_COLOR are accepted.

params Specifies the value or values to be assignguhémme GL_FOG_COLOR
requires an array of four values. All other parameters accept an array containing
only a single value.

DESCRIPTION

Fog is enabled and disabled wiflicnable andglDisable using the argume@L_FOG. While
enabled, fog affects rasterized geometry, bitmaps, and pixel blocks, but not buffer clear operations

glFog assigns the value or valuesparamsto the fog parameter specified pgame The accepted
values forpnameare as follows:

GL_FOG_MODE

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 50

paramsis a single integer or floating—point value that specifies the equation to be
used to compute the fog blend factorThree symbolic constants are accepted:
GL_LINEAR , GL_EXP, andGL_EXP2. The equations corresponding to these
symbolic constants are defined below. The default fog mo@e_i€EXP.

GL_FOG_DENSITY
paramsis a single integer or floating—point value that speadifgesity the fog
density used in both exponential fog equations. Only nonnegative densities are
accepted. The default fog density is 1.0.

GL_FOG_START
paramsis a single integer or floating—point value that specstiad, the near
distance used in the linear fog equation. The default near distance is 0.0.

GL_FOG_END
paramsis a single integer or floating—point value that speddiesthe far
distance used in the linear fog equation. The default far distance is 1.0.

GL_FOG_INDEX
paramsis a single integer or floating—point value that spedifjieke fog color

index. The default fog index is 0.0.

GL_FOG_COLOR
paramscontains four integer or floating—point values that sp€&ifghe fog

color. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value ma
to —1.0. Floating—point values are mapped directly. After conversion, all color
components are clamped to the range [0,1]. The default fog color is (0,0,0,0).

Fog blends a fog color with each rasterized pixel fragment’s posttexturing color using a blending
factorf. Factorf is computed in one of three ways, depending on the fog mode.bedhe distance
in eye coordinates from the origin to the fragment being fogged. The equati®h folNEAR fog

is

end -z

end -start

The equation foGL_EXP fog is

e (—density - x)

—t,
I

The equation fo6GL_EXP2 fog is

—denaily- z) ‘

f=ce
Regardless of the fog modds clamped to the range [0,1] after it is computed. Then, if the GL is in
RGBA color mode, the fragment’s colG¥ is replaced by
Cr=fCr(1-NG

In color index mode, the fragment'’s color indels replaced by

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 51

ip=i rH(1-0if

ERRORS

GL_INVALID_ENUM is generated ipnameis not an accepted value, opifameis
GL_FOG_MODE andparamsis not an accepted value.

GL_INVALID_VALUE is generated {fnameis GL_FOG_DENSITY andparamsis negative.

GL_INVALID_OPERATION is generated ifjlFog is called between a call giBegin and the
corresponding call tglEnd.

ASSOCIATED GETS

glisEnabled with argumenGL_FOG
glGetwith argumenGL_FOG_COLOR
glGetwith argumenGL_FOG_INDEX
glGetwith argumenGL_FOG_DENSITY
glGetwith argumenGL_FOG_START
glGet with argumenGL_FOG_END
glGet with argumenGL_FOG_MODE

SEE ALSO

"glEnable”

glFrontFace

NAME

glFrontFace — define front— and back—-facing polygons

C SPECIFICATION

void glFrontFace{ GLenummode)

PARAMETERS

mode Specifies the orientation of front—facing polygo@d. CW andGL_CCW are
accepted. The default valueGé CCW.

DESCRIPTION

In a scene composed entirely of opaque closed surfaces, back—facing polygons are never visible.
Eliminating these invisible polygons has the obvious benefit of speeding up the rendering of the
image. Elimination of back—facing polygons is enabled and disabledIi&itable andglDisable

using argumentL_CULL_FACE .

The projection of a polygon to window coordinates is said to have clockwise winding if an imaginar
object following the path from its first vertex, its second vertex, and so on, to its last vertex, and
finally back to its first vertex, moves in a clockwise direction about the interior of the polygon. The
polygon’s winding is said to be counterclockwise if the imaginary object following the same path
moves in a counterclockwise direction about the interior of the polygidmontFace specifies

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 52

whether polygons with clockwise winding in window coordinates, or counterclockwise winding in
window coordinates, are taken to be front-facing. Pa&in@CW to modeselects
counterclockwise polygons as front—faci@d; CW selects clockwise polygons as front—facing. By
default, counterclockwise polygons are taken to be front—facing.

ERRORS
GL_INVALID_ENUM is generated iodeis not an accepted value.

GL_INVALID_OPERATION is generated i§lFrontFaceis called between a call giBegin and
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_FRONT_FACE

SEE ALSO

"gICullFace’; "glLightModel"

glFrustum

NAME

glFrustum — multiply the current matrix by a perspective matrix

C SPECIFICATION

void glFrustum(GLdoubleleft, GLdoubleright, GLdoublebottom GLdoubldop, GLdouble
near, GLdoublefar)

PARAMETERS

left, right Specify the coordinates for the left and right vertical clipping planes.

bottom top Specify the coordinates for the bottom and top horizontal clipping planes.

near, far Specify the distances to the near and far depth clipping planes. Both distances

must be positive.

DESCRIPTION

glFrustum describes a perspective matrix that produces a perspective projelefgioitom

-near) and (ight, top, -near specify the points on the near clipping plane that are mapped to the
lower left and upper right corners of the window, respectively, assuming that the eye is located at (
0, 0). far specifies the location of the far clipping plane. Baotlarandfar must be positive. The
corresponding matrix is

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 53

2near
right - left

2near
0 B 0

top - bottom
0 0 C D

0 0 -1 0]

right +left
 right - left

top + bottom

) top - bottom

c far + near
" far-near
2farnear

D= -
far -near

The current matrix is multiplied by this matrix with the result replacing the current matrix. That s, i
M is the current matrix and F is the frustum perspective matrix, then M is replaced with M o F.

UseglPushMatrix andglPopMatrix to save and restore the current matrix stack.

NOTES

Depth buffer precision is affected by the values specifieddarandfar. The greater the ratio of
far tonearis, the less effective the depth buffer will be at distinguishing between surfaces that are
near each other. If

ar
' = f
hedr

roughlylogp r bits of depth buffer precision are lost. Becauapproaches infinity asear
approaches zerogarmust never be set to zero.

ERRORS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 54

GL_INVALID_VALUE is generated fifiear orfar is not positive.

GL_INVALID_OPERATION is generated ifjlFrustum is called between a call gdBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_MATRIX_MODE

glGet with argumenGL_MODELVIEW_MATRIX
glGet with argumenGL_PROJECTION_MATRIX
glGet with argumenGL_TEXTURE_MATRIX

SEE ALSO

"glOrtho", "gIMatrixMode" , "gIMultMatrix" , "glPushMatrix", "glViewport"

glGenLists

NAME

glGenlLists — generate a contiguous set of empty display lists

C SPECIFICATION

GLuintglGenLists(GLsizeirange)

PARAMETERS

range Specifies the number of contiguous empty display lists to be generated.

DESCRIPTION

glGenlLists has one argumerrgnge It returns an integer such thatangecontiguous empty

display lists, named, n+1, ...,n+range -1, are created. rlingeis zero, if there is no group mnge
contiguous names available, or if any error is generated, no display lists are generated, and zero it
returned.

ERRORS
GL_INVALID_VALUE is generated ifangeis negative.

GL_INVALID_OPERATION is generated ifjlGenListsis called between a call ¢ggBeginand
the corresponding call gEnd.

ASSOCIATED GETS

glisList

SEE ALSO

"glCallList", "glCallLists" , "glDeleteLists", "gINewList"
glGet

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 55

NAME

glGetBooleanv, glGetDoublev, glGetFloatv, glGetintegerv return the value or values of a
selected parameter

C SPECIFICATION

void glGetBooleany GLenumpname GLboolearfparams)
void glGetDouble GLenumpname GLdouble*params)
void glGetFloatv(GLenumpname GLfloat *params)

void glGetintegerv(GLenumpname GLint *params)

PARAMETERS

pname Specifies the parameter value to be returned. The symbolic constants in the list
below are accepted.

params Returns the value or values of the specified parameter.

DESCRIPTION

These four commands return values for simple state variables ipzimes a symbolic constant
indicating the state variable to be returned, gar@msis a pointer to an array of the indicated type in
which to place the returned data.

Type conversion is performedpramshas a different type than the state variable value being
requested. IfjiGetBooleanvis called, a floating—point or integer value is convert€l td~ALSE

if and only if it is zero. Otherwise, it is converted@db_TRUE. If glGetintegervis called,

Boolean values are returned@s_TRUE or GL_FALSE, and most floating—point values are
rounded to the nearest integer value. Floating—point colors and normals, however, are returned w
linear mapping that maps 1.0 to the most positive representable integer value, and —1.0 to the mo:
negative representable integer valuegl@GetFloatv or glGetDoublevis called, Boolean values are
returned a$sL_TRUE or GL_FALSE, and integer values are converted to floating—point values.

The following symbolic constants are accepteghbsgme

GL_ACCUM_ALPHA BITS
paramsreturns one value, the number of alpha bitplanes in the accumulation
buffer.

GL_ACCUM_BLUE_BITS
paramsreturns one value, the number of blue bitplanes in the accumulation
buffer.

GL_ACCUM_CLEAR_VALUE
paramsreturns four values: the red, green, blue, and alpha values used to clear
the accumulation buffer. Integer values, if requested, are linearly mapped from
the internal floating—point representation such that 1.0 returns the most positive
representable integer value, and —1.0 returns the most negative representable
integer value. SeglClearAccum®.

GL_ACCUM_GREEN_BITS
paramsreturns one value, the number of green bitplanes in the accumulation
buffer.

GL_ACCUM_RED_BITS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 56

paramsreturns one value, the number of red bitplanes in the accumulation buffel

GL_ALPHA_BIAS

paramsreturns one value, the alpha bias factor used during pixel transfers. See
"glPixelTransfer".

GL_ALPHA_BITS
paramsreturns one value, the number of alpha bitplanes in each color buffer.

GL_ALPHA_SCALE
paramsreturns one value, the alpha scale factor used during pixel transfers. Set
"glPixelTransfer",

GL_ALPHA_TEST
paramsreturns a single Boolean value indicating whether alpha testing of
fragments is enabled. S&gAlphaFunc".

GL_ALPHA_TEST_FUNC
paramsreturns one value, the symbolic name of the alpha test function. See
"glAlphaFunc".

GL_ALPHA_TEST_REF
paramsreturns one value, the reference value for the alpha test. See
"glAlphaFunc". An integer value, if requested, is linearly mapped from the
internal floating—point representation such that 1.0 returns the most positive
representable integer value, and —1.0 returns the most negative representable
integer value.

GL_ATTRIB_STACK_DEPTH
paramsreturns one value, the depth of the attribute stack. If the stack is empty,
zero is returned. SéglPushAttrib".

GL_AUTO_NORMAL
paramsreturns a single Boolean value indicating whether 2—-D map evaluation
automatically generates surface normals. "§idap2" .

GL_AUX_BUFFERS
paramsreturns one value, the number of auxiliary color buffers.

GL_BLEND paramsreturns a single Boolean value indicating whether blending is enabled.
See"gIBlendFunc".

GL_BLEND_DST
paramsreturns one value, the symbolic constant identifying the destination blenc
function. SeéglBlendFunc".

GL_BLEND_SRC
paramsreturns one value, the symbolic constant identifying the source blend
function. SeéglBlendFunc".

GL_BLUE_BIAS
paramsreturns one value, the blue bias factor used during pixel transfers. See
"glPixelTransfer".

GL_BLUE_BITS
paramsreturns one value, the number of blue bitplanes in each color buffer.

GL_BLUE_SCALE
paramsreturns one value, the blue scale factor used during pixel transfers. See
"glPixelTransfer",

GL_CLIP_PLANE i
paramsreturns a single Boolean value indicating whether the specified clipping

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 57

plane is enabled. SégiClipPlane".

GL_COLOR_CLEAR_VALUE
paramsreturns four values: the red, green, blue, and alpha values used to clear
the color buffers. Integer values, if requested, are linearly mapped from the
internal floating—point representation such that 1.0 returns the most positive
representable integer value, and —1.0 returns the most negative representable
integer value. SeglClearColor".

GL_COLOR_MATERIAL
paramsreturns a single Boolean value indicating whether one or more material
parameters are tracking the current color. "§&@olorMaterial".

GL_COLOR_MATERIAL_FACE
paramsreturns one value, a symbolic constant indicating which materials have a
parameter that is tracking the current color. '$#@olorMaterial”

GL_COLOR_MATERIAL_PARAMETER
paramsreturns one value, a symbolic constant indicating which material
parameters are tracking the current color. "§&€olorMaterial".

GL_COLOR_WRITEMASK
paramsreturns four Boolean values: the red, green, blue, and alpha write enable
for the color buffers. SeglColorMask".

GL_CULL_FACE
paramsreturns a single Boolean value indicating whether polygon culling is
enabled. SeglCullFace".

GL_CULL_FACE_MODE
paramsreturns one value, a symbolic constant indicating which polygon faces
are to be culled. SeglCullFace".

GL_CURRENT_COLOR
paramsreturns four values: the red, green, blue, and alpha values of the current
color. Integer values, if requested, are linearly mapped from the internal
floating—point representation such that 1.0 returns the most positive representak
integer value, and —1.0 returns the most negative representable integer value. ¢
"glColor" .

GL_CURRENT_INDEX
paramsreturns one value, the current color index. '$fi@dex".

GL_CURRENT_NORMAL
paramsreturns three values: thxey, andz values of the current normal. Integer
values, if requested, are linearly mapped from the internal floating—point
representation such that 1.0 returns the most positive representable integer valu
and —1.0 returns the most negative representable integer valuglNeemal" .

GL_CURRENT_RASTER_COLOR
paramsreturns four values: the red, green, blue, and alpha values of the current
raster position. Integer values, if requested, are linearly mapped from the intern.
floating—point representation such that 1.0 returns the most positive representak
integer value, and —1.0 returns the most negative representable integer value. ¢
"gIRasterPos"

GL_CURRENT_RASTER_DISTANCE
paramsreturns one value, the distance from the eye to the current raster positior
See"glRasterPos"

GL_CURRENT_RASTER_INDEX
paramsreturns one value, the color index of the current raster position. See
"glRasterPos"

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 58

GL_CURRENT_RASTER_POSITION
paramsreturns four values: the y, z, andw components of the current raster
position. x, y, andzare in window coordinates, amdis in clip coordinates. See
"gIRasterPos"

GL_CURRENT_RASTER_TEXTURE_COORDS
paramsreturns four values: th&t, r, andq current raster texture coordinates.
See"glRasterPos"and"glTexCoord".

GL_CURRENT_RASTER_POSITION_VALID
paramsreturns a single Boolean value indicating whether the current raster
position is valid. SellRasterPos"

GL_CURRENT_TEXTURE_COORDS
paramsreturns four values: thet, r, andq current texture coordinates. See
"glTexCoord".

GL_DEPTH_BIAS
paramsreturns one value, the depth bias factor used during pixel transfers. See
"glPixelTransfer",

GL_DEPTH_BITS
paramsreturns one value, the number of bitplanes in the depth buffer.

GL_DEPTH_CLEAR_VALUE
paramsreturns one value, the value that is used to clear the depth buffer. Intege
values, if requested, are linearly mapped from the internal floating—point
representation such that 1.0 returns the most positive representable integer valu
and —1.0 returns the most negative representable integer value. See
"glClearDepth".

GL_DEPTH_FUNC
paramsreturns one value, the symbolic constant that indicates the depth
comparison function. SéglDepthFunc".

GL_DEPTH_RANGE
paramsreturns two values: the near and far mapping limits for the depth buffer.
Integer values, if requested, are linearly mapped from the internal floating—point
representation such that 1.0 returns the most positive representable integer valu
and —1.0 returns the most negative representable integer value. See
"gIDepthRange"

GL_DEPTH_SCALE
paramsreturns one value, the depth scale factor used during pixel transfers. Sei
"glPixelTransfer".

GL_DEPTH_TEST
paramsreturns a single Boolean value indicating whether depth testing of
fragments is enabled. S&gDepthFunc" and"glDepthRange'

GL_DEPTH_WRITEMASK
paramsreturns a single Boolean value indicating if the depth buffer is enabled fo
writing. Se€'glDepthMask".

GL_DITHER
paramsreturns a single Boolean value indicating whether dithering of fragment
colors and indices is enabled.

GL_DOUBLEBUFFER
paramsreturns a single Boolean value indicating whether double buffering is
supported.

GL_DRAW_BUFFER

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 59

paramsreturns one value, a symbolic constant indicating which buffers are being
drawn to. SeéglDrawBuffer".

GL_EDGE_FLAG
paramsreturns a single Boolean value indication whether the current edge flag is
true or false. SeglEdgeFlag".

GL_FOG paramsreturns a single Boolean value indicating whether fogging is enabled.
See"glFog".

GL_FOG_COLOR
paramsreturns four values: the red, green, blue, and alpha components of the fo
color. Integer values, if requested, are linearly mapped from the internal
floating—point representation such that 1.0 returns the most positive representakt
integer value, and —1.0 returns the most negative representable integer value. ¢
"glFog" .

GL_FOG_DENSITY
paramsreturns one value, the fog density parameter."§€eg" .

GL_FOG_END
paramsreturns one value, the end factor for the linear fog equation’'gfasy"

GL_FOG_HINT
paramsreturns one value, a symbolic constant indicating the mode of the fog
hint. Seé€'glHint" .

GL_FOG_INDEX
paramsreturns one value, the fog color index. Sgl€og".

GL_FOG_MODE
paramsreturns one value, a symbolic constant indicating which fog equation is
selected. SedlFog".

GL_FOG_START
paramsreturns one value, the start factor for the linear fog equation’gfeg"

GL_FRONT_FACE
paramsreturns one value, a symbolic constant indicating whether clockwise or
counterclockwise polygon winding is treated as front—facing."dfe®ntFace".

GL_GREEN_BIAS
paramsreturns one value, the green bias factor used during pixel transfers.

GL_GREEN_BITS
paramsreturns one value, the number of green bitplanes in each color buffer.

GL_GREEN_SCALE
paramsreturns one value, the green scale factor used during pixel transfers. Se:
"glPixelTransfer".

GL_INDEX_BITS
paramsreturns one value, the number of bitplanes in each color index buffer.

GL_INDEX_CLEAR_VALUE
paramsreturns one value, the color index used to clear the color index buffers.
See"gIClearindex".

GL_INDEX_MODE
paramsreturns a single Boolean value indicating whether the GL is in color
index mode (true) or RGBA mode (false).

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 60

GL_INDEX_OFFSET
paramsreturns one value, the offset added to color and stencil indices during
pixel transfers. SeglPixelTransfer".

GL_INDEX_SHIFT
paramsreturns one value, the amount that color and stencil indices are shifted
during pixel transfers. SéglPixelTransfer".

GL_INDEX_WRITEMASK
paramsreturns one value, a mask indicating which bitplanes of each color index
buffer can be written. SeéglindexMask".

GL_LIGHT i paramsreturns a single Boolean value indicating whether the specified light is
enabled. Se#lLight" and"glLightModel" .

GL_LIGHTING
paramsreturns a single Boolean value indicating whether lighting is enabled.
See"glLightModel" .

GL_LIGHT_MODEL_AMBIENT
paramsreturns four values: the red, green, blue, and alpha components of the
ambient intensity of the entire scene. Integer values, if requested, are linearly
mapped from the internal floating—point representation such that 1.0 returns the
most positive representable integer value, and —1.0 returns the most negative
representable integer value. SgkightModel" .

GL_LIGHT_MODEL_LOCAL_VIEWER
paramsreturns a single Boolean value indicating whether specular reflection
calculations treat the viewer as being local to the scene’gkéghtModel" .

GL_LIGHT_MODEL_TWO_SIDE
paramsreturns a single Boolean value indicating whether separate materials are
used to compute lighting for front— and back—facing polygons. See
"glLightModel" .

GL_LINE_SMOOTH
paramsreturns a single Boolean value indicating whether antialiasing of lines is
enabled. SeglLineWidth".

GL_LINE_SMOOTH_HINT
paramsreturns one value, a symbolic constant indicating the mode of the line
antialiasing hint. SeglHint" .

GL_LINE_STIPPLE
paramsreturns a single Boolean value indicating whether stippling of lines is
enabled. SedlLineStipple".

GL_LINE_STIPPLE_PATTERN
paramsreturns one value, the 16-bit line stipple pattern."dbei@eStipple".

GL_LINE_STIPPLE_REPEAT
paramsreturns one value, the line stipple repeat factor."@kemeStipple".

GL_LINE_WIDTH
paramsreturns one value, the line width as specified glthneWidth .

GL_LINE_WIDTH_GRANULARITY
paramsreturns one value, the width difference between adjacent supported
widths for antialiased lines. SéglLineWidth" .

GL_LINE_WIDTH_RANGE

paramsreturns two values: the smallest and largest supported widths for
antialiased lines. SéglLineWidth" .

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 61

GL_LIST_BASE
paramsreturns one value, the base offset added to all names in arrays presente(
toglCallLists. See"glListBase".

GL_LIST_INDEX
paramsreturns one value, the name of the display list currently under
construction. Zero is returned if no display list is currently under construction.
See"gINewList" .

GL_LIST_MODE
paramsreturns one value, a symbolic constant indicating the construction mode
of the display list currently being constructed. SgblewList".

GL_LOGIC_OP
paramsreturns a single Boolean value indicating whether fragment indexes are
merged into the framebuffer using a logical operation. "§kegicOp".

GL_LOGIC_OP_MODE
paramsreturns one value, a symbolic constant indicating the selected logic
operational mode. SéglLogicOp" .

GL_MAP1_COLOR_4
paramsreturns a single Boolean value indicating whether 1D evaluation

generates colors. StégiMapl".

GL_MAP1_GRID_DOMAIN
paramsreturns two values: the endpoints of the 1-D map’s grid domain. See
"gIMapGrid" .

GL_MAP1_GRID_SEGMENTS
paramsreturns one value, the number of partitions in the 1-D map’s grid domain
See"gIMapGrid” .

GL_MAP1_INDEX
paramsreturns a single Boolean value indicating whether 1D evaluation
generates color indices. SeggMapl”.

GL_MAP1_NORMAL
paramsreturns a single Boolean value indicating whether 1D evaluation
generates normals. S&gMapl”.

GL_MAP1_TEXTURE_COORD_1
paramsreturns a single Boolean value indicating whether 1D evaluation
generates 1D texture coordinates. Sgklapl”.

GL_MAP1_TEXTURE_COORD_2
paramsreturns a single Boolean value indicating whether 1D evaluation
generates 2D texture coordinates. SRgklapl”.

GL_MAP1_TEXTURE_COORD_3
paramsreturns a single Boolean value indicating whether 1D evaluation
generates 3D texture coordinates. Sgklapl”.

GL_MAP1_TEXTURE_COORD_4
paramsreturns a single Boolean value indicating whether 1D evaluation
generates 4D texture coordinates. Sgklapl”.

GL_MAP1_VERTEX_3
paramsreturns a single Boolean value indicating whether 1D evaluation
generates 3D vertex coordinates. 3gklapl”.

GL_MAP1_VERTEX_4
paramsreturns a single Boolean value indicating whether 1D evaluation

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 62

generates 4D vertex coordinates. 3g®lapl”.

GL_MAP2_COLOR_4
paramsreturns a single Boolean value indicating whether 2D evaluation
generates colors. S&gMap2".

GL_MAP2_GRID_DOMAIN
paramsreturns four values: the endpoints of the 2-D niegrslj grid domains.
See"glMapGrid" .

GL_MAP2_GRID_SEGMENTS
paramsreturns two values: the number of partitions in the 2-D mamdj grid
domains. SeglMapGrid" .

GL_MAP2_INDEX
paramsreturns a single Boolean value indicating whether 2D evaluation
generates color indices. SegMap2"”.

GL_MAP2_NORMAL
paramsreturns a single Boolean value indicating whether 2D evaluation
generates normals. S&gMap2".

GL_MAP2_TEXTURE_COORD_1
paramsreturns a single Boolean value indicating whether 2D evaluation
generates 1D texture coordinates. Sglap2”.

GL_MAP2_TEXTURE_COORD_2
paramsreturns a single Boolean value indicating whether 2D evaluation
generates 2D texture coordinates. Sgklap2".

GL_MAP2_TEXTURE_COORD_3
paramsreturns a single Boolean value indicating whether 2D evaluation
generates 3D texture coordinates. Sgklap2”.

GL_MAP2_TEXTURE_COORD_4
paramsreturns a single Boolean value indicating whether 2D evaluation
generates 4D texture coordinates. Splap2”.

GL_MAP2_VERTEX_3
paramsreturns a single Boolean value indicating whether 2D evaluation
generates 3D vertex coordinates. 3gklap2”.

GL_MAP2_VERTEX_4
paramsreturns a single Boolean value indicating whether 2D evaluation
generates 4D vertex coordinates. 3gklap2”.

GL_MAP_COLOR
paramsreturns a single Boolean value indicating if colors and color indices are tc
be replaced by table lookup during pixel transfers. "§&dxelTransfer".

GL_MAP_STENCIL
paramsreturns a single Boolean value indicating if stencil indices are to be
replaced by table lookup during pixel transfers. 'SéeixelTransfer",

GL_MATRIX_MODE
paramsreturns one value, a symbolic constant indicating which matrix stack is
currently the target of all matrix operations. SglatrixMode" .

GL_MAX_ATTRIB_STACK_DEPTH
paramsreturns one value, the maximum supported depth of the attribute stack.
See"glPushAttrib".

GL_MAX_CLIP_PLANES
paramsreturns one value, the maximum number of application—defined clipping

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 63

planes. SeglClipPlane".

GL_MAX_EVAL_ORDER
paramsreturns one value, the maximum equation order supported by 1-D and
2-D evaluators. SéglMapl" and"glMap2".

GL_MAX_LIGHTS
paramsreturns one value, the maximum number of lights. "§kdght" .

GL_MAX_LIST_NESTING
paramsreturns one value, the maximum recursion depth allowed during
display-list traversal. SéglCallList" .

GL_MAX_MODELVIEW_STACK_DEPTH
paramsreturns one value, the maximum supported depth of the modelview
matrix stack. SeéglPushMatrix".

GL_MAX_NAME_STACK_DEPTH
paramsreturns one value, the maximum supported depth of the selection name
stack. Seé&glPushName"

GL_MAX_PIXEL_MAP_TABLE
paramsreturns one value, the maximum supported sizegtPixelMap lookup
table. SeéglPixelMap".

GL_MAX_PROJECTION_STACK_DEPTH
paramsreturns one value, the maximum supported depth of the projection matrix
stack. SeéglPushMatrix".

GL_MAX_TEXTURE_SIZE
paramsreturns one value, the maximum width or height of any texture image
(without borders). SelglTexlmagelD" and"glTexImage2D"

GL_MAX_TEXTURE_STACK_DEPTH
paramsreturns one value, the maximum supported depth of the texture matrix
stack. Seé&glPushMatrix".

GL_MAX_VIEWPORT_DIMS
paramsreturns two values: the maximum supported width and height of the
viewport. SeéglViewport" .

GL_MODELVIEW_MATRIX
paramsreturns sixteen values: the modelview matrix on the top of the modelview
matrix stack. SeéglPushMatrix".

GL_MODELVIEW_STACK_DEPTH
paramsreturns one value, the number of matrices on the modelview matrix stack
See"glPushMatrix".

GL_NAME_STACK_DEPTH
paramsreturns one value, the number of names on the selection name stack. Si
"gIPushMatrix".

GL_NORMALIZE
paramsreturns a single Boolean value indicating whether normals are
automatically scaled to unit length after they have been transformed to eye
coordinates. SelglNormal”.

GL_PACK_ALIGNMENT
paramsreturns one value, the byte alignment used for writing pixel data to
memory. SeéglPixelStore".

GL_PACK_LSB_FIRST
paramsreturns a single Boolean value indicating whether single-bit pixels being

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 64

written to memory are written first to the least significant bit of each unsigned
byte. SeéglPixelStore".

GL_PACK_ROW_LENGTH
paramsreturns one value, the row length used for writing pixel data to memory.
See"glPixelStore".

GL_PACK_SKIP_PIXELS
paramsreturns one value, the number of pixel locations skipped before the first
pixel is written into memory. SéglPixelStore".

GL_PACK_SKIP_ROWS
paramsreturns one value, the number of rows of pixel locations skipped before
the first pixel is written into memory. SégiPixelStore".

GL_PACK_SWAP_BYTES
paramsreturns a single Boolean value indicating whether the bytes of two-byte
and four—byte pixel indices and components are swapped before being written t
memory. SeéglPixelStore"

GL_PERSPECTIVE_CORRECTION_HINT
paramsreturns one value, a symbolic constant indicating the mode of the
perspective correction hint. S&gHint" .

GL_PIXEL_MAP_A_TO_A SIZE
paramsreturns one value, the size of the alpha-to—alpha pixel translation table.
See"glPixelMap".

GL_PIXEL_MAP_B TO_B_SIZE
paramsreturns one value, the size of the blue—to-blue pixel translation table. Se
"glPixelMap" .

GL_PIXEL_MAP_G_TO_G_SIZE
paramsreturns one value, the size of the green—to—green pixel translation table.
See"glPixelMap".

GL_PIXEL_MAP_I_TO_A_SIZE
paramsreturns one value, the size of the index—to—alpha pixel translation table.
See"glPixelMap".

GL_PIXEL_MAP_I_TO_B_SIZE
paramsreturns one value, the size of the index—to—blue pixel translation table.
See"glPixelMap” .

GL_PIXEL_MAP_I_TO_G_SIZE
paramsreturns one value, the size of the index—to—green pixel translation table.
See"glPixelMap".

GL_PIXEL_MAP_I_TO_I_SIZE
paramsreturns one value, the size of the index—to—-index pixel translation table.
See"glPixelMap”.

GL_PIXEL_MAP_I_TO_R_SIZE
paramsreturns one value, the size of the index—to—red pixel translation table. Se¢
"glPixelMap"

GL_PIXEL_MAP_R_TO_R_SIZE
paramsreturns one value, the size of the red—to-red pixel translation table. See
"glPixelMap".

GL_PIXEL_MAP_S_TO_S_SIZE

paramsreturns one value, the size of the stencil-to—-stencil pixel translation table
See"glPixelMap”.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 65

GL_POINT_SIZE
paramsreturns one value, the point size as specifiedlBgintSize

GL_POINT_SIZE_GRANULARITY
paramsreturns one value, the size difference between adjacent supported sizes
for antialiased points. SéglPointSize".

GL_POINT_SIZE_RANGE
paramsreturns two values: the smallest and largest supported sizes for
antialiased points. SéglPointSize".

GL_POINT_SMOOTH
paramsreturns a single Boolean value indicating whether antialiasing of points is
enabled. SeglPointSize".

GL_POINT_SMOOTH_HINT
paramsreturns one value, a symbolic constant indicating the mode of the point
antialiasing hint. SeglHint" .

GL_POLYGON_MODE
paramsreturns two values: symbolic constants indicating whether front-facing
and back-facing polygons are rasterized as points, lines, or filled polygons. See
"glPolygonMode".

GL_POLYGON_SMOOTH
paramsreturns a single Boolean value indicating whether antialiasing of
polygons is enabled. SégiPolygonMode".

GL_POLYGON_SMOOTH_HINT
paramsreturns one value, a symbolic constant indicating the mode of the
polygon antialiasing hint. SéglHint" .

GL_POLYGON_STIPPLE
paramsreturns a single Boolean value indicating whether stippling of polygons is
enabled. SeglPolygonStipple”

GL_PROJECTION_MATRIX
paramsreturns sixteen values: the projection matrix on the top of the projection
matrix stack. SeéglPushMatrix".

GL_PROJECTION_STACK_DEPTH
paramsreturns one value, the number of matrices on the projection matrix stack.
See"glPushMatrix".

GL_READ_BUFFER
paramsreturns one value, a symbolic constant indicating which color buffer is
selected for reading. SkglReadPixels"and"glAccum™ .

GL_RED_BIAS
paramsreturns one value, the red bias factor used during pixel transfers.

GL_RED_BITS
paramsreturns one value, the number of red bitplanes in each color buffer.

GL_RED_SCALE
paramsreturns one value, the red scale factor used during pixel transfers. See
"glPixelTransfer",

GL_RENDER_MODE
paramsreturns one value, a symbolic constant indicating whether the GL is in
render, select, or feedback mode. ‘SHieenderMode".

GL_RGBA_MODE
paramsreturns a single Boolean value indicating whether the GL is in RGBA

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 66

mode (true) or color index mode (false). Sgi€olor" .

GL_SCISSOR_BOX
paramsreturns four values: theandy window coordinates of the scissor box,
follow by its width and height. Se'glScissor".

GL_SCISSOR_TEST
paramsreturns a single Boolean value indicating whether scissoring is enabled.
See"gIScissor".

GL_SHADE_MODEL
paramsreturns one value, a symbolic constant indicating whether the shading
mode is flat or smooth. SégiShadeModel".

GL_STENCIL_BITS
paramsreturns one value, the number of bitplanes in the stencil buffer.

GL_STENCIL_CLEAR_VALUE
paramsreturns one value, the index to which the stencil bitplanes are cleared.
See'"gIClearStencil".

GL_STENCIL_FAIL
paramsreturns one value, a symbolic constant indicating what action is taken
when the stencil test fails. SggStencilOp*".

GL_STENCIL_FUNC
paramsreturns one value, a symbolic constant indicating what function is used tc
compare the stencil reference value with the stencil buffer value. See
"gIStencilFunc".

GL_STENCIL_PASS_DEPTH_FAIL
paramsreturns one value, a symbolic constant indicating what action is taken
when the stencil test passes, but the depth test fails'giS¢encilOp”.

GL_STENCIL_PASS DEPTH_PASS
paramsreturns one value, a symbolic constant indicating what action is taken
when the stencil test passes and the depth test passe'gl SkexecilOp".

GL_STENCIL_REF
paramsreturns one value, the reference value that is compared with the contents
of the stencil buffer. SelglStencilFunc".

GL_STENCIL_TEST
paramsreturns a single Boolean value indicating whether stencil testing of
fragments is enabled. S&gStencilFunc" and"glStencilOp™.

GL_STENCIL_VALUE_MASK
paramsreturns one value, the mask that is used to mask both the stencil referen
value and the stencil buffer value before they are compared.giS¢encilFunc"

GL_STENCIL_WRITEMASK
paramsreturns one value, the mask that controls writing of the stencil bitplanes.
See'"gIStencilMask”.

GL_STEREO
paramsreturns a single Boolean value indicating whether stereo buffers (left and
right) are supported.

GL_SUBPIXEL_BITS
paramsreturns one value, an estimate of the number of bits of subpixel resolutio
that are used to position rasterized geometry in window coordinates.

GL_TEXTURE_1D

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 67

paramsreturns a single Boolean value indicating whether 1D texture mapping is
enabled. SeyylTexImagelD"

GL_TEXTURE_2D
paramsreturns a single Boolean value indicating whether 2D texture mapping is
enabled. SeylTeximage2D".

GL_TEXTURE_ENV_COLOR
paramsreturns four values: the red, green, blue, and alpha values of the texture
environment color. Integer values, if requested, are linearly mapped from the
internal floating—point representation such that 1.0 returns the most positive
representable integer value, and —1.0 returns the most negative representable
integer value. SeglTexEnv".

GL_TEXTURE_ENV_MODE
paramsreturns one value, a symbolic constant indicating what texture
environment function is currently selected. Sg&exEnv".

GL_TEXTURE_GEN_S
paramsreturns a single Boolean value indicating whether automatic generation
of the S texture coordinate is enabled. '$fEexGen".

GL_TEXTURE_GEN_T
paramsreturns a single Boolean value indicating whether automatic generation
of the T texture coordinate is enabled. Sg&exGen".

GL_TEXTURE_GEN_R

paramsreturns a single Boolean value indicating whether automatic generation
of the R texture coordinate is enabled. ‘RgEexGen".

GL_TEXTURE_GEN_Q
paramsreturns a single Boolean value indicating whether automatic generation
of the Q texture coordinate is enabled. Sg€exGen".

GL_TEXTURE_MATRIX
paramsreturns sixteen values: the texture matrix on the top of the texture matrix
stack. Seé&glPushMatrix".

GL_TEXTURE_STACK_DEPTH
paramsreturns one value, the number of matrices on the texture matrix stack.
See"glPushMatrix".

GL_UNPACK_ALIGNMENT
paramsreturns one value, the byte alignment used for reading pixel data from
memory. SeéglPixelStore".

GL_UNPACK_LSB_FIRST
paramsreturns a single Boolean value indicating whether single-bit pixels being
read from memory are read first from the least significant bit of each unsigned
byte. SeéglPixelStore".

GL_UNPACK_ROW_LENGTH
paramsreturns one value, the row length used for reading pixel data from
memory. SeéglPixelStore".

GL_UNPACK_SKIP_PIXELS
paramsreturns one value, the number of pixel locations skipped before the first
pixel is read from memory. SéglPixelStore".

GL_UNPACK_SKIP_ROWS
paramsreturns one value, the number of rows of pixel locations skipped before
the first pixel is read from memory. SegPixelStore".

GL_UNPACK_SWAP_BYTES

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 68

paramsreturns a single Boolean value indicating whether the bytes of two-byte
and four—byte pixel indices and components are swapped after being read from
memory. SeéglPixelStore".

GL_VIEWPORT
paramsreturns four values: theandy window coordinates of the viewport,
follow by its width and height. SeglViewport" .

GL_ZOOM_X
paramsreturns one value, thepixel zoom factor. SéglPixelZoom".

GL_ZOOM_Y
paramsreturns one value, thepixel zoom factor. SeglPixelZoom".

Many of the Boolean parameters can also be queried more easilglisimgabled.

ERRORS
GL_INVALID_ENUM is generated ipnameis not an accepted value.

GL_INVALID_OPERATION is generated ifjiGetis called between a call gtBegin and the
corresponding call tglEnd.

SEE ALSO

"glGetClipPlane; "glGetError", "glGetLight" , "glGetMap"”, "glGetMaterial", "glGetPixelMap",

"glGetPolygonStipple’, "glGetString”, "glGetTexEnv", "glGetTexGen", "glGetTeximage',
"glGetTexLevelParametet™glGetTexParameter,™gliIsEnabled"

glGetClipPlane

NAME

glGetClipPlane - return the coefficients of the specified clipping plane

C SPECIFICATION

void glGetClipPlane(GLenumplane GLdouble*equation)

PARAMETERS

plane Specifies a clipping plane. The number of clipping planes depends on the
implementation, but at least six clipping planes are supported. They are
identified by symbolic names of the foi&L_CLIP_PLANE i where (i <
GL_MAX_CLIP_PLANES .

equation Returns four double—precision values that are the coefficients of the plane
equation ofplanein eye coordinates.

DESCRIPTION

glGetClipPlane returns inequationthe four coefficients of the plane equationgtane

NOTES

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 69

It is always the case thé._CLIP_PLANE i = GL_CLIP_PLANEO +i.

If an error is generated, no change is made to the contesdqsation

ERRORS
GL_INVALID_ENUM is generated iplaneis not an accepted value.

GL_INVALID_OPERATION is generated ifjiGetClipPlane is called between a call giBegin
and the corresponding call ¢gdEnd.

SEE ALSO

"gIClipPlane"

glGetError

NAME

glGetError - return error information

C SPECIFICATION

GLenumglGetError (void)

DESCRIPTION

glGetError returns the value of the error flag. Each detectable error is assigned a numeric code a
symbolic name. When an error occurs, the error flag is set to the appropriate error code value. Nt
other errors are recorded urgiiGetError is called, the error code is returned, and the flag is reset to
GL_NO_ERROR. If a call toglGetError returnsGL_NO_ERROR, there has been no detectable
error since the last call giGetError , or since the GL was initialized.

To allow for distributed implementations, there may be several error flags. If any single error flag
has recorded an error, the value of that flag is returned and that flag is @setN® ERROR
whenglGetError is called. If more than one flag has recorded an egl@etError returns and

clears an arbitrary error flag value. ThgkGetError should always be called in a loop, until it
returnsGL_NO_ERROR, if all error flags are to be reset.

Initially, all error flags are set t6L_NO_ERROR.
The currently defined errors are as follows:

GL_NO_ERROR
No error has been recorded. The value of this symbolic constant is guaranteed
be zero.

GL_INVALID_ENUM
An unacceptable value is specified for an enumerated argument. The offending
command is ignored, having no side effect other than to set the error flag.

GL_INVALID_VALUE
A numeric argument is out of range. The offending command is ignored, having
no side effect other than to set the error flag.

GL_INVALID_OPERATION

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 70

The specified operation is not allowed in the current state. The offending
command is ignored, having no side effect other than to set the error flag.

GL_STACK_OVERFLOW
This command would cause a stack overflow. The offending command is
ignored, having no side effect other than to set the error flag.

GL_STACK_UNDERFLOW
This command would cause a stack underflow. The offending command is
ignored, having no side effect other than to set the error flag.

GL_OUT_OF_MEMORY
There is not enough memory left to execute the command. The state of the GL
undefined, except for the state of the error flags, after this error is recorded.

When an error flag is set, results of a GL operation are undefined @iy ®UT_OF MEMORY
has occurred. In all other cases, the command generating the error is ignored and has no effect o
GL state or frame buffer contents.

ERRORS

GL_INVALID_OPERATION is generated i§lGetError is called between a call ggBegin and
the corresponding call tglEnd.

glGetLight

NAME

glGetLightfv, glGetLightiv — return light source parameter values

C SPECIFICATION

void glGetLightfv (GLenumlight, GLenumpname GLfloat*params)
void glGetLightiv (GLenumlight, GLenumpname GLint *params)

PARAMETERS

light Specifies a light source. The number of possible lights depends on the
implementation, but at least eight lights are supported. They are identified by
symbolic names of the for@L_LIGHT i where (i < GL_MAX_LIGHTS .

pname Specifies a light source parameterlfght. Accepted symbolic names are
GL_AMBIENT , GL_DIFFUSE, GL_SPECULAR, GL_POSITION,
GL_SPOT_DIRECTION, GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,
GL_CONSTANT_ATTENUATION , GL_LINEAR_ATTENUATION , and
GL_QUADRATIC_ATTENUATION .

params Returns the requested data.

DESCRIPTION

glGetLight returns inparamsthe value or values of a light source paramedight names the light
and is a symbolic name of the fo@i_LIGHT i for O<i<GL_MAX_LIGHTS , where
GL_MAX_ LIGHTS is an implementation dependent constant that is greater than or equal to eight

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 71

pnamespecifies one of ten light source parameters, again by symbolic name.
The parameters are as follows:

GL_AMBIENT
paramsreturns four integer or floating—point values representing the ambient
intensity of the light source. Integer values, when requested, are linearly mappe
from the internal floating—point representation such that 1.0 maps to the most
positive representable integer value, and —1.0 maps to the most negative
representable integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined.

GL_DIFFUSE
paramsreturns four integer or floating—point values representing the diffuse
intensity of the light source. Integer values, when requested, are linearly mappe
from the internal floating—point representation such that 1.0 maps to the most
positive representable integer value, and —1.0 maps to the most negative
representable integer value. If the internal value is outside the range [-1,1], the

corresponding integer return value is undefined.

GL_SPECULAR
paramsreturns four integer or floating—point values representing the specular
intensity of the light source. Integer values, when requested, are linearly mappe
from the internal floating—point representation such that 1.0 maps to the most
positive representable integer value, and —1.0 maps to the most negative
representable integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined.

GL_POSITION
paramsreturns four integer or floating—point values representing the position of
the light source. Integer values, when requested, are computed by rounding the
internal floating—point values to the nearest integer value. The returned values ¢
those maintained in eye coordinates. They will not be equal to the values
specified usingylLight, unless the modelview matrix was identity at the time
glLight was called.

GL_SPOT_DIRECTION
paramsreturns three integer or floating—point values representing the direction o
the light source. Integer values, when requested, are computed by rounding the
internal floating—point values to the nearest integer value. The returned values ¢
those maintained in eye coordinates. They will not be equal to the values
specified usingylLight, unless the modelview matrix was identity at the time
glLight was called. Although spot direction is normalized before being used in
the lighting equation, the returned values are the transformed versions of the
specified values prior to normalization.

GL_SPOT_EXPONENT
paramsreturns a single integer or floating—point value representing the spot
exponent of the light. An integer value, when requested, is computed by
rounding the internal floating—point representation to the nearest integer.

GL_SPOT_CUTOFF
paramsreturns a single integer or floating—point value representing the spot
cutoff angle of the light. An integer value, when requested, is computed by
rounding the internal floating—point representation to the nearest integer.

GL_CONSTANT_ATTENUATION
paramsreturns a single integer or floating—point value representing the constant
(not distance related) attenuation of the light. An integer value, when requested
is computed by rounding the internal floating—point representation to the nearest
integer.

GL_LINEAR_ATTENUATION

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 72

paramsreturns a single integer or floating—point value representing the linear

attenuation of the light. An integer value, when requested, is computed by

rounding the internal floating—point representation to the nearest integer.
GL_QUADRATIC_ATTENUATION

paramsreturns a single integer or floating—point value representing the quadratic

attenuation of the light. An integer value, when requested, is computed by
rounding the internal floating—point representation to the nearest integer.

NOTES
It is always the case th&l__ LIGHT i = GL_LIGHTO +i.

If an error is generated, no change is made to the contgrdsaniis

ERRORS
GL_INVALID_ENUM is generated ifight or pnames not an accepted value.

GL_INVALID_OPERATION is generated ifjiGetLight is called between a call ggBeginand
the corresponding call tglEnd.

SEE ALSO
"glLight"

glGetMap

NAME

glGetMapdyv, glGetMapfv, glGetMapiv - return evaluator parameters

C SPECIFICATION

void glGetMapdv(GLenumtarget GLenumquery, GLdouble*v)
void glGetMapfv(GLenumtarget GLenumquery, GLfloat*v)
void glGetMapiv(GLenumtarget GLenumquery, GLint*v)

PARAMETERS

target Specifies the symbolic name of a map. Accepted values are
GL_MAP1_COLOR_4,GL_MAP1_INDEX, GL_MAP1_NORMAL ,
GL_MAP1_TEXTURE_COORD_1,GL_MAP1_TEXTURE_COORD 2,
GL_MAP1_TEXTURE_COORD_3,GL_MAP1 TEXTURE_COORD 4,
GL_MAP1_VERTEX_3, GL_MAP1 VERTEX_4,GL_MAP2_COLOR_4,
GL_MAP2_INDEX, GL_MAP2_NORMAL ,
GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2,
GL_MAP2_TEXTURE_COORD_3,GL_MAP2_TEXTURE_COORD_4,
GL_MAP2_VERTEX_3, andGL_MAP2_VERTEX 4.

query Specifies which parameter to return. Symbolic na@lesCOEFF,
GL_ORDER, andGL_DOMAIN are accepted.

% Returns the requested data.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 73

DESCRIPTION

glMapl andglMap2 define evaluatorsglGetMap returns evaluator parametetsrgetchooses a
map,queryselects a specific parameter, angbints to storage where the values will be returned.

The acceptable values for tterget parameter are described in giapl and glMap2 reference
pages.

querycan assume the following values:

GL_COEFF vreturns the control points for the evaluator function. One-dimensional
evaluators returorder control points, and two—dimensional evaluators return
uorder x vordercontrol points. Each control point consists of one, two, three, or
four integer, single—precision floating—point, or double—precision floating—point
values, depending on the type of the evaluator. Two—dimensional control points
are returned in row—major order, incrementinguibrelerindex quickly, and the
vorderindex after each row. Integer values, when requested, are computed by
rounding the internal floating—point values to the nearest integer values.

GL_ORDER vreturns the order of the evaluator function. One-dimensional evaluators return
single valueprder. Two—-dimensional evaluators return two valuesgderand
vorder.

GL_DOMAIN

vreturns the linean andv mapping parameters. One-dimensional evaluators
return two valuegjl andu2, as specified bglMapl. Two-dimensional
evaluators return four values), u2, v1, andv?) as specified bgiMap2. Integer
values, when requested, are computed by rounding the internal floating—point
values to the nearest integer values.

NOTES

If an error is generated, no change is made to the contents of

ERRORS
GL_INVALID_ENUM is generated if eith@argetor queryis not an accepted value.

GL_INVALID_OPERATION is generated iflGetMap is called between a call ghBegin and the
corresponding call tglEnd.

SEE ALSO

"glEvalCoord', "glMap1" , "glMap2"

glGetMaterial

NAME

glGetMaterialfv, glGetMaterialiv — return material parameters

C SPECIFICATION

void glGetMaterialfv (GLenumface GLenumpname GLfloat *params)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 74

void glGetMaterialiv (GLenunface GLenumpname GLint*params)

PARAMETERS

face Specifies which of the two materials is being queri&l. FRONT or
GL_BACK are accepted, representing the front and back materials, respectively

pname Specifies the material parameter to retu®._ AMBIENT , GL_DIFFUSE,
GL_SPECULAR, GL_EMISSION, GL_SHININESS, and
GL_COLOR_INDEXES are accepted.

params Returns the requested data.

DESCRIPTION

glGetMaterial returns inparamsthe value or values of paramepeiameof materiaface Six
parameters are defined:

GL_AMBIENT
paramsreturns four integer or floating—point values representing the ambient
reflectance of the material. Integer values, when requested, are linearly mappec
from the internal floating—point representation such that 1.0 maps to the most
positive representable integer value, and —1.0 maps to the most negative
representable integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined.

GL_DIFFUSE
paramsreturns four integer or floating—point values representing the diffuse
reflectance of the material. Integer values, when requested, are linearly mappec
from the internal floating—point representation such that 1.0 maps to the most
positive representable integer value, and —1.0 maps to the most negative
representable integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined.

GL_SPECULAR
paramsreturns four integer or floating—point values representing the specular
reflectance of the material. Integer values, when requested, are linearly mappec
from the internal floating—point representation such that 1.0 maps to the most
positive representable integer value, and —1.0 maps to the most negative
representable integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined.

GL_EMISSION
paramsreturns four integer or floating—point values representing the emitted lighi
intensity of the material. Integer values, when requested, are linearly mapped
from the internal floating—point representation such that 1.0 maps to the most
positive representable integer value, and —1.0 maps to the most negative
representable integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined.

GL_SHININESS
paramsreturns one integer or floating—point value representing the specular
exponent of the material. Integer values, when requested, are computed by
rounding the internal floating—point value to the nearest integer value.

GL_COLOR_INDEXES
paramsreturns three integer or floating—point values representing the ambient,
diffuse, and specular indices of the material. These indices are used only for
color index lighting. (The other parameters are all used only for RGBA lighting.)
Integer values, when requested, are computed by rounding the internal

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 75

floating—point values to the nearest integer values.

NOTES

If an error is generated, no change is made to the contgrdsanis

ERRORS

GL_INVALID_ENUM is generated iface or pnameis not an accepted value.

GL_INVALID_OPERATION is generated ifjiGetMaterial is called between a call gBeginand
the corresponding call tglEnd.

SEE ALSO

"gIMaterial"

glGetPixelMap

NAME

glGetPixelMapfv, glGetPixelMapuiv, glGetPixelMapusv- return the specified pixel map

C SPECIFICATION

void glGetPixelMapfv(GLenummap GLfloat*values)
void glGetPixelMapuiv(GLenummap GLuint *values)
void glGetPixelMapus\ GLenummap GLushort*values)

PARAMETERS

map Specifies the name of the pixel map to return. Accepted values are
GL_PIXEL_MAP_I_TO_I , GL_PIXEL_MAP_S_TO_S,
GL_PIXEL_MAP_I_TO_R,GL_PIXEL_MAP_|_TO_G,
GL_PIXEL_MAP_I_TO_B , GL_PIXEL_MAP_I_TO_A
GL_PIXEL_MAP_R_TO_R, GL_PIXEL_MAP_G_TO_G,
GL_PIXEL_MAP_B_TO_B, andGL_PIXEL_MAP_A_TO_A.

values Returns the pixel map contents.

DESCRIPTION

Please see tHglPixelMap" reference page for a description of the acceptable values foathe
parameter glGetPixelMap returns invaluesthe contents of the pixel map specifiednap Pixel

maps are used during the executiogl®feadPixels glDrawPixels glCopyPixels glTeximagelD,
andglTeximage2Dto map color indices, stencil indices, color components, and depth components
other values.

Unsigned integer values, if requested, are linearly mapped from the internal fixed or floating—point
representation such that 1.0 maps to the largest representable integer value, and 0.0 maps to zerc
Return unsigned integer values are undefined if the map value was not in the range [0,1].

To determine the required sizerabp call glGet with the appropriate symbolic constant.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 76

NOTES

If an error is generated, no change is made to the conterahief

ERRORS

GL_INVALID_ENUM is generated ifnapis not an accepted value.
GL_INVALID_OPERATION is generated ifjiGetPixelMap is called between a call ggBegin
and the corresponding call ¢gdEnd.

ASSOCIATED GETS

glGet with argumenGL_PIXEL_MAP_|_TO_|_SIZE
glGetwith argumenGL_PIXEL MAP_S TO_S SIZE

glGet with argumenGL_PIXEL_MAP_|_TO_R_SIZE
glGet with argumenGL_PIXEL_MAP_I_TO_G_SIZE
glGetwith argumenGL_PIXEL_MAP_I_TO_B_SIZE
glGetwith argumenGL_PIXEL_MAP_I_TO_A_SIZE
glGetwith argumenGL_PIXEL_MAP_R_TO_R_SIZE
glGetwith argumenGL_PIXEL_MAP_G_TO_G_SIZE
glGet with argumenGL_PIXEL_MAP_B TO_B_SIZE
glGet with argumenGL_PIXEL_MAP_A TO_A SIZE

glGetwith argumenGL_MAX_PIXEL_MAP_TI'ABLE

SEE ALSO

"glCopyPixels’ "glDrawPixels", "glPixelMap" , "glPixelTransfer", "glReadPixels",
"glTexlmagelD", "glTexlmage2D"

glGetPolygonStipple

NAME

glGetPolygonStipple- return the polygon stipple pattern

C SPECIFICATION

void glGetPolygonStipplg GLubyte*mask)

PARAMETERS

mask Returns the stipple pattern.

DESCRIPTION

glGetPolygonStipplereturns tanaska 3232 polygon stipple pattern. The pattern is packed into
memory as ifjIReadPixelswith bothheightandwidth of 32,typeof GL_BITMAP , andformatof
GL_COLOR_INDEX were called, and the stipple pattern were stored in an interra2 2dlor

index buffer. UnlikeglReadPixels however, pixel transfer operations (shift, offset, pixel map) are
not applied to the returned stipple image.

NOTES

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 77

If an error is generated, no change is made to the contentsskf

ERRORS

GL_INVALID_OPERATION is generated ifjlGetPolygonStippleis called between a call to
glBeginand the corresponding callgtEnd.

SEE ALSO

"glPixelStore", "glPixelTransfer", "glPolygonStipple", "glReadPixels"

glGetString

NAME

glGetString — returns a string describing the current GL connection

C SPECIFICATION

const GLubyte lGetString(GLenumname)

PARAMETERS

name Specifies a symbolic constant, oneGif VENDOR, GL_RENDERER,
GL_VERSION, orGL_EXTENSIONS.

DESCRIPTION

glGetString returns a pointer to a static string describing some aspect of the current GL connectior
namecan be one of the following:

GL_VENDOR
Returns the company responsible for this GL implementation. This name does

not change from release to release.

GL_RENDERER
Returns the name of the renderer. This name is typically specific to a particular
configuration of a hardware platform. It does not change from release to release

GL_VERSION
Returns a version or release number.

GL_EXTENSIONS

Returns a space-separated list of supported extensions to GL.
Because GL does not include queries for the performance characteristics of an implementation, it i
expected that some applications will be written to recognize known platforms and will modify their
GL usage based on known performance characteristics of these platforms. @trifiEENDOR
andGL_RENDERER together uniquely specify a platform, and will not change from release to
release. They should be used by such platform recognition algorithms.

The format and contents of the string thi&etString returns depend on the implementation, except
that extension names will not include space characters and will be separated by space characters
the GL_EXTENSIONS string, and that all strings are null-terminated.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 78

NOTES

If an error is generated|GetString returns zero.

ERRORS
GL_INVALID_ENUM is generated ihameis not an accepted value.

GL_INVALID_OPERATION is generated ifjlGetString is called between a call ggBeginand
the corresponding call gEnd.

glGetTexEnv

NAME

glGetTexEnvfv, glGetTexEnviv— return texture environment parameters

C SPECIFICATION

void glGetTexEnvfv(GLenumtarget GLenumpname GLfloat*params)
void glGetTexEnviv(GLenumtarget GLenumpname GLint *params)

PARAMETERS
target Specifies a texture environment. Must®le TEXTURE_ENV .
pname Specifies the symbolic name of a texture environment parameter. Accepted

values ar&sL._ TEXTURE_ENV_MODE and
GL_TEXTURE_ENV_COLOR .

params Returns the requested data.

DESCRIPTION

glGetTexEnv returns inparamsselected values of a texture environment that was specified with
glTexEnv. targetspecifies a texture environment. Currently, only one texture environment is
defined and supporte@L_TEXTURE_ENV .

pnamenames a specific texture environment parameter. The two parameters are as follows:

GL_TEXTURE_ENV_MODE
paramsreturns the single-valued texture environment mode, a symbolic constan

GL_TEXTURE_ENV_COLOR
paramsreturns four integer or floating—point values that are the texture
environment color. Integer values, when requested, are linearly mapped from tr

internal floating—point representation such that 1.0 maps to the most positive
representable integer, and —1.0 maps to the most negative representable intege

NOTES

If an error is generated, no change is made to the contgrdsaniis

ERRORS

GL_INVALID_ENUM is generated ifargetor pnameis not an accepted value.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 79

GL_INVALID_OPERATION is generated ifjilGetTexEnv is called between a call ghBeginand
the corresponding call tglEnd.

SEE ALSO

"gITexEnv"

glGetTexGen

NAME

glGetTexGendyv, glGetTexGenfv, glGetTexGeniv return texture coordinate generation parameters

C SPECIFICATION

void glGetTexGendy GLenumcoord GLenumpname GLdouble*params)
void glGetTexGenfy GLenumcoord GLenumpname GLfloat*params)
void glGetTexGeniy GLenumcoord GLenumpname GLint *params)

PARAMETERS
coord Specifies a texture coordinate. Must®e S,GL T,GL R, orGL_Q.
pname Specifies the symbolic name of the value(s) to be returned. Must be either

GL_TEXTURE_GEN_MODE or the name of one of the texture generation
plane equationssL._ OBJECT_PLANE orGL_EYE_PLANE.

params Returns the requested data.

DESCRIPTION

glGetTexGenreturns inparamsselected parameters of a texture coordinate generation function that
was specified usinglTexGen coordnames one of thes(t r ,q) texture coordinates, using the
symbolic constanGL_S,GL_T,GL_R, orGL_Q.

pnamespecifies one of three symbolic names:

GL_TEXTURE_GEN_MODE
paramsreturns the single—valued texture generation function, a symbolic
constant.

GL_OBJECT_PLANE
paramsreturns the four plane equation coefficients that specify object
linear—coordinate generation. Integer values, when requested, are mapped
directly from the internal floating—point representation.

GL_EYE_PLANE
paramsreturns the four plane equation coefficients that specify eye
linear—coordinate generation. Integer values, when requested, are mapped
directly from the internal floating—point representation. The returned values are
those maintained in eye coordinates. They are not equal to the values specified
usingglTexGen, unless the modelview matrix was identity at the @ffexGen
was called.

NOTES

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 80

If an error is generated, no change is made to the contgrdasanihis

ERRORS
GL_INVALID_ENUM is generated i€oordor pnames not an accepted value.

GL_INVALID_OPERATION is generated ifjilGetTexGenis called between a call ggBeginand
the corresponding call gEnd.

SEE ALSO

"glTexGen"

glGetTexlmage

NAME

glGetTexImage-— return a texture image

C SPECIFICATION

void glGetTexImagdg GLenumtarget, GLint leve|] GLenumformat, GLenuntype, GLvoid

*pixels)

PARAMETERS

target Specifies which texture is to be obtaingdL_TEXTURE_1D and
GL_TEXTURE_2D are accepted.

level Specifies the level-of-detail number of the desired image. Level O is the base
image level. Leveh is thenth mipmap reduction image.

format Specifies a pixel format for the returned data. The supported formats are
GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA , GL_RGB, GL_RGBA,
GL_LUMINANCE , andGL_LUMINANCE_ALPHA .

type Specifies a pixel type for the returned data. The supported types are
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT , andGL_FLOAT .

pixels Returns the texture image. Should be a pointer to an array of the type specified
by type

DESCRIPTION

glGetTexImagereturns a texture image inpixels targetspecifies whether the desired texture
image is one specified IgfTeximagelD(GL_TEXTURE_1D) or byglTexlmage2D
(GL_TEXTURE_2D). levelspecifies the level-of-detail number of the desired infageat and
type specify the format and type of the desired image array. Please see the reference pages
"glTexlmagelD" and"glDrawPixels" for a description of the acceptable values forfoheat and
type parameters, respectively.

Operation ofjylGetTexImageis best understood by considering the selected internal four-componer

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages - 81

texture image to be an RGBA color buffer the size of the image. The semanfiGetifexlmage

are then identical to those giReadPixelscalled with the samfrmatandtype with x andy set to
zero,width set to the width of the texture image (including border if one was specifiedyeagid

set to one for 1-D images, or to the height of the texture image (including border if one was specifi
for 2-D images. Because the internal texture image is an RGBA image, pixel formats
GL_COLOR_INDEX , GL_STENCIL_INDEX , andGL_DEPTH_COMPONENT are not

accepted, and pixel tygelL_BITMAP is not accepted.

If the selected texture image does not contain four components, the following mappings are applie
Single—component textures are treated as RGBA buffers with red set to the single—component vali
and green, blue, and alpha set to zero. Two—-component textures are treated as RGBA buffers wit
red set to the value of component zero, alpha set to the value of component one, and green and b
set to zero. Finally, three—component textures are treated as RGBA buffers with red set to compo
zero, green set to component one, blue set to component two, and alpha set to zero.

To determine the required sizepkels useglGetTexLevelParameterto ascertain the dimensions

of the internal texture image, then scale the required number of pixels by the storage required for
each pixel, based dormatandtype Be sure to take the pixel storage parameters into account,
especiallyGL_PACK_ALIGNMENT .

NOTES

If an error is generated, no change is made to the contgitels

ERRORS

GL_INVALID_ENUM is generated ifarget, format, ortypeis not an accepted value.

GL_INVALID_VALUE is generated iEvelis less than zero or greater tHagz max wheremaxis
the returned value dbL_MAX_TEXTURE_SIZE .

GL_INVALID_OPERATION is generated ifjiGetTexImageis called between a call giBegin
and the corresponding call ¢dEnd.
ASSOCIATED GETS

glGetTexLevelParameterwith argumenGL_TEXTURE_WIDTH
glGetTexLevelParameterwith argumentGL_TEXTURE_HEIGHT
glGetTexLevelParameterwith argumenGL_TEXTURE_BORDER
glGetTexLevelParameterwith argumentGL_TEXTURE_COMPONENTS
glGet with argument$sL._PACK_ALIGNMENT and others

SEE ALSO

"glDrawPixels", "glIReadPixels", "glTexImagelD", "glTeximage2D"

glGetTexLevelParameter

NAME

glGetTexLevelParameterfv, glGetTexLevelParameteriv- return texture parameter values for a
specific level of detalil

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 82

C SPECIFICATION

void glGetTexLevelParameterf GLenumtarget, GLintlevel GLenumpname GLfloat*params)

void glGetTexLevelParameteriy GLenumtarget GLint leve] GLenumpname GLint *params)

PARAMETERS

target Specifies the symbolic name of the target texture, e@eMEXTURE_1D or
GL_TEXTURE_2D.

level Specifies the level-of-detail number of the desired image. Level O is the base
image level. Leveh is thenth mipmap reduction image.

pname Specifies the symbolic name of a texture paramebtr. TEXTURE_WIDTH ,
GL_TEXTURE_HEIGHT , GL_TEXTURE_COMPONENTS, and
GL_TEXTURE_BORDER are accepted.

params Returns the requested data.

DESCRIPTION

glGetTexLevelParameterreturns inparamstexture parameter values for a specific level-of-detail
value, specified agvel targetdefines the target texture, eitt@r_TEXTURE_1D or
GL_TEXTURE_2D, to specify one- or two—dimensional texturipgamespecifies the texture
parameter whose value or values will be returned.

The accepted parameter names are as follows:

GL_TEXTURE_WIDTH
paramsreturns a single value, the width of the texture image. This value
includes the border of the texture image.

GL_TEXTURE_HEIGHT
paramsreturns a single value, the height of the texture image. This value
includes the border of the texture image.

GL_TEXTURE_COMPONENTS
paramsreturns a single value, the number of components in the texture image.

GL_TEXTURE_BORDER

paramsreturns a single value, the width in pixels of the border of the texture
image.

NOTES

If an error is generated, no change is made to the contgrdsanfis

ERRORS
GL_INVALID_ENUM is generated ifargetor pnameis not an accepted value.

GL_INVALID_VALUE is generated iEvelis less than zero or greater tHagz max wheremaxis
the returned value d6L_MAX_TEXTURE_SIZE .

GL_INVALID_OPERATION is generated ifjiGetTexLevelParameteris called between a call to
glBeginand the corresponding callgtEnd.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 83

SEE ALSO

"glGetTexParameter "glTexlmagelD", "glTeximage2D", "glTexParameter”

glGetTexParameter

NAME

glGetTexParameterfv, glGetTexParameteriv- return texture parameter values

C SPECIFICATION

void glGetTexParameterfy(GLenumtarget, GLenumpname GLfloat*params)
void glGetTexParameteri GLenumtarget, GLenumpname GLint *params)

PARAMETERS

target Specifies the symbolic name of the target text@e. TEXTURE_1D and
GL_TEXTURE_2D are accepted.

pname Specifies the symbolic name of a texture parameter.
GL_TEXTURE_MAG_FILTER , GL_TEXTURE_MIN_FILTER ,
GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, and
GL_TEXTURE_BORDER_COLOR are accepted.

params Returns the texture parameters.

DESCRIPTION

glGetTexParameterreturns inparamsthe value or values of the texture parameter specified as
pname targetdefines the target texture, eittek. TEXTURE_1D orGL_TEXTURE_2D, to
specify one- or two—dimensional texturipgameaccepts the same symbolsgiiBexParameter,
with the same interpretations:

GL_TEXTURE_MAG_FILTER
Returns the single—valued texture magnification filter, a symbolic constant.

GL_TEXTURE_MIN_FILTER
Returns the single-valued texture minification filter, a symbolic constant.

GL_TEXTURE_WRAP_S
Returns the single-valued wrapping function for texture coordinateymbolic
constant.

GL_TEXTURE_WRAP_T
Returns the single-valued wrapping function for texture coordireatymbolic
constant.

GL_TEXTURE_BORDER_COLOR
Returns four integer or floating—point numbers that comprise the RGBA color of
the texture border. Floating—point values are returned in the range [0,1]. Intege
values are returned as a linear mapping of the internal floating—point
representation such that 1.0 maps to the most positive representable integer anc
-1.0 maps to the most negative representable integer.

NOTES

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 84

If an error is generated, no change is made to the contgrdasanfis

ERRORS

GL_INVALID_ENUM s generated ifargetor pnameis not an accepted value.

GL_INVALID_OPERATION is generated ifjlGetTexParameteris called between a call to
glBeginand the corresponding callgtEnd.

SEE ALSO

"glTexParameter"

glHint

NAME

glHint - specify implementation—specific hints

C SPECIFICATION

void glHint (GLenumtarget, GLenummode)

PARAMETERS

target Specifies a symbolic constant indicating the behavior to be controlled.
GL_FOG_HINT, GL_LINE_SMOOTH_HINT ,
GL_PERSPECTIVE_CORRECTION_HINT ,
GL_POINT_SMOOTH_HINT , andGL_POLYGON_SMOOTH_HINT are
accepted.

mode Specifies a symbolic constant indicating the desired beha@ibr FASTEST,
GL_NICEST, andGL_DONT_CARE are accepted.

DESCRIPTION

Certain aspects of GL behavior, when there is room for interpretation, can be controlled with hints.
A hint is specified with two argumentgargetis a symbolic constant indicating the behavior to be
controlled, andanodeis another symbolic constant indicating the desired behawiodecan be one

of the following:

GL_FASTEST The most efficient option should be chosen.
GL_NICEST The most correct, or highest quality, option should be chosen.

GL_DONT_CARE
The client doesn't have a preference.

Though the implementation aspects that can be hinted are well defined, the interpretation of the hi
depends on the implementation. The hint aspects that can be specifitatgéthalong with
suggested semantics, are as follows:

GL_FOG_HINT
Indicates the accuracy of fog calculation. If per—pixel fog calculation is not

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 85

efficiently supported by the GL implementation, hintdg_ DONT_CARE or
GL_FASTEST can result in per-vertex calculation of fog effects.

GL_LINE_SMOOTH_HINT
Indicates the sampling quality of antialiased lines. HinBhg NICEST can
result in more pixel fragments being generated during rasterization, if a larger
filter function is applied.

GL_PERSPECTIVE_CORRECTION_HINT
Indicates the quality of color and texture coordinate interpolation. If
perspective—corrected parameter interpolation is not efficiently supported by the
GL implementation, hintinggL_DONT_CARE orGL_FASTEST can result in
simple linear interpolation of colors and/or texture coordinates.

GL_POINT_SMOOTH_HINT
Indicates the sampling quality of antialiased points. HinBhgNICEST can
result in more pixel fragments being generated during rasterization, if a larger
filter function is applied.

GL_POLYGON_SMOOTH_HINT
Indicates the sampling quality of antialiased polygons. HirfGhgNICEST

can result in more pixel fragments being generated during rasterization, if a large
filter function is applied.

NOTES

The interpretation of hints depends on the implementatitiiint can be ignored.

ERRORS

GL_INVALID_ENUM is generated if eitheargetor modeis not an accepted value.

GL_INVALID_OPERATION is generated ifjIHint is called between a call gdBeginand the
corresponding call tglEnd.

glindex

NAME

glindexd, glindexf, glindexi, glindexs, glindexdv, glindexfv, glindexiv, glindexsv- set the
current color index

C SPECIFICATION
void glindexd(GLdoublec)
void glindexf(GLfloatc)

void glindexi(GLint ¢)
void glindexs(GLshortc)

PARAMETERS

c Specifies the new value for the current color index.

C SPECIFICATION

void glindexdv(const GLdoubléc)
void glindexfv(const GLfloatc)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 86

void glindexiv(const GLint*c)
void glindexsv const GLshortc)

PARAMETERS

C Specifies a pointer to a one—element array that contains the new value for the
current color index.

DESCRIPTION

glindex updates the current (single—valued) color index. It takes one argument: the new value for-
current color index.

The current index is stored as a floating—point value. Integer values are converted directly to
floating—point values, with no special mapping.

Index values outside the representable range of the color index buffer are not clamped. However,
before an index is dithered (if enabled) and written to the frame buffer, it is converted to fixed—poin
format. Any bits in the integer portion of the resulting fixed—point value that do not correspond to
bits in the frame buffer are masked out.

NOTES

The current index can be updated at any time. In partigiladex can be called between a call to
glBeginand the corresponding callgtEnd.

ASSOCIATED GETS

glGetwith argumenGL_CURRENT_INDEX

SEE ALSO

"glColor"

glindexMask

NAME

glindexMask — control the writing of individual bits in the color index buffers

C SPECIFICATION

void glindexMask(GLuint mask)

PARAMETERS

mask Specifies a bit mask to enable and disable the writing of individual bits in the
color index buffers. Initially, the mask is all ones.

DESCRIPTION

glindexMask controls the writing of individual bits in the color index buffers. The least significant
bits of mask wheren is the number of bits in a color index buffer, specify a mask. Wherever a one

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 87

appears in the mask, the corresponding bit in the color index buffer (or buffers) is made writable.
Where a zero appears, the bit is write—protected.

This mask is used only in color index mode, and it affects only the buffers currently selected for
writing (see"glDrawBuffer”.) Initially, all bits are enabled for writing.

ERRORS

GL_INVALID_OPERATION is generated ifjlindexMask is called between a call ghBegin and
the corresponding call tgEnd.

ASSOCIATED GETS

glGet with argumenGL_INDEX_ WRITEMASK

SEE ALSO

"glColorMask’, "glDepthMask", "glDrawBuffer" , "glindex" , "glStencilMask"

glinitNames

NAME

glinitNames - initialize the name stack

C SPECIFICATION

void glinitNames(void)

DESCRIPTION

The name stack is used during selection mode to allow sets of rendering commands to be uniquel
identified. It consists of an ordered set of unsigned integghsitNames causes the name stack to
be initialized to its default empty state.

The name stack is always empty while the render mode SINBELECT. Calls toglinitNames
while the render mode is n@GL_SELECT are ignored.

ERRORS

GL_INVALID_OPERATION is generated ifjlinitNames is called between a call ghBegin and
the corresponding call gEnd.

ASSOCIATED GETS

glGet with argumenGL_NAME_STACK_DEPTH
glGet with argumenGL_MAX_NAME_STACK_DEPTH

SEE ALSO

"glLoadName; "glPushName'", "glRenderMode"; "glSelectBuffer"

glisEnabled

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 88

NAME

glisEnabled - test whether a capability is enabled

C SPECIFICATION

GLboolearglisEnabled(GLenumcap)

PARAMETERS

cap Specifies a symbolic constant indicating a GL capability.

DESCRIPTION

glisEnabled returnsGL_TRUE if capis an enabled capability and retutdls FALSE otherwise.
The following capabilities are accepted &ap

GL_ALPHA_TEST See"glAlphaFunc”.
GL_AUTO_NORMAL See"glEvalCoord".
GL_BLEND See"gIBlendFunc”.
GL_CLIP_PLANE iSee"gIClipPlane".
GL_COLOR_MATERIAL See"glColorMaterial”.
GL_CULL_FACE See'"gICullFace".
GL_DEPTH_TEST See"glDepthFunc" and"glDepthRange".
GL_DITHER See"glEnable".

GL_FOG See"glFog".

GL_LIGHT i See"glLightModel" and"glLight" .
GL_LIGHTING See"giMaterial", "glLightModel" , and'glLight" .
GL_LINE_SMOOTH See"glLineWidth" .
GL_LINE_STIPPLE See"glLineStipple".
GL_LOGIC_OP See"glLogicOp".
GL_MAP1_COLOR_4See"giMapl".
GL_MAP1_INDEX See"glMap1” .
GL_MAP1_NORMAL See'glMapl".
GL_MAP1_TEXTURE_COORD_1See"giMapl".
GL_MAP1_TEXTURE_COORD_2See"giMapl"”.
GL_MAP1_TEXTURE_COORD_3See"giMapl”.
GL_MAP1_TEXTURE_COORD_4See"giMapl"”.

GL_MAP1_VERTEX_3See'giMapl".

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 89

GL_MAP1_VERTEX_4See"gIMapl".
GL_MAP2_COLOR_4See"giMap2".
GL_MAP2_INDEX See"glMap2" .
GL_MAP2_NORMAL See"glMap2".
GL_MAP2_TEXTURE_COORD_1See"giMap2".
GL_MAP2_TEXTURE_COORD_2See"giMap2".
GL_MAP2_TEXTURE_COORD_3See"giMap2".
GL_MAP2_TEXTURE_COORD_4See"giMap2".
GL_MAP2_VERTEX_3See"giMap2".
GL_MAP2_VERTEX_4See"giMap2".
GL_NORMALIZE See"gINormal” .
GL_POINT_SMOOTH See"glPointSize".
GL_POLYGON_SMOOTH See"glPolygonMode".
GL_POLYGON_STIPPLE See"glPolygonStipple”
GL_SCISSOR_TESTSee"glScissor".
GL_STENCIL_TEST See"glIStencilFunc" and"glStencilOp".
GL_TEXTURE_1D See"glTexImagelD".
GL_TEXTURE_2D See"glTexlmage2D".
GL_TEXTURE_GEN_QSee"gITexGen".
GL_TEXTURE_GEN_R See"glTexGen".
GL_TEXTURE_GEN_SSee"gITexGen".

GL_TEXTURE_GEN_T See"glTexGen".

NOTES

If an error is generatedl|lsEnabled returns zero.

ERRORS

GL_INVALID_ENUM is generated i€apis not an accepted value.

GL_INVALID_OPERATION is generated ifjlisEnabledis called between a call giBegin and
the corresponding call tglEnd.

SEE ALSO

"glEnable”

glisList

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 90

NAME

glisList — test for display-list existence

C SPECIFICATION

GLboolearglisList (GLuintlist)

PARAMETERS

list Specifies a potential display—list name.

DESCRIPTION

glisList returnsGL_TRUE if list is the name of a display list and retuBis FALSE otherwise.

ERRORS

GL_INVALID_OPERATION is generated iflisList is called between a call ggBeginand the
corresponding call tglEnd.

SEE ALSO

"glCallList", "gICallLists" , "glDeleteLists", "glGenLists", "gINewList"

glLight

NAME

glLightf, glLighti, glLightfv, glLightiv - set light source parameters

C SPECIFICATION
void glLightf (GLenumlight, GLenumpname GLfloatparam)

void glLighti (GLenumlight, GLenumpname GLint param)

PARAMETERS

light Specifies a light. The number of lights is depends on the implementation, but at
least eight lights are supported. They are identified by symbolic nhames of the
form GL_LIGHT i where 0<i <GL_MAX_LIGHTS .

pname Specifies a single—-valued light source parametédigfur
GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,
GL_CONSTANT_ATTENUATION , GL_LINEAR_ATTENUATION , and
GL_QUADRATIC_ATTENUATION are accepted.

param Specifies the value that paramgteameof light sourcdight will be set to.

C SPECIFICATION

void glLightfv (GLenumlight, GLenumpname const GLfloatparams)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 91

void glLightiv (GLenumlight, GLenumpname const GLint‘params)

PARAMETERS

light Specifies a light. The number of lights depends on the implementation, but at
least eight lights are supported. They are identified by symbolic names of the
form GL_LIGHT i where 0<i <GL_MAX_LIGHTS .

pname Specifies a light source parameterlight. GL_AMBIENT , GL_DIFFUSE,
GL_SPECULAR, GL_POSITION, GL_SPOT_DIRECTION,
GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,
GL_CONSTANT_ATTENUATION , GL_LINEAR_ATTENUATION , and
GL_QUADRATIC_ATTENUATION are accepted.

params Specifies a pointer to the value or values that parametaneof light source
light will be set to.

DESCRIPTION

glLight sets the values of individual light source parametkgbt names the light and is a symbolic
name of the fornGL_LIGHT i, where (¢ i < GL_MAX_LIGHTS . pnamespecifies one of ten
light source parameters, again by symbolic napaamsis either a single value or a pointer to an
array that contains the new values.

Lighting calculation is enabled and disabled ugjtignable andglDisable with argument
GL_LIGHTING . When lighting is enabled, light sources that are enabled contribute to the lighting
calculation. Light sourceis enabled and disabled usigifnable andglDisable with argument
GL_LIGHT i.

The ten light parameters are as follows:

GL_AMBIENT
paramscontains four integer or floating—point values that specify the ambient
RGBA intensity of the light. Integer values are mapped linearly such that the
most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating—point values are mapped directly.
Neither integer nor floating—point values are clamped. The default ambient light
intensity is (0.0, 0.0, 0.0, 1.0).

GL_DIFFUSE
paramscontains four integer or floating—point values that specify the diffuse
RGBA intensity of the light. Integer values are mapped linearly such that the
most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating—point values are mapped directly.
Neither integer nor floating—point values are clamped. The default diffuse
intensity is (0.0, 0.0, 0.0, 1.0) for all lights other than light zero. The default
diffuse intensity of light zero is (1.0, 1.0, 1.0, 1.0).

GL_SPECULAR
paramscontains four integer or floating—point values that specify the specular
RGBA intensity of the light. Integer values are mapped linearly such that the
most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating—point values are mapped directly.
Neither integer nor floating—point values are clamped. The default specular
intensity is (0.0, 0.0, 0.0, 1.0) for all lights other than light zero. The default
specular intensity of light zero is (1.0, 1.0, 1.0, 1.0).

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 92

GL_POSITION
paramscontains four integer or floating—point values that specify the position of
the light in homogeneous object coordinates. Both integer and floating—point
values are mapped directly. Neither integer nor floating—point values are
clamped.

The position is transformed by the modelview matrix whkkight is called (just

as if it were a point), and it is stored in eye coordinates. Mtbt@mponent of

the position is 0.0, the light is treated as a directional source. Diffuse and
specular lighting calculations take the light’s direction, but not its actual position,
into account, and attenuation is disabled. Otherwise, diffuse and specular
lighting calculations are based on the actual location of the light in eye
coordinates, and attenuation is enabled. The default position is (0,0,1,0); thus,
the default light source is directional, parallel to, and in the direction efzthe

axis.

GL_SPOT_DIRECTION
paramscontains three integer or floating—point values that specify the direction o
the light in homogeneous object coordinates. Both integer and floating—point
values are mapped directly. Neither integer nor floating—point values are
clamped.

The spot direction is transformed by the inverse of the modelview matrix when
glLight is called (just as it it were a normal), and it is stored in eye coordinates.
It is significant only wherGL_SPOT_CUTOFF is not 180, which it is by

default. The default direction is (0,0,-1).

GL_SPOT_EXPONENT
paramsis a single integer or floating—point value that specifies the intensity
distribution of the light. Integer and floating—point values are mapped directly.
Only values in the range [0,128] are accepted.

Effective light intensity is attenuated by the cosine of the angle between the
direction of the light and the direction from the light to the vertex being lighted,
raised to the power of the spot exponent. Thus, higher spot exponents result in
more focused light source, regardless of the spot cutoff angle (see next
paragraph). The default spot exponent is 0, resulting in uniform light
distribution.

GL_SPOT_CUTOFFparamsis a single integer or floating—point value that specifies the maximum
spread angle of a light source. Integer and floating—point values are mapped
directly. Only values in the range [0,90], and the special value 180, are accepte
If the angle between the direction of the light and the direction from the light to
the vertex being lighted is greater than the spot cutoff angle, the light is
completely masked. Otherwise, its intensity is controlled by the spot exponent
and the attenuation factors. The default spot cutoff is 180, resulting in uniform
light distribution.

GL_CONSTANT_ATTENUATION
GL_LINEAR_ATTENUATION

GL_QUADRATIC_ATTENUATION
paramsis a single integer or floating—point value that specifies one of the three
light attenuation factors. Integer and floating—point values are mapped directly.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 93

Only nonnegative values are accepted. If the light is positional, rather than
directional, its intensity is attenuated by the reciprocal of the sum of: the constar
factor, the linear factor times the distance between the light and the vertex being
lighted, and the quadratic factor times the square of the same distance. The
default attenuation factors are (1,0,0), resulting in no attenuation.

NOTES

It is always the case th&l. LIGHT i = GL_LIGHTO +i.

ERRORS

GL_INVALID_ENUM is generated if eithdight or pnameis not an accepted value.

GL_INVALID_VALUE is generated if a spot exponent value is specified outside the range [0,128
or if spot cutoff is specified outside the range [0,90] (except for the special value 180), or if a
negative attenuation factor is specified.

GL_INVALID_OPERATION is generated iflLight is called between a call giBegin and the
corresponding call tglEnd.

ASSOCIATED GETS

glGetLight
glisEnabled with argumenGL_LIGHTING

SEE ALSO

"glColorMaterial", "glLightModel", "gIMaterial"

glLightModel

NAME

glLightModelf, glLightModeli, glLightModelfv, glLightModeliv - set the lighting model
parameters

C SPECIFICATION
void glLightModelf (GLenumpname GLfloat param)

void glLightModeli (GLenumpname GLint param)

PARAMETERS

pname Specifies a single-valued lighting model parameter.
GL_LIGHT_MODEL_LOCAL_VIEWER and
GL_LIGHT_MODEL_TWO_SIDE are accepted.

param Specifies the value thaaramwill be set to.

C SPECIFICATION

void glLightModelfv (GLenumpname const GLfloatparams)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 94

void glLightModeliv (GLenumpname const GLintparams)

PARAMETERS

pname Specifies a lighting model parametésL._LIGHT_MODEL_AMBIENT ,
GL_LIGHT_MODEL_LOCAL_VIEWER , and
GL_LIGHT _MODEL_TWO_SIDE are accepted.

params Specifies a pointer to the value or values pamamswill be set to.

DESCRIPTION

glLightModel sets the lighting model parametgmamenames a parameter apdramsgives the
new value. There are three lighting model parameters:

GL_LIGHT_MODEL_AMBIENT
paramscontains four integer or floating—point values that specify the ambient
RGBA intensity of the entire scene. Integer values are mapped linearly such the
the most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating—point values are mapped directly.
Neither integer nor floating—point values are clamped. The default ambient scer
intensity is (0.2, 0.2, 0.2, 1.0).

GL_LIGHT_MODEL_LOCAL_VIEWER
paramsis a single integer or floating—point value that specifies how specular
reflection angles are computed.pHramsis 0 (or 0.0), specular reflection angles
take the view direction to be parallel to and in the direction of the -z axis,
regardless of the location of the vertex in eye coordinates. Otherwise specular
reflections are computed from the origin of the eye coordinate system. The
default is O.

GL_LIGHT_MODEL_TWO_SIDE
paramsis a single integer or floating—point value that specifies whether one- or
two-sided lighting calculations are done for polygons. It has no effect on the
lighting calculations for points, lines, or bitmaps.p#ramsis 0 (or 0.0),
one-sided lighting is specified, and onlyftoat material parameters are used in
the lighting equation. Otherwise, two-sided lighting is specified. In this case,
vertices of back—facing polygons are lighted usindp#iog material parameters,
and have their normals reversed before the lighting equation is evaluated.
Vertices of front—facing polygons are always lighted usinfroiné material
parameters, with no change to their normals. The default is 0.

In RGBA mode, the lighted color of a vertex is the sum of the material emission intensity, the
product of the material ambient reflectance and the lighting model full-scene ambient intensity, an
the contribution of each enabled light source. Each light source contributes the sum of three terms
ambient, diffuse, and specular. The ambient light source contribution is the product of the materia
ambient reflectance and the light's ambient intensity. The diffuse light source contribution is the
product of the material diffuse reflectance, the light's diffuse intensity, and the dot product of the
vertex’s normal with the normalized vector from the vertex to the light source. The specular light
source contribution is the product of the material specular reflectance, the light's specular intensity
and the dot product of the normalized vertex—to—eye and vertex—to-light vectors, raised to the pov
the shininess of the material. All three light source contributions are attenuated equally based on 1
distance from the vertex to the light source and on light source direction, spread exponent, and spi
cutoff angle. All dot products are replaced with zero if they evaluate to a negative value.

The alpha component of the resulting lighted color is set to the alpha value of the material diffuse
reflectance.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 95

In color index mode, the value of the lighted index of a vertex ranges from the ambient to the
specular values passedgiiMaterial usingGL_COLOR_INDEXES . Diffuse and specular
coefficients, computed with a (.30, .59, .11) weighting of the lights’ colors, the shininess of the
material, and the same reflection and attenuation equations as in the RGBA case, determine how
much above ambient the resulting index is.

ERRORS

GL_INVALID_ENUM is generated ipnameis not an accepted value.
GL_INVALID_OPERATION is generated iflLightModel is called between a call gdBegin and
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_LIGHT_MODEL_AMBIENT

glGet with argumenGL_LIGHT_MODEL_LOCAL_VIEWER

glGetwith argumenGL_LIGHT _MODEL_TWO_SIDE
glisEnabled with argumenGL_LIGHTING

SEE ALSO

"glLight", "gIMaterial"

glLineStipple

NAME

glLineStipple - specify the line stipple pattern

C SPECIFICATION

void glLineStipple (GLint factor, GLushorpattern)

PARAMETERS

factor Specifies a multiplier for each bit in the line stipple patterdadforis 3, for
example, each bit in the pattern will be used three times before the next bit in the
pattern is usedfactor is clamped to the range [1, 255] and defaults to one.

pattern Specifies a 16-bit integer whose bit pattern determines which fragments of a lin
will be drawn when the line is rasterized. Bit zero is used first, and the default
pattern is all ones.

DESCRIPTION

Line stippling masks out certain fragments produced by rasterization; those fragments will not be
drawn. The masking is achieved by using three parameters: the 16-bit line stippleaté&erthe
repeat countactor, and an integer stipple counser

Countersis reset to zero whenewglBeginis called, and before each line segment of a
gIBegin(GL_LINES)/gIEnd sequence is generated. It is incremented after each fragment of a unit

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 96

width aliased line segment is generated, or after iefiagments of amn width line segment are
generated. Thiefragments associated with cowgrdre masked out if

pattern bit (s factor) mod 16

is zero, otherwise these fragments are sent to the frame buffer. Bit patbeohis the least
significant bit.

Antialiased lines are treated as a sequencexofviithrectangles for purposes of stippling.
Rectangles is rasterized or not based on the fragment rule described for aliased lines, counting
rectangles rather than groups of fragments.

Line stippling is enabled or disabled usglgnable andglDisable with argument
GL_LINE_STIPPLE . When enabled, the line stipple pattern is applied as described above. Wher
disabled, it is as if the pattern were all ones. Initially, line stippling is disabled.

ERRORS

GL_INVALID_OPERATION is generated ifjlLineStipple is called between a call ghBeginand
the corresponding call gEnd.

ASSOCIATED GETS
glGetwith argumenGL_LINE_STIPPLE_PATTERN

glGet with argumenGL_LINE_STIPPLE_REPEAT
gllsEnabled with argumenGL_LINE_STIPPLE

SEE ALSO

"glLineWidth", "glPolygonStipple”

glLineWidth

NAME

glLineWidth - specify the width of rasterized lines

C SPECIFICATION

void glLineWidth (GLfloat width)

PARAMETERS

width Specifies the width of rasterized lines. The default is 1.0.

DESCRIPTION

glLineWidth specifies the rasterized width of both aliased and antialiased lines. Using a line width
other than 1.0 has different effects, depending on whether line antialiasing is enabled. Line
antialiasing is controlled by callingfEnable andglDisable with argumenGL_LINE_SMOOTH .

If line antialiasing is disabled, the actual width is determined by rounding the supplied width to the
nearest integer. (If the rounding results in the value 0, it is as if the line width werg 4X) |If> |
Ay |, i pixels are filled in each column that is rasterized, wher¢he rounded value wfidth.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 97

Otherwisej pixels are filled in each row that is rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel square that intersec
the region lying within the rectangle having width equal to the current line width, length equal to the
actual length of the line, and centered on the mathematical line segment. The coverage value for
fragment is the window coordinate area of the intersection of the rectangular region with the
corresponding pixel square. This value is saved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported width is
requested, the nearest supported width is used. Only width 1.0 is guaranteed to be supported; otr
depend on the implementation. The range of supported widths and the size difference between
supported widths within the range can be queried by cajli@gt with arguments
GL_LINE_WIDTH_RANGE andGL_LINE_WIDTH_GRANULARITY

NOTES

The line width specified byglLineWidth is always returned wheBL _LINE_WIDTH is queried.
Clamping and rounding for aliased and antialiased lines have no effect on the specified value.

Non-antialiased line width may be clamped to an implementation—dependent maximum. Althougt
this maximum cannot be queried, it must be no less than the maximum value for antialiased lines,
rounded to the nearest integer value.

ERRORS
GL_INVALID_VALUE is generated ifvidth is less than or equal to zero.

GL_INVALID_OPERATION is generated ifjlLineWidth is called between a call giBegin and
the corresponding call gEnd.

ASSOCIATED GETS

glGet with argumenGL_LINE_WIDTH

glGet with argumenGL_LINE_WIDTH_RANGE

glGet with argumenGL_LINE_WIDTH_GRANULARITY
glisEnabled with argumentGL_LINE_SMOOTH

SEE ALSO

"glEnable”

glListBase

NAME

glListBase - set the display-list basedttallLists

C SPECIFICATION

void glListBase(GLuintbase)

PARAMETERS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 98

base Specifies an integer offset that will be addedlt@allLists offsets to generate
display-list names. Initial value is zero.

DESCRIPTION

glCallLists specifies an array of offsets. Display-list names are generated by laakktmeach
offset. Names that reference valid display lists are executed; the others are ignored.

ERRORS

GL_INVALID_OPERATION is generated ifjlListBaseis called between a call giBegin and the
corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_LIST BASE

SEE ALSO

"glCallLists"

glLoadldentity

NAME

glLoadldentity — replace the current matrix with the identity matrix

C SPECIFICATION

void glLoadldentity (void)

DESCRIPTION

glLoadldentity replaces the current matrix with the identity matrix. It is semantically equivalent to
calling glLoadMatrix with the identity matrix

1000
0100
0010
0001]

but in some cases it is more efficient.

ERRORS

GL_INVALID_OPERATION is generated ifjlLoadldentity is called between a call ggBegin
and the corresponding call ¢gdEnd.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 99

ASSOCIATED GETS

glGet with argumenGL_MATRIX_MODE

glGet with argumenGL_MODELVIEW_MATRIX
glGet with argumenGL_PROJECTION_MATRIX
glGet with argumenGL_TEXTURE_MATRIX

SEE ALSO

"glLoadMatrix", "glMatrixMode", "glMultMatrix" , "glPushMatrix"

glLoadMatrix

NAME

glLoadMatrixd, glLoadMatrixf - replace the current matrix with an arbitrary matrix

C SPECIFICATION
void glLoadMatrixd (const GLdoublém)

void glLoadMatrixf (const GLfloatm)

PARAMETERS

m Specifies a pointer to a4 matrix stored in column—major order as sixteen
consecutive values.

DESCRIPTION

glLoadMatrix replaces the current matrix with the one specifieth.inThe current matrix is the
projection matrix, modelview matrix, or texture matrix, determined by the current matrix mode (see
"gIMatrixMode").

m points to a 44 matrix of single— or double—precision floating—point values stored in column-majo
order. That is, the matrix is stored as follows:

Gy &y Qg 8y

9 {1’

i, 3, 4, @

13

ERRORS

GL_INVALID_OPERATION is generated iflLoadMatrix is called between a call gdBeginand
the corresponding call gEnd.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 100

ASSOCIATED GETS

glGetwith argumenGL_MATRIX_MODE

glGet with argumenGL_MODELVIEW_MATRIX
glGet with argumenGL_PROJECTION_MATRIX
glGet with argumenGL_TEXTURE_MATRIX

SEE ALSO

"glLoadldentity", "gIMatrixMode", "glMultMatrix" , "glPushMatrix"

glLoadName

NAME

glLoadName - load a name onto the name stack

C SPECIFICATION

void glLoadName(GLuint name)

PARAMETERS

name Specifies a name that will replace the top value on the name stack.

DESCRIPTION

The name stack is used during selection mode to allow sets of rendering commands to be uniquel:
identified. It consists of an ordered set of unsigned integgk®adName causemameto replace
the value on the top of the name stack, which is initially empty.

The name stack is always empty while the render mode SIndBELECT . Calls toglLoadName
while the render mode is nGL_SELECT are ignored.

ERRORS
GL_INVALID_OPERATION is generated iflLoadNameis called while the name stack is empty.

GL_INVALID_OPERATION is generated iflLoadNameis called between a call ghBegin and
the corresponding call gEnd.

ASSOCIATED GETS

glGet with argumenGL_NAME_STACK_DEPTH
glGet with argumenGL_MAX_NAME_STACK_DEPTH

SEE ALSO

"glinitNames'; "glPushName', "glIRenderMode", "glSelectBuffer"

glLogicOp

NAME

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 101

glLogicOp - specify a logical pixel operation for color index rendering

C SPECIFICATION

void glLogicOp(GLenumopcode)

PARAMETERS

opcode Specifies a symbolic constant that selects a logical operation. The following
symbols are accepte@L_CLEAR, GL_SET, GL_COPY,
GL_COPY_INVERTED , GL_NOOP, GL_INVERT , GL_AND, GL_NAND,
GL_OR, GL_NOR, GL_XOR, GL_EQUIV, GL_AND_REVERSE,
GL_AND_INVERTED , GL_OR_REVERSE, andGL_OR_INVERTED.

DESCRIPTION

glLogicOp specifies a logical operation that, when enabled, is applied between the incoming color
index and the color index at the corresponding location in the frame buffer. The logical operation i
enabled or disabled wittEnableandglDisable using the symbolic consta@l._LOGIC_OP.

opcodeis a symbolic constant chosen from the list below. In the explanation of the logical
operationss represents the incoming color index ampresents the index in the frame buffer.
Standard C-language operators are used. As these bitwise operators suggest, the logical operati

applied independently to each bit pair of the source and destination indices.
opcode resulting value

GL_CLEAR
0

GL_SET

1

GL_COPY

S
GL_COPY_INVERTED
Is
GL_NOOP
d
GL_INVERT
'd

GL_AND
s&d
GL_NAND
I(s &d)

GL _OR

s|d
GL_NOR

i(s | d)
GL_XOR
s~d
GL_EQUIV
I(s™d)
GL_AND_REVERSE

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 102

s&ld
GL_AND_INVERTED
Is&d
GL_OR_REVERSE
s|!d
GL_OR_INVERTED
Is|d

NOTES

Logical pixel operations are not applied to RGBA color buffers.

When more than one color index buffer is enabled for drawing, logical operations are done separa
for each enabled buffer, using for the destination index the contents of that buffer (see
"glDrawBuffer").

opcodemust be one of the sixteen accepted values. Other values result in an error.

ERRORS

GL_INVALID_ENUM is generated ibpcodeis not an accepted value.
GL_INVALID_OPERATION is generated iflLogicOp is called between a call ggBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_LOGIC_OP_MODE
gllsEnabled with argumenGL_LOGIC_OP

SEE ALSO

"glAlphaFunc', "gIBlendFunc", "glDrawBuffer" , "glEnable", "glStencilOp"

glMapl

NAME

glMap1d, gIMaplf - define a one—-dimensional evaluator

C SPECIFICATION

void giIMap1d(GLenumtarget GLdoubleul, GLdoubleu2, GLint stride, GLintorder, const
GLdouble*points)

void gIMap1f(GLenumtarget GLfloatul, GLfloatu2, GLint stride, GLint order, const GLfloat
*points)
PARAMETERS

target Specifies the kind of values that are generated by the evaluator. Symbolic
constant$GL_MAP1_VERTEX_3, GL_MAP1 _VERTEX_ 4,
GL_MAP1_INDEX, GL_MAP1_COLOR_4,GL_MAP1_NORMAL ,

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 103

GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1_TEXTURE_COORD_3, andGL_MAP1_TEXTURE_COORD_4
are accepted.

ul, u2 Specify a linear mapping af as presented @iEvalCoordl, tou”, the variable
that is evaluated by the equations specified by this command.

stride Specifies the number of floats or doubles between the beginning of one control
point and the beginning of the next one in the data structure referermadt
This allows control points to be embedded in arbitrary data structures. The only
constraint is that the values for a particular control point must occupy contiguous
memory locations.

order Specifies the number of control points. Must be positive.
points Specifies a pointer to the array of control points.
DESCRIPTION

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices,
normals, texture coordinates, and colors. The values produced by an evaluator are sent to further
stages of GL processing just as if they had been presentedylyemtgx, giINormal, glTexCoord,
andglColor commands, except that the generated values do not update the current normal, texture
coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported
the GL implementation) can be described using evaluators. These include almost all splines used
computer graphics, including B—splines, Bezier curves, Hermite splines, and so on.

Evaluators define curves based on Bernstein polynomials. Define p (0) as

p(@) = Y BI@R,
1=10

whereRj is a control point anB;" (u”)is theith Bernstein polynomial of degregorder=n + 1):

. n ﬂ' hi"l—l
B(#) = itﬁl-u]

Recall that

0°=1 and |"=1

glMap1 is used to define the basis and to specify what kind of values are produced. Once defined

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 104

map can be enabled and disabled by caljjifable andglDisablewith the map name, one of the
nine predefined values ftargetdescribed belowglEvalCoordl evaluates the one-dimensional
maps that are enabled. WhglkvalCoord1 presents a valug the Bernstein functions are evaluated
usingu”®, where

u-ul

"= nZ2 -ul

targetis a symbolic constant that indicates what kind of control points are provigedhis and
what output is generated when the map is evaluated. It can assume one of nine predefined values

GL_MAP1_VERTEX_3
Each control point is three floating—point values represertingndz. Internal
glVertex3 commands are generated when the map is evaluated.

GL_MAP1_VERTEX_4
Each control point is four floating—point values represemntiggz, andw.
InternalglVertex4 commands are generated when the map is evaluated.

GL_MAP1_INDEX
Each control point is a single floating—point value representing a color index.
Internalglindex commands are generated when the map is evaluated. The
current index is not updated with the value of tigiBelex commands, however.

GL_MAP1_COLOR_4
Each control point is four floating—point values representing red, green, blue, ani
alpha. InternagjlColor4 commands are generated when the map is evaluated.
The current color is not updated with the value of tiig€elor4 commands,
however.

GL_MAP1_NORMAL
Each control point is three floating—point values representing yhandz
components of a normal vector. Intergfllormal commands are generated
when the map is evaluated. The current normal is not updated with the value of
thesegINormal commands, however.

GL_MAP1_TEXTURE_COORD 1
Each control point is a single floating—point value representirgiéxéure
coordinate. InternglTexCoordl commands are generated when the map is
evaluated. The current texture coordinates are not updated with the value of
theseglTexCoord commands, however.

GL_MAP1_TEXTURE_COORD 2
Each control point is two floating—point values representing @het texture
coordinates. InternglTexCoord2 commands are generated when the map is
evaluated. The current texture coordinates are not updated with the value of
theseglTexCoord commands, however.

GL_MAP1_TEXTURE_COORD_3
Each control point is three floating—point values representirgytthendr
texture coordinates. IntermgliTexCoord3 commands are generated when the
map is evaluated. The current texture coordinates are not updated with the valu
of theseglTexCoord commands, however.

GL_MAP1_TEXTURE_COORD_4
Each control point is four floating—point values representing the andq
texture coordinates. InterrgllfTexCoord4 commands are generated when the
map is evaluated. The current texture coordinates are not updated with the valu

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 105

of theseglTexCoord commands, however.

stride, order, andpointsdefine the array addressing for accessing the control pgintatsis the
location of the first control point, which occupies one, two, three, or four contiguous memory
locations, depending on which map is being defirgdler is the number of control points in the
array. stridetells how many float or double locations to advance the internal memory pointer to
reach the next control point.

NOTES

As is the case with all GL commands that accept pointers to data, it is as if the corpenttsof
were copied bylMap1 before it returned. Changes to the contentmafts have no effect after
glMap1 is called.

ERRORS

GL_INVALID_ENUM s generated ifargetis not an accepted value.

GL_INVALID_VALUE s generated ifil is equal tou2.

GL_INVALID_VALUE is generated #trideis less than the number of values in a control point.

GL_INVALID_VALUE is generated trder is less than one or greater than
GL_MAX_EVAL_ORDER .

GL_INVALID_OPERATION is generated ijiMap1 is called between a call ggBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGetMap

glGetwith argumenGL_MAX_EVAL_ORDER

glisEnabled with argumenGL_MAP1_VERTEX_3
glisEnabled with argumenGL_MAP1 VERTEX 4
glisEnabled with argumentGL_MAP1 _INDEX

glisEnabled with argumentGL_MAP1 COLOR 4
glisEnabled with argumentGL_MAP1 NORMAL

glisEnabled with argumentGL_MAP1 TEXTURE_COORD_1
gllsEnabled with argumenGL_MAP1_TEXTURE_COORD_2
gllsEnabled with argumenGL_MAP1_TEXTURE_COORD_3
gllsEnabled with argumenGL_MAP1_TEXTURE_COORD_4

SEE ALSO

"gIBegin”, "glColor" , "glEnable", "glEvalCoord", "glEvalMesh", "glEvalPoint", "giMap2",

"gIMapGrid" , "gINormal” ,"glTexCoord", "glVertex"

glMap2

NAME

glMap2d, gIMap2f — define a two—-dimensional evaluator

C SPECIFICATION

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 106

void gIMap2d(GLenumtarget GLdoubleul, GLdoubleu2, GLintustride GLint uorder, GLdouble
v1, GLdoublev2, GLntvstride GLintvorder, const GLdoubl&points)

void gIMap2f(GLenumtarget GLfloatul, GLfloatu2, GLint ustride GLintuorder, GLfloatv1,
GLfloatv2, GLintvstride GLint vorder, const GLfloatpoints)

PARAMETERS

target

Specifies the kind of values that are generated by the evaluator. Symbolic
constantsGL_MAP2_VERTEX_ 3, GL_MAP2_VERTEX 4,
GL_MAP2_INDEX, GL_MAP2_COLOR_4, GL_MAP2_NORMAL ,
GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD 2,
GL_MAP2_TEXTURE_COORD_3, andGL_MAP2_TEXTURE_COORD_4
are accepted.

ul, u2 Specify a linear mapping af, as presented glEvalCoord2, tou”, one of the
two variables that is evaluated by the equations specified by this command.
ustride Specifies the number of floats or doubles between the beginning of control point
Rij and the beginning of control poiRt(j+1) j , wherei andj are theu andv
control point indices, respectively. This allows control points to be embedded in
arbitrary data structures. The only constraint is that the values for a particular
control point must occupy contiguous memory locations.
uorder Specifies the dimension of the control point array inulais. Must be positive.
vl v2 Specify a linear mapping of as presented @iEvalCoord2, to v/ one of the
two variables that is evaluated by the equations specified by this command.
vstride Specifies the number of floats or doubles between the beginning of control point
Rjj and the beginning of control poiRtj (j+1) , wherei and]j are theu andv
control point indices, respectively. This allows control points to be embedded in
arbitrary data structures. The only constraint is that the values for a particular
control point must occupy contiguous memory locations.
vorder Specifies the dimension of the control point array inthagis. Must be positive.
points Specifies a pointer to the array of control points.
DESCRIPTION

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices,
normals, texture coordinates, and colors. The values produced by an evaluator are sent on to furtl
stages of GL processing just as if they had been presentedyliggmtex, giNormal, glTexCoord,
andglColor commands, except that the generated values do not update the current normal, texture
coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported
the GL implementation) can be described using evaluators. These include almost all surfaces use
computer graphics, including B-spline surfaces, NURBS surfaces, Bezier surfaces, and so on.

Evaluators define surfaces based on bivariate Bernstein polynomials. Define

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 107

.

p(d,o

H Hl
p(,0) = IEDIEDB?(QJB;” (¢) Rl.}.
1= =

whereRjj is a control pointBi" (uM)is theith Bernstein polynomial of degree

n (uorder=n +1)

" | Al . —1
B (a) = | |&(1-a)"""

and Bjm (v")is thejth Bernstein polynomial of degree(vorder=m + 1)
¥l s m A I Y M- I
B (9) = d-0"!

Recall that

0°=1 and | =1
0

glMap?2 is used to define the basis and to specify what kind of values are produced. Once defined
map can be enabled and disabled by caljjifable andglDisablewith the map name, one of the

nine predefined values ftarget described below. WhegiEvalCoord2 presents valuasandyv, the
bivariate Bernstein polynomials are evaluated usingndv”, where

N u-ul
4= —

w2 -ul
_ v-vl
i =

v -vl

targetis a symbolic constant that indicates what kind of control points are provigethig and
what output is generated when the map is evaluated. It can assume one of nine predefined values

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 108

GL_MAP2_VERTEX_ 3
Each control point is three floating—point values represextingndz. Internal
glVertex3 commands are generated when the map is evaluated.

GL_MAP2_VERTEX_4
Each control point is four floating—point values represemtiggz, andw.
InternalglVertex4 commands are generated when the map is evaluated.

GL_MAP2_INDEX
Each control point is a single floating—point value representing a color index.
Internalglindex commands are generated when the map is evaluated. The
current index is not updated with the value of trgdbelex commands, however.

GL_MAP2_COLOR_4
Each control point is four floating—point values representing red, green, blue, ani
alpha. InternaglColor4 commands are generated when the map is evaluated.
The current color is not updated with the value of tlgd€elor4 commands,
however.

GL_MAP2_NORMAL
Each control point is three floating—point values representing yhandz
components of a normal vector. Intergillormal commands are generated
when the map is evaluated. The current normal is not updated with the value of
thesegINormal commands, however.

GL_MAP2_TEXTURE_COORD_1
Each control point is a single floating—point value representirgtéxéure
coordinate. Interna)lTexCoordl commands are generated when the map is
evaluated. The current texture coordinates are not updated with the value of
theseglTexCoord commands, however.

GL_MAP2_TEXTURE_COORD_2
Each control point is two floating—point values representing @het texture
coordinates. InternglTexCoord2 commands are generated when the map is
evaluated. The current texture coordinates are not updated with the value of
theseglTexCoord commands, however.

GL_MAP2_TEXTURE_COORD_3
Each control point is three floating—point values representirsy ttheendr
texture coordinates. InterrgllTexCoord3 commands are generated when the
map is evaluated. The current texture coordinates are not updated with the valu
of theseglTexCoord commands, however.

GL_MAP2_TEXTURE_COORD 4
Each control point is four floating—point values representing, the andq
texture coordinates. IntermgliTexCoord4 commands are generated when the
map is evaluated. The current texture coordinates are not updated with the valu
of theseglTexCoord commands, however.
ustride uorder, vstride vorder, andpointsdefine the array addressing for accessing the control
points. pointsis the location of the first control point, which occupies one, two, three, or four
contiguous memory locations, depending on which map is being defined. Thererdezx vorder
control points in the arrayustridetells how many float or double locations are skipped to advance
the internal memory pointer from control poiRj j to control poinR(j+1) j . vstridetells how
many float or double locations are skipped to advance the internal memory pointer from control po

Rijj to control poinRj (j+1) -

NOTES

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 109

As is the case with all GL commands that accept pointers to data, it is as if the corpenttsof
were copied bylMap?2 before it returned. Changes to the contentmafts have no effect after
glMap? is called.

ERRORS

GL_INVALID_ENUM s generated ifargetis not an accepted value.
GL_INVALID_VALUE is generated ifil is equal tou2, or ifv1lis equal tov2

GL_INVALID_VALUE is generated if eitharstrideor vstrideis less than the number of values in
a control point.

GL_INVALID_VALUE is generated if eitharorderorvorderis less than one or greater than
GL_MAX_EVAL_ORDER .

GL_INVALID_OPERATION is generated ijiMap2 is called between a call ggBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGetMap

glGet with argumenGL_MAX_EVAL_ORDER

gllsEnabled with argumenGL_MAP2_VERTEX_3
gllsEnabled with argumenGL_MAP2_VERTEX_4
gllsEnabled with argumenGL_MAP2_INDEX

gllsEnabled with argumenGL_MAP2_COLOR_4
glisEnabled with argumenGL_MAP2_NORMAL

glisEnabled with argumenGL_MAP2_TEXTURE_COORD_1
glisEnabled with argumenGL_MAP2_TEXTURE_COORD_2
glisEnabled with argumenGL_MAP2_TEXTURE_COORD_3
glisEnabled with argumenGL_MAP2_TEXTURE_COORD_4

SEE ALSO

"glBegin”, "glColor" , "glEnable", "glEvalCoord", "glEvalMesh", "glEvalPoint", "gIMap1",

"gIMapGrid" , "gINormal" , "glTexCoord", "glVertex"
glMapGrid

NAME

glMapGridld, gIMapGrid1f, giIMapGrid2d, gIMapGrid2f - define a one- or two—-dimensional
mesh

C SPECIFICATION

void gIMapGrid1d (GLint un, GLdoubleul, GLdoubleu?2)

void gIMapGrid1f (GLintun, GLfloatul, GLfloatu2)

void gIMapGrid2d (GLint un, GLdoubleul, GLdoubleu2, GLintvn GLdoublevl, GLdoublev2)

void gIMapGrid2f (GLint un, GLfloatul, GLfloatu2, GLint vn, GLfloatvl, GLfloatv2)

PARAMETERS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 110

un Specifies the number of partitions in the grid range intetvRly2]. Must be

positive.
ul, u2 Specify the mappings for integer grid domain valiggsandi=un.
vn Specifies the number of partitions in the grid range intemdahp]

(gIMapGrid2 only).

vl v2 Specify the mappings for integer grid domain valgdsandj=vn (giMapGrid2
only).
DESCRIPTION

glMapGrid andglEvalMeshare used in tandem to efficiently generate and evaluate a series of
evenly spaced map domain valugéEvalMesh steps through the integer domain of a one— or
two—dimensional grid, whose range is the domain of the evaluation maps speafidd iy and
glMap2.

glMapGridl andglMapGrid2 specify the linear grid mappings betweenitf@r i andj) integer grid
coordinates, to the (or u andv) floating—point evaluation map coordinates. "g§iapl" and
"gIMap2" for details of howu andv coordinates are evaluated.

glMapGridl specifies a single linear mapping such that integer grid coordinate 0 maps exattly to
and integer grid coordinaten maps exactly ta2. All other integer grid coordinatésre mapped
such that

u=i(u2-ul)/un+ul

glMapGrid2 specifies two such linear mappings. One maps integer grid coordiffladxactly to
ul, and integer grid coordinateun exactly tou2. The other maps integer grid coordinjt®
exactly tovl, and integer grid coordinafevn exactly tov2 Other integer grid coordinateandj
are mapped such that

u=i(u2-ul)/un+ul
v=j(v2-vl)/vn+vl

The mappings specified lgtMapGrid are used identically bylEvalMesh andglEvalPoint.

ERRORS

GL_INVALID_VALUE is generated if eithem orvnis not positive.
GL_INVALID_OPERATION is generated ifiIMapGrid is called between a call gBegin and
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_MAP1_GRID_DOMAIN

glGet with argumenGL_MAP2_GRID_DOMAIN

glGet with argumenGL_MAP1_GRID_SEGMENTS
glGet with argumenGL_MAP2_GRID_SEGMENTS

SEE ALSO

"glEvalCoord', "glEvalMesh", "glEvalPoint", "giMap1", "giMap2"

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 111

glMaterial

NAME

glMaterialf, glMateriali, giMaterialfv, gIMaterialiv - specify material parameters for the lighting
model

C SPECIFICATION

void gIMaterialf (GLenumface, GLenumpname GLfloatparam)

void gIMateriali (GLenumface, GLenumpname GLint param)

PARAMETERS

face Specifies which face or faces are being updated. Must be Gle 6RONT,
GL_BACK, or GL_FRONT_AND_BACK .

pname Specifies the single-valued material parameter of the face or faces that is being
updated. Must b&L_SHININESS.

param Specifies the value that parame®ir_SHININESS will be set to.

C SPECIFICATION
void gIMaterialfv (GLenunface, GLenumpname const GLfloatparams)

void gIMaterialiv (GLenumface, GLenumpname const GLint‘params)

PARAMETERS

face Specifies which face or faces are being updated. Must be @Gle 6RONT,
GL_BACK, orGL_FRONT_AND_BACK.

pname Specifies the material parameter of the face or faces that is being updated. Mus
be one ofGL_AMBIENT , GL_DIFFUSE, GL_SPECULAR,
GL_EMISSION, GL_SHININESS, GL_AMBIENT_AND_DIFFUSE , or
GL_COLOR_INDEXES.

params Specifies a pointer to the value or values pmatmewill be set to.

DESCRIPTION

glMaterial assigns values to material parameters. There are two matched sets of material
parameters. One, thient-facingset, is used to shade points, lines, bitmaps, and all polygons (when
two-sided lighting is disabled), or just front—facing polygons (when two-sided lighting is enabled).
The other sehack-facingis used to shade back—-facing polygons only when two-sided lighting is
enabled. Refer to thdLightModel reference page for details concerning one- and two-sided
lighting calculations.

glMaterial takes three arguments. The fifate specifies whether theL_FRONT materials, the
GL_BACK materials, or botlGL_FRONT_AND_BACK materials will be modified. The second,
pname specifies which of several parameters in one or both sets will be modified. Thpatards

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 112

specifies what value or values will be assigned to the specified parameter.

Material parameters are used in the lighting equation that is optionally applied to each vertex. The
equation is discussed in tgiightModel reference page. The parameters that can be specified
usingglMaterial , and their interpretations by the lighting equation, are as follows:

GL_AMBIENT
paramscontains four integer or floating—point values that specify the ambient
RGBA reflectance of the material. Integer values are mapped linearly such that
the most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating—point values are mapped directly.
Neither integer nor floating—point values are clamped. The default ambient
reflectance for both front- and back—facing materials is (0.2, 0.2, 0.2, 1.0).

GL_DIFFUSE
paramscontains four integer or floating—point values that specify the diffuse
RGBA reflectance of the material. Integer values are mapped linearly such that
the most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating—point values are mapped directly.
Neither integer nor floating—point values are clamped. The default diffuse
reflectance for both front— and back-facing materials is (0.8, 0.8, 0.8, 1.0).

GL_SPECULAR
paramscontains four integer or floating—point values that specify the specular
RGBA reflectance of the material. Integer values are mapped linearly such that
the most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating—point values are mapped directly.
Neither integer nor floating—point values are clamped. The default specular
reflectance for both front— and back-facing materials is (0.0, 0.0, 0.0, 1.0).

GL_EMISSION
paramscontains four integer or floating—point values that specify the RGBA
emitted light intensity of the material. Integer values are mapped linearly such
that the most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating—point values are mapped directly.
Neither integer nor floating—point values are clamped. The default emission
intensity for both front— and back—facing materials is (0.0, 0.0, 0.0, 1.0).

GL_SHININESS
paramsis a single integer or floating—point value that specifies the RGBA
specular exponent of the material. Integer and floating—point values are mappe!
directly. Only values in the range [0,128] are accepted. The default specular
exponent for both front— and back—facing materials is 0.

GL_AMBIENT_AND_DIFFUSE
Equivalent to callingylMaterial twice with the same parameter values, once with
GL_AMBIENT and once witltGL_DIFFUSE.

GL_COLOR_INDEXES
paramscontains three integer or floating—point values specifying the color indice:
for ambient, diffuse, and specular lighting. These three values, and
GL_SHININESS, are the only material values used by the color index mode
lighting equation. Refer to tleLightModel reference page for a discussion of
color index lighting.

NOTES

The material parameters can be updated at any time. In partighaterial can be called between
a call toglBegin and the corresponding callgtEnd. If only a single material parameter is to be
changed per vertex, howeveiColorMaterial is preferred oveglMaterial (see'glColorMaterial”

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 113

ERRORS

GL_INVALID_ENUM is generated if eithdace orpnameis not an accepted value.

GL_INVALID_VALUE is generated if a specular exponent outside the range [0,128] is specified.

ASSOCIATED GETS

glGetMaterial

SEE ALSO

"glColorMaterial", "glLight" , "glLightModel"

glMatrixMode

NAME

glMatrixMode - specify which matrix is the current matrix

C SPECIFICATION

void gIMatrixMode (GLenummode)

PARAMETERS

mode Specifies which matrix stack is the target for subsequent matrix operations.
Three values are accept&l. MODELVIEW , GL_PROJECTION, and

GL_TEXTURE.

DESCRIPTION

glMatrixMode sets the current matrix modeodecan assume one of three values:

GL_MODELVIEW
Applies subsequent matrix operations to the modelview matrix stack.

GL_PROJECTION
Applies subsequent matrix operations to the projection matrix stack.

GL_TEXTURE
Applies subsequent matrix operations to the texture matrix stack.

ERRORS
GL_INVALID_ENUM is generated iodeis not an accepted value.

GL_INVALID_OPERATION is generated i§IMatrixMode is called between a call giBegin
and the corresponding call ¢gdEnd.

ASSOCIATED GETS

glGet with argumenGL_MATRIX_MODE

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 114

SEE ALSO

"glLoadMatrix", "glMatrixMode", "glPushMatrix"

glMultMatrix

NAME

glMultMatrixd, gIMultMatrixf — multiply the current matrix by an arbitrary matrix

C SPECIFICATION
void gIMultMatrixd (const GLdoublém)

void gIMultMatrixf (const GLfloat'm)

PARAMETERS

m Specifies a pointer a to<4 matrix stored in column—major order as sixteen
consecutive values.

DESCRIPTION

glMultMatrix multiplies the current matrix with the one specifiednnThat is, if M is the current
matrix and T is the matrix passedgidultMatrix , then M is replaced with MT.

The current matrix is the projection matrix, modelview matrix, or texture matrix, determined by the
current matrix mode (séglMatrixMode").

m points to a 44 matrix of single— or double-precision floating—point values stored in column-majo
order. That is, the matrix is stored as

Uy Gy Qg 8y

@3

ERRORS

GL_INVALID_OPERATION is generated i§IMultMatrix is called between a call g3Beginand
the corresponding call tglEnd.

ASSOCIATED GETS
glGet with argumenGL_MATRIX_MODE

glGet with argumenGL_MODELVIEW_MATRIX
glGetwith argumenGL_PROJECTION_MATRIX

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 115

glGet with argumenGL_TEXTURE_MATRIX

SEE ALSO

"gIMatrixMode", "glLoadldentity", "glLoadMatrix", "gIPushMatrix"

gINewList

NAME

glNewList, glEndList — create or replace a display list

C SPECIFICATION

void gINewList(GLuintlist, GLenummode)

PARAMETERS
list Specifies the display list name.
mode Specifies the compilation mode, which canGle COMPILE or

GL_COMPILE_AND_EXECUTE .

C SPECIFICATION

void glEndList (void)

DESCRIPTION

Display lists are groups of GL commands that have been stored for subsequent execution. The
display lists are created wigiiNewList. All subsequent commands are placed in the display list, in
the order issued, ungflEndList is called.

gINewList has two arguments. The first argumdist, is a positive integer that becomes the unique
name for the display list. Names can be created and reservegl@#thLists and tested for
uniqueness withylisList. The second argumemhode is a symbolic constant that can assume one of
two values:

GL_COMPILE Commands are merely compiled.

GL_COMPILE_AND_EXECUTE

Commands are executed as they are compiled into the display list.
Certain commands are not compiled into the display list, but are executed immediately, regardless
the display-list mode. These commandghkseist, glGenlLists, glDeleteLists glFeedbackBuffer,
glSelectBuffer, glRenderMode glReadPixels glPixelStore, glFlush, glFinish, glisEnabled, and
all of theglGet routines.

WhenglEndList is encountered, the display-list definition is completed by associating the list with
the unique namést (specified in thglINewList command). If a display list with nartist already
exists, it is replaced only whetEndList is called.

NOTES

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 116

glCallList andglCallLists can be entered into display lists. The commands in the display list or lists
executed byglCallList orglCallLists are not included in the display list being created, even if the

list creation mode iI&L_COMPILE_AND_EXECUTE .

ERRORS

GL_INVALID_VALUE is generated ifst is zero.

GL_INVALID_ENUM is generated iodeis not an accepted value.

GL_INVALID_OPERATION is generated i§lEndList is called without a precedirgiNewList,
or if gINewList is called while a display list is being defined.

GL_INVALID_OPERATION is generated ifjINewList is called between a call ghBegin and the
corresponding call tglEnd.

ASSOCIATED GETS

glisList

SEE ALSO

"glCallList", "glCallLists", "glDeleteLists", "glGenLists"

gINormal

NAME

gINormal3b, gINormal3d, gINormal3f, gINormal3i, gINormal3s, giINormal3bv, gINormal3dv,
glNormal3fv, gINormal3iv, gINormal3sv - set the current normal vector

C SPECIFICATION

void gINormal3b(GLbytenx, GLbyteny, GLbytenz)

void gINormal3d(GLdoublenx, GLdoubleny, GLdoublenz)
void gINormal3f(GLfloat nx, GLfloatny, GLfloatnz)

void gINormal3i(GLint nx GLint ny, GLintnz)

void gINormal3s(GLshortnx, GLshortny, GLshortnz)

PARAMETERS

nx ny, nz Specify thex, y, andzcoordinates of the new current normal. The initial value of
the current normal is (0,0,1).

C SPECIFICATION

void gINormal3bv(const GLbyterv)

void gINormal3dv(const GLdoublév)

void gINormal3fv(const GLfloatv)

void gINormal3iv (const GLintv)
void gINormal3sv(const GLshortv)

PARAMETERS

% Specifies a pointer to an array of three elements,tiieandz coordinates of the

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 117

new current normal.

DESCRIPTION

The current normal is set to the given coordinates wheggMermal is issued. Byte, short, or
integer arguments are converted to floating—point format with a linear mapping that maps the most
positive representable integer value to 1.0, and the most negative representable integer value to -

Normals specified witlyINormal need not have unit length. If normalization is enabled, then
normals specified witlgINormal are normalized after transformation. Normalization is controlled
usingglEnable andglDisable with the argumenGL_NORMALIZE . By default, normalization is
disabled.

NOTES

The current normal can be updated at any time. In partiglidoymal can be called between a call
to gIBegin and the corresponding callgtEnd.

ASSOCIATED GETS

glGet with argumenGL_CURRENT_NORMAL
glisEnable with argumentsL_NORMALIZE

SEE ALSO

"gIBegin”, "glColor" , "glindex" , "glTexCoord", "glVertex"

glOrtho

NAME

glOrtho — multiply the current matrix by an orthographic matrix

C SPECIFICATION

void glOrtho (GLdoubleleft, GLdoubleright, GLdoublebottom GLdoubletop, GLdoublenear,

GLdoublefar)

PARAMETERS

left, right Specify the coordinates for the left and right vertical clipping planes.

bottom top Specify the coordinates for the bottom and top horizontal clipping planes.

near, far Specify the distances to the nearer and farther depth clipping planes. These
distances are negative if the plane is to be behind the viewer.

DESCRIPTION

glOrtho describes a perspective matrix that produces a parallel projedidinbattom -near) and

(right, top, +near) specify the points on the near clipping plane that are mapped to the lower left anc
upper right corners of the window, respectively, assuming that the eye is located at (0fa®, 0). —
specifies the location of the far clipping plane. Buthr andfar can be either positive or negative.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 118

The corresponding matrix is

2

right - left 0 0 b
2

0 top - bottom tli

2
0 0 far - near Z
0 0 0 1]
where

right + left

t o= -
x right - left

top + bottom

¥ _tﬂp - bottom

far +near

t = -
& far - near

The current matrix is multiplied by this matrix with the result replacing the current matrix. That is, i
M is the current matrix and O is the ortho matrix, then M is replaced with M o O.

UseglPushMatrix andglPopMatrix to save and restore the current matrix stack.

ERRORS

GL_INVALID_OPERATION is generated i§lOrtho is called between a call gBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_MATRIX_MODE

glGet with argumenGL_MODELVIEW_MATRIX

glGet with argumenGL_PROJECTION_MATRIX
glGet with argumenGL_TEXTURE_MATRIX

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 119

SEE ALSO

"glFrustum?; "glMatrixMode" , "glMultMatrix" , "glPushMatrix", "glViewport"

glPassThrough

NAME

glPassThrough- place a marker in the feedback buffer

C SPECIFICATION

void glPassThrough GLfloat token)

PARAMETERS

token Specifies a marker value to be placed in the feedback buffer following a
GL_PASS_THROUGH_TOKEN.

DESCRIPTION

Feedback is a GL render mode. The mode is selected by cgegderMode with

GL_FEEDBACK . When the GL is in feedback mode, no pixels are produced by rasterization.
Instead, information about primitives that would have been rasterized is fed back to the application
using the GL. Se&glFeedbackBuffer'for a description of the feedback buffer and the values in it.

glPassThroughinserts a user—defined marker in the feedback buffer when it is executed in feedbac
mode. tokenis returned as if it were a primitive; it is indicated with its own unique identifying value:
GL_PASS THROUGH_TOKEN. The order oflPassThroughcommands with respect to the
specification of graphics primitives is maintained.

NOTES

glPassThroughis ignored if the GL is not in feedback mode.

ERRORS

GL_INVALID_OPERATION is generated ifjlPassThroughis called between a call ggBegin
and the corresponding call ¢gdEnd.

ASSOCIATED GETS

glGet with argumenGL_RENDER_MODE

SEE ALSO

"glFeedbackBuffer™glRenderMode"

glPixelMap

NAME

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 120

glPixelMapfv, glPixelMapuiv, glPixelMapusv— set up pixel transfer maps

C SPECIFICATION

void glPixelMapfv (GLenummap, GLintmapsizeconst GLfloatvalues)
void glPixelMapuiv (GLenummap, GLintmapsizeconst GLuintvalues)
void glPixelMapusv(GLenummap GLint mapsizeconst GLushortvalues)

PARAMETERS

map Specifies a symbolic map name. Must be one of the following:
GL_PIXEL_MAP_I_TO_| ,GL_PIXEL_MAP_S TO_S,
GL_PIXEL_MAP_I_TO_R,GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B,GL_PIXEL_MAP_I TO_A,
GL_PIXEL_MAP_R_TO_R,GL_PIXEL_MAP_G_TO_G,
GL_PIXEL_MAP_B TO_B, orGL_PIXEL_MAP_A TO_A.

mapsize Specifies the size of the map being defined.
values Specifies an array ohapsizevalues.
DESCRIPTION

glPixelMap sets up translation tables,rmoaps used byglDrawPixels glReadPixels glCopyPixels
glTeximagelD, andglTexlmage2D Use of these maps is described completely in the
glPixelTransfer reference page, and partly in the reference pages for the pixel and texture image
commands. Only the specification of the maps is described in this reference page.

mapis a symbolic map name, indicating one of ten maps tonsepsizespecifies the number of
entries in the map, andluesis a pointer to an array nfapsizemap values.

The ten maps are as follows:

GL_PIXEL_MAP_I_TO_|
Maps color indices to color indices.

GL_PIXEL_MAP_S TO_S
Maps stencil indices to stencil indices.

GL_PIXEL_MAP_I_TO_R
Maps color indices to red components.

GL_PIXEL_MAP_I_TO_G
Maps color indices to green components.

GL_PIXEL_MAP_I_TO_B
Maps color indices to blue components.

GL_PIXEL_MAP_I_TO_A
Maps color indices to alpha components.

GL_PIXEL_MAP_R_TO R
Maps red components to red components.

GL_PIXEL_MAP_G_TO_G
Maps green Components to green Components.

GL_PIXEL_MAP_B TO_B
Maps blue components to blue components.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 121

GL_PIXEL_MAP_A TO_A

Maps alpha components to alpha components.
The entries in a map can be specified as single—precision floating—point numbers, unsigned short
integers, or unsigned long integers. Maps that store color component values (all but
GL_PIXEL_MAP_| TO_| andGL_PIXEL_MAP_S TO_S) retain their values in floating—point
format, with unspecified mantissa and exponent sizes. Floating—point values specified by
glPixelMapfv are converted directly to the internal floating—point format of these maps, then clamp
to the range [0,1]. Unsigned integer values specifiedlBixelMapusv andglPixelMapuiv are
converted linearly such that the largest representable integer maps to 1.0, and zero maps to 0.0.

Maps that store indice§L_PIXEL_MAP_I_TO_| andGL_PIXEL_MAP_S_TO_S, retain their
values in fixed—point format, with an unspecified number of bits to the right of the binary point.
Floating—point values specified gPixelMapfv are converted directly to the internal fixed—point
format of these maps. Unsigned integer values specifigtPtiyelMapusv andglPixelMapuiv
specify integer values, with all zeros to the right of the binary point.

The table below shows the initial sizes and values for each of the maps. Maps that are indexed by

either color or stencil indices must hawapsize= 2" for somen or results are undefined. The
maximum allowable size for each map depends on the implementation and can be determined by
calling glGet with argumenGL_MAX_PIXEL_MAP_TABLE . The single maximum applies to all
maps, and it is at least 32.

map lookup index lookup value initial size initial value
GL_PIXEL_MAP_I_TO I color index 0.0
color index 1

GL_PIXEL_ MAP_S TO_ S stencil index 0
stencil index 1

GL_PIXEL_MAP_I_ TO_R R 0.0
color index 1

GL_PIXEL_MAP_I TO_G G 0.0
color index 1

GL_PIXEL_MAP_I_TO_B B 0.0
color index 1

GL_PIXEL_MAP_| TO_A A 0.0
color index 1

GL_PIXEL_ MAP_R TO_R R 0.0
R 1

GL_PIXEL_MAP_G TO G G 0.0
G 1

GL_PIXEL_MAP_B TO B B 0.0
B 1

GL_PIXEL MAP_A TO_ A A 0.0
A 1

ERRORS

GL_INVALID_ENUM is generated ifnapis not an accepted value.

GL_INVALID_VALUE is generated ifhapsizes negative or larger than

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 122

GL_MAX_PIXEL_MAP_TABLE .

GL_INVALID_VALUE is generated ihapisGL_PIXEL MAP_| TO I,
GL_PIXEL_MAP_S TO_S,GL_PIXEL_MAP_I_TO_R ,GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B , orGL_PIXEL_MAP_I_TO_A , andmapsizds not a power of two.

GL_INVALID_OPERATION is generated ifjlPixelMap is called between a call giBeginand
the corresponding call tglEnd.

ASSOCIATED GETS

glGetPixelMap

glGetwith argumenGL_PIXEL_MAP_I_TO_I_SIZE

glGetwith argumenGL_PIXEL_MAP_S TO_S_SIZE

glGetwith argumenGL_PIXEL_MAP_| TO_R_SIZE

glGet with argumenGL_PIXEL_MAP_| TO_G_SIZE

glGet with argumenGL_PIXEL_MAP_|I TO_B_SIZE

glGet with argumenGL_PIXEL_MAP_|I TO_A_SIZE

glGetwith argumenGL_PIXEL_MAP_R TO_R_SIZE

glGet with argumenGL_PIXEL_MAP_G_TO_G_SIZE glGet with argument
GL_PIXEL_MAP_B_TO B SIZE

glGetwith argumenGL_PIXEL_MAP_A TO_A_SIZE
glGet with argumenGL_MAX_PIXEL_MAP_TABLE

SEE ALSO

"glCopyPixels’ "glDrawPixels", "glPixelStore", "glPixelTransfer", "glReadPixels",
"glTexlmagelD", "glTexImage2D"

glPixelStore

NAME

glPixelStoref, glPixelStorei— set pixel storage modes

C SPECIFICATION

void glPixelStoref(GLenumpname GLfloatparam)
void glPixelStorei(GLenumpname GLint param)

PARAMETERS

pname Specifies the symbolic name of the parameter to be set. Six values affect the
packing of pixel data into memorgL_PACK_SWAP_BYTES,
GL_PACK_LSB_FIRST, GL_PACK_ROW_LENGTH ,
GL_PACK_SKIP_PIXELS, GL_PACK_SKIP_ROWS, and
GL_PACK_ALIGNMENT . Six more affect the unpacking of pixel d&tam
memory:GL_UNPACK_SWAP_BYTES, GL_UNPACK_LSB_FIRST,
GL_UNPACK_ROW_LENGTH , GL_UNPACK_SKIP_PIXELS,
GL_UNPACK_SKIP_ROWS, andGL_UNPACK_ALIGNMENT .

param Specifies the value thanames set to.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 123

DESCRIPTION

glPixelStore sets pixel storage modes that affect the operation of subsefiDeswPixelsand
glReadPixelsas well as the unpacking of polygon stipple patterns"¢dPelygonStipple”), bitmaps
(see"gIBitmap"), and texture patterns (s&#TexlmagelD"and"glTeximage2D").

pnameis a symbolic constant indicating the parameter to be sepasathis the new value. Six of
the twelve storage parameters affect how pixel data is returned to client memory, and are therefort
significant only forglReadPixelscommands. They are as follows:

GL_PACK_SWAP_BYTES
If true, byte ordering for multibyte color components, depth components, color
indices, or stencil indices is reversed. That is, if a four—byte component is made
up of bytedhq, b1, b2, bz, it is stored in memory dsg, by, b1, bg if
GL_PACK_SWAP_BYTES s true. GL_PACK_SWAP_BYTES has no effect
on the memory order of components within a pixel, only on the order of bytes
within components or indices. For example, the three componentSlofRGB
format pixel are always stored with red first, green second, and blue third,
regardless of the value 6fL_PACK_SWAP_BYTES.

GL_PACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant;
otherwise, the first bit in each byte is the most significant one. This parameter is
significant for bitmap data only.

GL_PACK_ROW_LENGTH
If greater than zer@;L_PACK_ROW_LENGTH defines the number of pixels
in a row. If the first pixel of a row is placed at locatmim memory, then the
location of the first pixel of the next row is obtained by skipping

nl 52a

a|snl| $<a
LS| 4

components or indices, whemas the number of components or indices in a
pixel, | is the number of pixels in a rosL. PACK_ROW_LENGTH ifitis
greater than zero, thveidth argument to the pixel routine otherwise)s the
value ofGL_PACK_ALIGNMENT , ands s the size, in bytes, of a single
component (ifa < s then itis as i = s). In the case of 1-bit values, the
location of the next row is obtained by skipping

nl
k=8a p

components or indices.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 124

The wordcomponentn this description refers to the nonindex values red, green,
blue, alpha, and depth. Storage for@at RGB, for example, has three
components per pixel: first red, then green, and finally blue.

GL_PACK_SKIP_PIXELS andGL_PACK_SKIP_ROWS
These values are provided as a convenience to the programmer; they provide ni
functionality that cannot be duplicated simply by incrementing the pointer passet
to glReadPixels SettingGL_PACK_SKIP_PIXELS toiis equivalent to
incrementing the pointer byn components or indices, wherés the number of
components or indices in each pixel. Settslg PACK_SKIP_ROWS toj is
equivalent to incrementing the pointer jllgycomponents or indices, whekés
the number of components or indices per row, as computed above in the
GL_PACK_ROW_LENGTH section.

GL_PACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory.
The allowable values are 1 (byte—alignment), 2 (rows aligned to even—numberec
bytes), 4 (word alignment), and 8 (rows start on double—word boundaries).

The other six of the twelve storage parameters affect how pixel data is read from client memory.
These values are significant fgiDrawPixels, glTeximagelD glTexlmage2D, gIBitmap, and
glPolygonStipple They are as follows:

GL_UNPACK_SWAP_BYTES
If true, byte ordering for multibyte color components, depth components, color
indices, or stencil indices is reversed. That is, if a four—byte component is made
up of bytedhq, b1, b2, b3, it is taken from memory dw, bo, b1, bg if
GL_UNPACK_SWAP_BYTES is true. GL_UNPACK_SWAP_BYTES has
no effect on the memory order of components within a pixel, only on the order ol
bytes within components or indices. For example, the three components of a
GL_RGB format pixel are always stored with red first, green second, and blue
third, regardless of the value @L_UNPACK_SWAP_BYTES.

GL_UNPACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant;
otherwise, the first bit in each byte is the most significant one. This is significant
for bitmap data only.

GL_UNPACK_ROW_LENGTH
If greater than zer&;L_UNPACK_ROW_LENGTH defines the number of
pixels in a row. If the first pixel of a row is placed at locaian memory, then
the location of the first pixel of the next row is obtained by skipping

nl 52a

a|snl| $<a
s| 4

L

components or indices, whemas the number of components or indices in a
pixel, | is the number of pixels in a rosL_ UNPACK_ROW_LENGTH if it
is greater than zero, th@dth argument to the pixel routine otherwisa)s the
value ofGL_UNPACK_ALIGNMENT , ands s the size, in bytes, of a single

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 125

component (ifa < s then itis as i = s). In the case of 1-bit values, the
location of the next row is obtained by skipping

nl
k=8a a

components or indices.

The wordcomponentn this description refers to the nonindex values red, green,
blue, alpha, and depth. Storage for@at RGB, for example, has three
components per pixel: first red, then green, and finally blue.

GL_UNPACK_SKIP_PIXELS andGL_UNPACK_SKIP_ROWS
These values are provided as a convenience to the programmer; they provide ni
functionality that cannot be duplicated simply by incrementing the pointer passe
to glDrawPixels, giTexlmagelD, glTeximage20 gIBitmap, or
glPolygonStipple SettingGL_UNPACK_SKIP_PIXELS toi is equivalent to
incrementing the pointer iyn components or indices, wherés the number of
components or indices in each pixel. Settdlg UNPACK_SKIP_ROWS to]j
is equivalent to incrementing the pointerjlkycomponents or indices, whetés
the number of components or indices per row, as computed above in the
GL_UNPACK_ROW_LENGTH section.

GL_UNPACK_ALIGNMENT

Specifies the alignment requirements for the start of each pixel row in memory.
The allowable values are 1 (byte—alignment), 2 (rows aligned to even—numberec
bytes), 4 (word alignment), and 8 (rows start on double—word boundaries).

The following table gives the type, initial value, and range of valid values for each of the storage

parameters that can be set wjtRixelStore.

pname type initial value valid range
GL_PACK_SWAP_BYTES false
Boolean true or
false
GL_PACK _LSB FIRST false
Boolean true or
false
GL_PACK_ROW_LENGTH 0
integer [0, inf)
GL_PACK_SKIP_ROWS 0
integer [0, inf)
GL_PACK_SKIP_PIXELS 0
integer [0, inf)
GL_PACK_ALIGNMENT 4
integer 1,2,4,0r8
GL_UNPACK_SWAP_BYTES false
Boolean true or
false
GL_UNPACK _LSB FIRST false
Boolean true or

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 126

false

GL_UNPACK_ROW_LENGTH 0

integer [0, inf)
GL_UNPACK_SKIP_ROWS 0

integer [0, inf)
GL_UNPACK_SKIP_PIXELS 0

integer [0, inf)
GL_UNPACK_ALIGNMENT 4

integer 1,2,4,0r8

glPixelStoref can be used to set any pixel store parameter. If the parameter type is Boolean, then
paramis 0.0, the parameter is false; otherwise it is set to trugnadinds a integer type parameter,
paramis rounded to the nearest integer.

Likewise, glPixelStoreican also be used to set any of the pixel store parameters. Boolean
parameters are set to fals@#ramis 0 and true otherwisgparamis converted to floating point
before being assigned to real-valued parameters.

NOTES

The pixel storage modes in effect whBrawPixels, glReadPixels glTeximagelD
glTeximage2D glIBitmap, or glPolygonStippleis placed in a display list control the interpretation
of memory data. The pixel storage modes in effect when a display list is executed are not significe

ERRORS

GL_INVALID_ENUM is generated ipnameis not an accepted value.

GL_INVALID_VALUE is generated if a negative row length, pixel skip, or row skip value is
specified, or if alignment is specified as other than 1, 2, 4, or 8.

GL_INVALID_OPERATION is generated ifjlPixelStoreis called between a call giBegin and
the corresponding call tglEnd.

ASSOCIATED GETS

glGetwith argumenGL_PACK_SWAP_BYTES
glGetwith argumenGL_PACK_LSB_FIRST
glGetwith argumenGL_PACK_ROW_LENGTH
glGet with argumenGL_PACK_SKIP_ROWS
glGet with argumenGL_PACK_SKIP_PIXELS
glGet with argumenGL_PACK_ALIGNMENT
glGet with argumenGL_UNPACK_SWAP_BYTES
glGetwith argumenGL_UNPACK_LSB_FIRST
glGet with argumenGL_UNPACK_ROW_LENGTH
glGet with argumenGL_UNPACK_SKIP_ROWS
glGet with argumenGL_UNPACK_SKIP_PIXELS
glGet with argumenGL_UNPACK_ALIGNMENT

SEE ALSO

"gIBitmap", "glDrawPixels", "glPixelMap" , "glPixelTransfer", "glPixelZoom", "glPolygonStipple"

, "gIReadPixels" "glTexImagelD", "gITexImage2D"

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 127

glPixelTransfer

NAME

glPixelTransferf, glPixelTransferi — set pixel transfer modes

C SPECIFICATION

void glPixelTransferf(GLenumpname GLfloatparam)
void glPixelTransferi (GLenumpname GLint param)

PARAMETERS

pname Specifies the symbolic name of the pixel transfer parameter to be set. Must be
one of the followingGL_MAP_COLOR , GL_MAP_STENCIL
GL_INDEX_SHIFT , GL_INDEX_OFFSET, GL_RED_SCALE,
GL_RED_BIAS, GL_GREEN_SCALE, GL_GREEN_BIAS,
GL_BLUE_SCALE, GL_BLUE_BIAS, GL_ALPHA_SCALE,
GL_ALPHA_BIAS , GL_DEPTH_SCALE, orGL_DEPTH_BIAS.

param Specifies the value th@names set to.

DESCRIPTION

glPixelTransfer sets pixel transfer modes that affect the operation of subsegiDesPixels,
glReadPixels glCopyPixels glTexlmagelD andglTeximage2Dcommands. The algorithms that

are specified by pixel transfer modes operate on pixels after they are read from the frame buffer
(gIReadPixelsandglCopyPixelg or unpacked from client memorglDrawPixels glTexImagelD,
andglTexlmage2D). Pixel transfer operations happen in the same order, and in the same manner,
regardless of the command that resulted in the pixel operation. Pixel storage modes (see
"glPixelStore") control the unpacking of pixels being read from client memory, and the packing of
pixels being written back into client memory.

Pixel transfer operations handle four fundamental pixel tyqmder, color index depth andstencil

Color pixels are made up of four floating—point values with unspecified mantissa and exponent siz¢
scaled such that 0.0 represents zero intensity and 1.0 represents full int@okityindicescomprise

a single fixed—point value, with unspecified precision to the right of the binary paipthpixels
comprise a single floating—point value, with unspecified mantissa and exponent sizes, scaled such
0.0 represents the minimum depth buffer value, and 1.0 represents the maximum depth buffer valt
Finally, stencilpixels comprise a single fixed—point value, with unspecified precision to the right of
the binary point.

The pixel transfer operations performed on the four basic pixel types are as follows:

Color Each of the four color components is multiplied by a scale factor, then added to .
bias factor. That is, the red component is multiplie®hy RED_SCALE, then
added tocGL_RED_BIAS; the green component is multiplied by
GL_GREEN_SCALE, then added t&L_GREEN_BIAS; the blue component
is multiplied byGL_BLUE_SCALE, then added t&L_BLUE_BIAS; and the
alpha component is multiplied 1§ ALPHA_SCALE , then added to
GL_ALPHA BIAS . After all four color components are scaled and biased, eact

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 128

is clamped to the range [0,1]. All color scale and bias values are specified with
glPixelTransfer.

If GL_MAP_COLOR is true, each color component is scaled by the size of the
corresponding color—-to—color map, then replaced by the contents of that map
indexed by the scaled component. That is, the red component is scaled by
GL_PIXEL_MAP_R_TO_R_SIZE, then replaced by the contents of
GL_PIXEL_MAP_R_TO_R indexed by itself. The green component is scaled
by GL_PIXEL_MAP_G_TO_G_SIZE, then replaced by the contents of
GL_PIXEL_MAP_G_TO_G indexed by itself. The blue component is scaled
by GL_PIXEL_MAP_B_TO_B_SIZE, then replaced by the contents of
GL_PIXEL_MAP_B_TO_B indexed by itself. And the alpha component is
scaled byGL_PIXEL_MAP_A TO_A SIZE , then replaced by the contents of
GL_PIXEL_MAP_A TO_A indexed by itself. All components taken from the
maps are then clamped to the range [0@L_MAP_COLOR is specified with
glPixelTransfer. The contents of the various maps are specified with
glPixelMap.

Color index Each color index is shifted left liyL_INDEX_SHIFT bits, filling with zeros
any bits beyond the number of fraction bits carried by the fixed—point index. If
GL_INDEX_SHIFT is negative, the shift is to the right, again zero filled. Then
GL_INDEX_OFFSET is added to the indexGL_INDEX_SHIFT and
GL_INDEX_OFFSET are specified witlglPixelTransfer.

From this point, operation diverges depending on the required format of the
resulting pixels. If the resulting pixels are to be written to a color index buffer, or
if they are being read back to client memorgin COLOR_INDEX format,

the pixels continue to be treated as indicessUf MAP_COLOR is true, each
index is masked by"2 - 1, wherenisGL_PIXEL_MAP_I_TO_|_SIZE , then
replaced by the contents@t._PIXEL _MAP_| TO_| indexed by the masked
value. GL_MAP_COLOR is specified withglPixelTransfer. The contents of

the index map are specified wigtPixelMap.

If the resulting pixels are to be written to an RGBA color buffer, or if they are
being read back to client memory in a format other tBnCOLOR_INDEX ,
the pixels are converted from indices to colors by referencing the four maps
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B , andGL_PIXEL_MAP_I_TO_A . Before being
dereferenced, the index is masked By-21, wheren is
GL_PIXEL_MAP_I_TO_R_SIZE for the red map,
GL_PIXEL_MAP_I_TO_G_SIZE for the green map,
GL_PIXEL_MAP_|_TO_B_SIZE for the blue map, and
GL_PIXEL_MAP_| TO_A SIZE for the alpha map. All components taken
from the maps are then clamped to the range [0,1]. The contents of the four ma
are specified witlglPixelMap.

Depth Each depth value is multiplied l6y._DEPTH_SCALE, added to
GL_DEPTH_BIAS, then clamped to the range [0,1].

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 129

Stencil Each index is shifte@GL _INDEX_SHIFT bits just as a color index is, then
added toGL_INDEX_OFFSET. If GL_MAP_STENCIL is true, each index is

masked by B -1, wherenisGL_PIXEL_MAP_S TO_S_SIZE, then replaced
by the contents dBL_PIXEL_MAP_S_TO_S indexed by the masked value.

The following table gives the type, initial value, and range of valid values for each of the pixel
transfer parameters that are set vgitRixelTransfer.

pname type initial value valid range
GL_MAP_COLOR false
Boolean true/false
GL_MAP_STENCIL false
Boolean true/false
GL_INDEX_SHIFT 0

integer (=inf, inf)
GL_INDEX_OFFSET 0

integer (=inf, inf)
GL_RED_SCALE 1.0

float (=inf, inf)
GL_GREEN_SCALE 1.0

float (=inf, inf)
GL_BLUE_SCALE 1.0

float (=inf, inf)
GL_ALPHA_SCALE 1.0

float (=inf, inf)
GL_DEPTH_SCALE 1.0

float (=inf, inf)
GL_RED_BIAS 0.0

float (=inf, inf)
GL_GREEN_BIAS 0.0

float (=inf, inf)
GL_BLUE_BIAS 0.0

float (=inf, inf)
GL_ALPHA_BIAS 0.0

float (=inf, inf)
GL_DEPTH_BIAS 0.0

float (=inf, inf)

glPixelTransferf can be used to set any pixel transfer parameter. If the parameter type is Boolean,
0.0 implies false and any other value implies trugondkmes an integer parametgraramis
rounded to the nearest integer.

Likewise, glPixelTransferi can also be used to set any of the pixel transfer parameters. Boolean
parameters are set to fals@p#ramis 0 and true otherwisgparamis converted to floating point
before being assigned to real-valued parameters.

NOTES

If a gIDrawPixels, glReadPixels glCopyPixels glTexImagelD or glTeximage2Dcommand is
placed in a display list (sé¢gINewList" and"glCallList"), the pixel transfer mode settings in effect

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 130

when the display list isxecutedare the ones that are used. They may be different from the settings
when the command was compiled into the display list.

ERRORS
GL_INVALID_ENUM is generated ipnameis not an accepted value.

GL_INVALID_OPERATION is generated i§lPixelTransfer is called between a call gdBegin
and the corresponding call ¢gdEnd.

ASSOCIATED GETS

glGet with argumenGL_MAP_COLOR
glGet with argumenGL_MAP_STENCIL
glGetwith argumenGL_INDEX_SHIFT
glGetwith argumenGL_INDEX_OFFSET
glGetwith argumenGL_RED_SCALE
glGetwith argumenGL_RED_BIAS
glGet with argumentGL_GREEN_SCALE
glGet with argumenGL_GREEN_BIAS
glGet with argumenGL_BLUE_SCALE
glGet with argumenGL_BLUE_BIAS
glGet with argumenGL_ALPHA_SCALE
glGet with argumenGL_ALPHA_BIAS
glGet with argumenGL_DEPTH_SCALE
glGet with argumenGL_DEPTH_BIAS

SEE ALSO

"glCallList", "glCopyPixels", "gIDrawPixels", "gINewList" , "glPixelMap" , "glPixelStore",

"glPixelZoom", "glReadPixels", "glTexImagelD", "glTeximage2D"

glPixelZoom

NAME

glPixelZoom - specify the pixel zoom factors

C SPECIFICATION

void glPixelZoom(GLfloat xfactor, GLfloat yfactor)

PARAMETERS

xfactor, yfactor ~ Specify thexandy zoom factors for pixel write operations.

DESCRIPTION

glPixelZoom specifies values for theandy zoom factors. During the executiongiDrawPixels or
glCopyPixels if (X, yr) is the current raster position, and a given element is inthh@w andmth

column of the pixel rectangle, then pixels whose centers are in the rectangle with corners at
(Xr + n-xfactor,yy + m-yfactop

(Xr + (n+1) -xfactor, yy + (m+1) -yfactol)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 131

are candidates for replacement. Any pixel whose center lies on the bottom or left edge of this
rectangular region is also modified.

Pixel zoom factors are not limited to positive values. Negative zoom factors reflect the resulting
image about the current raster position.

ERRORS

GL_INVALID_OPERATION is generated iflPixelZoom is called between a call giBegin and
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_ZOOM_X
glGet with argumenGL_ZOOM_Y

SEE ALSO

"glCopyPixels', "glDrawPixels"

glPointSize

NAME

glPointSize- specify the diameter of rasterized points

C SPECIFICATION

void glPointSizg GLfloat size)

PARAMETERS

size Specifies the diameter of rasterized points. The default is 1.0.

DESCRIPTION

glPointSize specifies the rasterized diameter of both aliased and antialiased points. Using a point
size other than 1.0 has different effects, depending on whether point antialiasing is enabled. Point
antialiasing is controlled by callimfEnable andglDisable with argumenGL_POINT_SMOOTH .

If point antialiasing is disabled, the actual size is determined by rounding the supplied size to the
nearest integer. (If the rounding results in the value 0, it is as if the point size were 1.) If the round
size is odd, then the center point,(y) of the pixel fragment that represents the point is computed
as

(L xw]+.5, L ywl+.5)

wherew subscripts indicate window coordinates. All pixels that lie within the square grid of the
rounded size centered at { y) make up the fragment. If the size is even, the center point is

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 132

(Lxw+.51, LywtS]

and the rasterized fragment’s centers are the half-integer window coordinates within the square of
rounded size centered at{ y). All pixel fragments produced in rasterizing a nonantialiased point
are assigned the same associated data, that of the vertex corresponding to the point.

If antialiasing is enabled, then point rasterization produces a fragment for each pixel square that
intersects the region lying within the circle having diameter equal to the current point size and
centered at the point'sqy , W). The coverage value for each fragment is the window coordinate

area of the intersection of the circular region with the corresponding pixel square. This value is sa
and used in the final rasterization step. The data associated with each fragment is the data associ
with the point being rasterized.

Not all sizes are supported when point antialiasing is enabled. If an unsupported size is requestec
nearest supported size is used. Only size 1.0 is guaranteed to be supported; others depend on thi
implementation. The range of supported sizes and the size difference between supported sizes w
the range can be queried by callgiGet with argument&L_POINT_SIZE_RANGE and
GL_POINT_SIZE_GRANULARITY .

NOTES

The point size specified tgtPointSizeis always returned wheBL_POINT_SIZE is queried.
Clamping and rounding for aliased and antialiased points have no effect on the specified value.

Non-antialiased point size may be clamped to an implementation—dependent maximum. Althougt
this maximum cannot be queried, it must be no less than the maximum value for antialiased points
rounded to the nearest integer value.

ERRORS
GL_INVALID_VALUE is generated #izeis less than or equal to zero.

GL_INVALID_OPERATION is generated ifjlPointSizeis called between a call glBeginand
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_POINT_SIZE

glGetwith argumenGL_POINT_SIZE_RANGE

glGet with argumenGL_POINT_SIZE_GRANULARITY
glisEnabled with argumentGL_POINT_SMOOTH

SEE ALSO

"glEnable’, glPointSmooth

glPolygonMode

NAME

glPolygonMode- select a polygon rasterization mode

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 133

C SPECIFICATION

void glPolygonModeg GLenumface GLenummode)

PARAMETERS

face Specifies the polygons thatodeapplies to. Must b&L_FRONT for
front—facing polygon&L BACK for back—facing polygons, or
GL_FRONT_AND_BACK for front- and back—-facing polygons.

mode Specifies the way polygons will be rasterized. Accepted valugslarBOINT ,
GL_LINE , andGL_FILL . The defaulti$ssL_FILL for both front- and
back-facing polygons.

DESCRIPTION

glPolygonMode controls the interpretation of polygons for rasterizati@ee describes which
polygonsmodeapplies to: front—facing polygorGl{ FRONT), back—facing polygons

(GL_BACK), or both GL_FRONT_AND_BACK). The polygon mode affects only the final
rasterization of polygons. In particular, a polygon’s vertices are lit and the polygon is clipped and
possibly culled before these modes are applied.

Three modes are defined and can be specifiatbite

GL_POINT Polygon vertices that are marked as the start of a boundary edge are drawn as
points. Point attributes such@_ POINT_SIZE andGL_POINT_SMOOTH
control the rasterization of the points. Polygon rasterization attributes other thar
GL_POLYGON_MODE have no effect.

GL_LINE Boundary edges of the polygon are drawn as line segments. They are treated a
connected line segments for line stippling; the line stipple counter and pattern ar
not reset between segments (ggleineStipple™). Line attributes such as
GL_LINE_WIDTH andGL_LINE_SMOOTH control the rasterization of the
lines. Polygon rasterization attributes other t&an POLYGON_MODE have
no effect.

GL_FILL The interior of the polygon is filled. Polygon attributes such as
GL_POLYGON_STIPPLE andGL_POLYGON_SMOQOTH control the
rasterization of the polygon.

EXAMPLES

To draw a surface with filled back—facing polygons and outlined front—facing polygons, call

gl Pol ygonMbde(GL_FRONT, G__LI NE);

NOTES

Vertices are marked as boundary or nonboundary with an edge flag. Edge flags are generated
internally by the GL when it decomposes polygons, and they can be set explicitlgl&slggFlag

ERRORS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 134

GL_INVALID_ENUM is generated if eithdace or modeis not an accepted value.
GL_INVALID_OPERATION is generated i§lPolygonModeis called between a call gdBegin
and the corresponding call ¢gdEnd.

ASSOCIATED GETS

glGet with argumenGL_POLYGON_MODE

SEE ALSO

"gIBegin”, "glEdgeFlag", "glLineStipple", "glLineWidth" , "glPointSize", "glPolygonStipple"

glPolygonStipple

NAME

glPolygonStipple— set the polygon stippling pattern

C SPECIFICATION

void glPolygonStipple(const GLubytémask)

PARAMETERS

mask Specifies a pointer to a 832 stipple pattern that will be unpacked from memory
in the same way thafiDrawPixelsunpacks pixels.

DESCRIPTION

Polygon stippling, like line stippling (séglLineStipple"), masks out certain fragments produced by
rasterization, creating a pattern. Stippling is independent of polygon antialiasing.

maskis a pointer to a XB2 stipple pattern that is stored in memory just like the pixel data supplied
to aglDrawPixels with heightandwidth both equal to 32, a pix&rmatof GL_COLOR_INDEX,

and datdaypeof GL_BITMAP . That is, the stipple pattern is represented axa2array of 1-bit

color indices packed in unsigned bytggPixelStore parameters like

GL_UNPACK_SWAP_BYTES andGL_UNPACK_LSB_FIRST affect the assembling of the bits
into a stipple pattern. Pixel transfer operations (shift, offset, pixel map) are not applied to the stipp
image, however.

Polygon stippling is enabled and disabled witBnable andglDisable, using argument
GL_POLYGON_STIPPLE. If enabled, a rasterized polygon fragment with window coordingjes
andyyy is sent to the next stage of the GL if and only if thg (mod32)th bit in the §, mod32)th

row of the stipple pattern is one. When polygon stippling is disabled, it is as if the stipple pattern
were all ones.

ERRORS

GL_INVALID_OPERATION is generated ifjIPolygonStippleis called between a call ggBegin
and the corresponding call ¢gdEnd.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 135

ASSOCIATED GETS

glGetPolygonStipple
glisEnabled with argumentGL_POLYGON_STIPPLE

SEE ALSO

"glDrawPixels", "glLineStipple", "glPixelStore", "glPixelTransfer"

glPushAttrib

NAME

glPushAttrib, glPopAttrib - push and pop the attribute stack

C SPECIFICATION

void glPushAttrib (GLbitfield mask)

PARAMETERS

mask Specifies a mask that indicates which attributes to save. Valuem&bare
listed in the table below.

C SPECIFICATION

void glPopAittrib (void)

DESCRIPTION

glPushAttrib takes one argument, a mask that indicates which groups of state variables to save or
the attribute stack. Symbolic constants are used to set bits in the mesiis typically constructed

by ORing several of these constants together. The specialGhagi L. ATTRIB_BITS can be

used to save all stackable states.

The symbolic mask constants and their associated GL state are as follows (the second column list
which attributes are saved):

GL_ACCUM_BUFFER_BIT
Accumulation buffer clear value

GL_COLOR_BUFFER_BIT
GL_ALPHA_TEST enable bit
Alpha test function and reference value
GL_BLEND enable bit
Blending source and destination functions
GL_DITHER enable bit
GL_DRAW_BUFFER setting
GL_LOGIC_OP enable bit
Logic op function
Color mode and index mode clear values
Color mode and index mode writemasks

GL_CURRENT_BIT

Current RGBA color
Current color index

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 136

Current normal vector

Current texture coordinates

Current raster position
GL_CURRENT_RASTER_POSITION_VALID flag
RGBA color associated with current raster position

Color index associated with current raster position

Texture coordinates associated with current raster position
GL_EDGE_FLAG flag

GL_DEPTH_BUFFER_BIT
GL_DEPTH_TEST enable bit
Depth buffer test function
Depth buffer clear value
GL_DEPTH_WRITEMASK enable bit

GL_ENABLE_BIT
GL_ALPHA_TEST flag
GL_AUTO_NORMAL flag
GL_BLEND flag
Enable bits for the user—definable clipping planes
GL_COLOR_MATERIAL
GL_CULL_FACE flag
GL_DEPTH_TEST flag
GL_DITHER flag
GL_FOG flag
GL_LIGHT i where 0 <3<GL_MAX_LIGHTS
GL_LIGHTING flag
GL_LINE_SMOOTH flag
GL_LINE_STIPPLE flag
GL_LOGIC_OFP flag
GL_MAP1_x wherex is a map type
GL_MAP2_x wherex is a map type
GL_NORMALIZE flag
GL_POINT_SMOOTH flag
GL_POLYGON_SMOOTH flag
GL_POLYGON_STIPPLE flag
GL_SCISSOR_TESTflag
GL_STENCIL_TEST flag
GL_TEXTURE_1D flag
GL_TEXTURE_2D flag
FlagsGL_TEXTURE_GEN_xwherexisS T, R, orQ

GL_EVAL_BIT
GL_MAP1_x enable bits, whereis a map type
GL_MAP2_x enable bits, whereis a map type
1-D grid endpoints and divisions
2-D grid endpoints and divisions
GL_AUTO_NORMAL enable bit

GL_FOG_BIT GL_FOG enable flag
Fog color
Fog density
Linear fog start
Linear fog end
Fog index
GL_FOG_MODE value

GL_HINT_BIT
GL_PERSPECTIVE_CORRECTION_HINT setting
GL_POINT_SMOOTH_HINT setting
GL_LINE_SMOOTH_HINT setting
GL_POLYGON_SMOOTH_HINT setting

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 137

GL_FOG_HINT setting

GL_LIGHTING_BIT
GL_COLOR_MATERIAL enable bit
GL_COLOR_MATERIAL_FACE value
Color material parameters that are tracking the current color
Ambient scene color
GL_LIGHT_MODEL_LOCAL_VIEWER value
GL_LIGHT_MODEL_TWO_SIDE setting
GL_LIGHTING enable bit
Enable bit for each light
Ambient, diffuse, and specular intensity for each light
Direction, position, exponent, and cutoff angle for each light
Constant, linear, and quadratic attenuation factors for each light
Ambient, diffuse, specular, and emissive color for each material
Ambient, diffuse, and specular color indices for each material
Specular exponent for each material
GL_SHADE_MODEL setting

GL_LINE_BIT GL_LINE_SMOOTH flag
GL_LINE_STIPPLE enable bit
Line stipple pattern and repeat counter
Line width

GL_LIST BIT GL_LIST_BASE setting

GL_PIXEL_MODE_BIT
GL_RED_BIAS andGL_RED_SCALE settings
GL_GREEN_BIAS andGL_GREEN_SCALE values
GL_BLUE_BIAS andGL_BLUE_SCALE
GL_ALPHA_BIAS andGL_ALPHA_SCALE
GL_DEPTH_BIAS andGL_DEPTH_SCALE
GL_INDEX_OFFSET andGL_INDEX_SHIFT values
GL_MAP_COLOR andGL_MAP_STENCIL flags
GL_ZOOM_X andGL_ZOOM_Y factors
GL_READ_BUFFER setting
GL_x wherex is a pixal map table name
GL_x SIZE wherexis a pixal map table name

GL_POINT_BIT
GL_POINT_SMOOTH flag
Point size

GL_POLYGON_BIT
GL_CULL_FACE enabile hit
GL_CULL_FACE_MODE value
GL_FRONT_FACE indicator
GL_POLYGON_MODE setting
GL_POLYGON_SMOOTH flag
GL_POLYGON_STIPPLE enable bit

GL_POLYGON_STIPPLE_BIT
Polygon stipple image

GL_SCISSOR_BIT
GL_SCISSOR_TESTflag
Scissor box

GL_STENCIL_BUFFER_BIT
GL_STENCIL_TEST enable bit
Stencil function and reference value
Stencil value mask

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 138

Stencil fail, pass, and depth buffer pass actions
Stencil buffer clear value
Stencil buffer writemask

GL_TEXTURE_BIT
Enable bits for the four texture coordinates
Border color for each texture image
Minification function for each texture image
Magnification function for each texture image
Texture coordinates and wrap mode for each texture image
Color and mode for each texture environment
Enable bitsGL_ TEXTURE_GEN_x xisS, T, R, andQ
GL_TEXTURE_GEN_MODE setting foiS, T, R, andQ
glTexGen plane equations f@&, T, R, andQ

GL_TRANSFORM_BIT
Coefficients of the six clipping planes
Enable bits for the user—definable clipping planes
GL_MATRIX_MODE value

GL_NORMALIZE flag

GL_VIEWPORT_BIT
Depth range (near and far)
Viewport origin and extent

glPopAttrib restores the values of the state variables saved with thgRasthAttrib command.
Those not saved are left unchanged.

Itis an error to push attributes onto a full stack, or to pop attributes off an empty stack. In either ce
the error flag is set and no other change is made to GL state.

Initially, the attribute stack is empty.

NOTES

Not all values for GL state can be saved on the attribute stack. For example, pixel pack and unpas
state, render mode state, and select and feedback state cannot be saved.

The depth of the attribute stack depends on the implementation, but it must be at least 16.

ERRORS
GL_STACK_OVERFLOW is generated ifjiPushAttrib is called while the attribute stack is full.

GL_STACK_UNDERFLOW is generated iflPopAttrib is called while the attribute stack is
empty.

GL_INVALID_OPERATION is generated i§lPushAttrib is called between a call ggBeginand
the corresponding call tglEnd.
ASSOCIATED GETS

glGet with argumenGL_ATTRIB_STACK_DEPTH .
glGet with argumenGL_MAX_ATTRIB_STACK_DEPTH .

SEE ALSO
"glGet", "glGetClipPlane", "glGetError", "glGetLight" , "glGetMap", "glGetMaterial",

"glGetPixelMap", "glGetPolygonStipple’ "glGetString”, "glGetTexEnv", "glGetTexGen",

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 139

"glGetTexImage", "glGetTexLevelParameter,"glGetTexParameter,"glisEnabled"

glPushMatrix

NAME

glPushMatrix, glPopMatrix — push and pop the current matrix stack

C SPECIFICATION

void glPushMatrix (void)

C SPECIFICATION

void glPopMatrix (void)

DESCRIPTION

There is a stack of matrices for each of the matrix mode&LIMODELVIEW mode, the stack
depth is at least 32. In the other two mod#s, PROJECTION andGL_TEXTURE, the depth is
at least 2. The current matrix in any mode is the matrix on the top of the stack for that mode.

glPushMatrix pushes the current matrix stack down by one, duplicating the current matrix. That is
after aglPushMatrix call, the matrix on the top of the stack is identical to the one below it.

glPopMatrix pops the current matrix stack, replacing the current matrix with the one below it on the
stack.

Initially, each of the stacks contains one matrix, an identity matrix.

It is an error to push a full matrix stack, or to pop a matrix stack that contains only a single matrix.
either case, the error flag is set and no other change is made to GL state.

ERRORS

GL_STACK_OVERFLOW is generated ifjfiPushMatrix is called while the current matrix stack is
full.

GL_STACK_UNDERFLOW is generated iflPopMatrix is called while the current matrix stack
contains only a single matrix.

GL_INVALID_OPERATION is generated ijIPushMatrix is called between a call gBeginand
the corresponding call gEnd.

ASSOCIATED GETS

glGet with argumenGL_MATRIX_MODE

glGet with argumenGL_MODELVIEW_MATRIX

glGet with argumenGL_PROJECTION_MATRIX

glGet with argumenGL_TEXTURE_MATRIX

glGet with argumenGL_MODELVIEW_STACK_DEPTH

glGet with argumenGL_PROJECTION_STACK_DEPTH
glGetwith argumenGL_TEXTURE_STACK_DEPTH
glGetwith argumenGL_MAX_MODELVIEW_STACK_DEPTH
glGetwith argumenGL_MAX_PROJECTION_STACK_DEPTH

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 140

glGet with argumenGL_MAX_TEXTURE_STACK_DEPTH

SEE ALSO

"glFrustum’; "glLoadldentity", "glLoadMatrix" , "glMatrixMode", "glMultMatrix" , "glOrtho",

"gIRotate", "glScale", "glTranslate", "glViewport"

glPushName

NAME

glPushName, glPopName- push and pop the name stack

C SPECIFICATION

void glPushNamé GLuintname)

PARAMETERS

name Specifies a name that will be pushed onto the name stack.

C SPECIFICATION
void glPopNamd void)

DESCRIPTION

The name stack is used during selection mode to allow sets of rendering commands to be uniquel
identified. It consists of an ordered set of unsigned integgPRuishNamecausemameto be pushed
onto the name stack, which is initially emptylPopNamepops one name off the top of the stack.

It is an error to push a name onto a full stack, or to pop a name off an empty stack. It is also an er
to manipulate the name stack between a cajlRegin and the corresponding call¢gtEnd. In any
of these cases, the error flag is set and no other change is made to GL state.

The name stack is always empty while the render mode SInNdBELECT. Calls toglPushName
or glPopNamewhile the render mode is nGLL_SELECT are ignored.

ERRORS
GL_STACK_OVERFLOW is generated ifjfiPushNameis called while the name stack is full.
GL_STACK_UNDERFLOW is generated ilIPopNameis called while the name stack is empty.

GL_INVALID_OPERATION is generated ijilPushNameor glPopNameis called between a call
to glBegin and the corresponding call g¢End.

ASSOCIATED GETS

glGetwith argumenGL_NAME_STACK_DEPTH
glGet with argumenGL_MAX_NAME_STACK_DEPTH

SEE ALSO

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 141

"glInitNames";, "glLoadName", "glIRenderMode", "glSelectBuffer"

glRasterPos

NAME

glRasterPos2d, glRasterPos2f, glRasterPos2i, glRasterPos2s, glRasterPos3d, glRasterPos3f,
glRasterPos3i, glRasterPos3s, glRasterPos4d, glRasterPos4f, glRasterPos4i, glRasterPos4s,
glRasterPos2dv, glRasterPos2fv, glRasterPos2iv, glRasterPos2sv, glRasterPos3dv,
glRasterPos3fv, glRasterPos3iv, glRasterPos3sv, glRasterPos4dv, glRasterPos4fv,
glRasterPos4iv, glRasterPos4sv specify the raster position for pixel operations

C SPECIFICATION

void glRasterPos2dq GLdoublex, GLdoubley)

void gIRasterPos2{ GLfloatx, GLfloaty)

void gIRasterPos2{ GLint x, GLinty)

void glRasterPos2§ GLshortx, GLshorty)

void gIRasterPos3q GLdoublex, GLdoubley, Ldoublez)

void glRasterPos3{ GLfloat x, GLfloaty, GLfloatz)

void glRasterPos3{ GLint x, GLinty, GLintz)

void gIRasterPos3§ GLshortx, GLshorty, GLshoriz)

void glRasterPos4q GLdoublex, GLdoubley, GLdoublez, GLdoublew)
void glRasterPos4{ GLfloat x, GLfloaty, GLfloatz, GLfloatw)
void glRasterPos4{ GLint x, GLinty, GLintz GLintw)

void glRasterPos46 GLshortx, GLshorty GLshortz, GLshortw)

PARAMETERS

XY, 2, W Specify thex, y, z, andw object coordinates (if present) for the raster position.

C SPECIFICATION

void gIRasterPos2dy const GLdoublév)
void gIRasterPos2f\(const GLfloat'v)
void glRasterPos2iy const GLint*v)
void gIRasterPos2sy const GLshortv)
void gIRasterPos3dy const GLdoublév)
void gIRasterPos3f\(const GLfloatv)
void gIRasterPos3iy const GLint*v)
void gIRasterPos3sy const GLshortv)
void glRasterPos4dy const GLdoublé&v)
void glRasterPos4f\(const GLfloatv)
void glRasterPos4iy const GLint*v)
void glRasterPos4sy const GLshortv)

% Specifies a pointer to an array of two, three, or four elements, specifying
andw coordinates, respectively.

DESCRIPTION

The GL maintains a 3-D position in window coordinates. This position, called the raster position, i
maintained with subpixel accuracy. It is used to position pixel and bitmap write operations. See

"gIBitmap", "glDrawPixels", and"glCopyPixels".

The current raster position consists of three window coordinatgsz), a clip coordinatevvalue, an

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 142

eye coordinate distance, a valid bit, and associated color data and texture coordinates. The
coordinate is a clip coordinate, because not projected to window coordinateglRasterPos4
specifies object coordinatesy, z, andw explicitly. glRasterPos3specifies object coordinatey,
andz explicitly, whilew is implicitly set to oneglRasterPos2uses the argument values x@andy
while implicitly settingz andwto zero and one.

The object coordinates presentedgtifasterPosare treated just like those ofj/ertex command:

They are transformed by the current modelview and projection matrices and passed to the clipping
stage. If the vertex is not culled, then it is projected and scaled to window coordinates, which
become the new current raster position, and3heCURRENT_RASTER_POSITION_VALID

flag is set. If the verteis culled, then the valid bit is cleared and the current raster position and
associated color and texture coordinates are undefined.

The current raster position also includes some associated color data and texture coordinates. If
lighting is enabled, theGL_ CURRENT_RASTER_COLOR, in RGBA mode, or the
GL_CURRENT_RASTER_INDEX, in color index mode, is set to the color produced by the
lighting calculation (seé&glLight" , "glLightModel", and"glShadeModel). If lighting is disabled,
current color (in RGBA mode, state variald¢_ CURRENT_COLOR) or color index (in color

index mode, state variab®. CURRENT_INDEX) is used to update the current raster color.

Likewise, GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of
GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture generation
functions (seéglTexGen"). Finally, the distance from the origin of the eye coordinate system to the
vertex as transformed by only the modelview matrix replaces
GL_CURRENT_RASTER_DISTANCE.

Initially, the current raster position is (0,0,0,1), the current raster distance is 0, the valid bit is set, tt
associated RGBA color is (1,1,1,1), the associated color index is 1, and the associated texture
coordinates are (0, 0, 0, 1). In RGBA mo@¢, CURRENT_RASTER_INDEX is always 1; in

color index mode, the current raster RGBA color always maintains its initial value.

NOTES

The raster position is modified both giRasterPosand byglIBitmap.

When the raster position coordinates are invalid, drawing commands that are based on the raster
position are ignored (that is, they do not result in changes to GL state).

ERRORS

GL_INVALID_OPERATION is generated ifjlRasterPosis called between a call giBegin and
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_CURRENT_RASTER_POSITION

glGet with argumenGL_CURRENT_RASTER_POSITION_VALID
glGet with argumenGL_CURRENT_RASTER_DISTANCE

glGet with argumenGL_CURRENT_RASTER_COLOR

glGet with argumenGL_CURRENT_RASTER_INDEX

glGet with argumenGL_CURRENT_RASTER_TEXTURE_COORDS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 143

SEE ALSO

"gIBitmap", "glCopyPixels", "glDrawPixels", "glLight" ,"glLightModel" , "glShadeModel",

"glTexCoord", "glTexGen", "glVertex"

glReadBuffer

NAME

glReadBuffer — select a color buffer source for pixels

C SPECIFICATION

void glReadBuffer(GLenummode)

PARAMETERS

mode Specifies a color buffer. Accepted values@te FRONT_LEFT ,
GL_FRONT_RIGHT , GL_BACK_LEFT , GL_BACK_RIGHT ,
GL_FRONT, GL_BACK , GL_LEFT, GL_RIGHT , andGL_AUXi, wherei is
between 0 anGL_AUX_ BUFFERS -1.

DESCRIPTION

glReadBuffer specifies a color buffer as the source for subseqliBetdPixelsandglCopyPixels
commands.modeaccepts one of twelve or more predefined valuéd._ AUXO0 throughGL_AUX3
are always defined.) In a fully configured systé&h, FRONT, GL_LEFT, and

GL_FRONT_LEFT all name the front left buffeGL_FRONT_RIGHT andGL_RIGHT name
the front right buffer, anGL_BACK_LEFT andGL_BACK name the back left buffer. Nonstereo
configurations have only a left buffer, or a front left and a back left buffer if double—buffered.
Single—buffered configurations have only a front buffer, or a front left and a front right buffer if
stereo. Itis an error to specify a nonexistent buffgiReadBuffer.

By default,modeisGL_FRONT in single—buffered configurations, aBd_BACK in
double-buffered configurations.

ERRORS

GL_INVALID_ENUM is generated iodeis not one of the twelve (or more) accepted values.
GL_INVALID_OPERATION is generated imodespecifies a buffer that does not exist.
GL_INVALID_OPERATION is generated ifjilReadBuffer is called between a call gdBegin and
the corresponding call gEnd.

ASSOCIATED GETS

glGetwith argumenGL_READ_BUFFER

SEE ALSO

"glCopyPixels’ "glDrawBuffer", "glReadPixels"

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 144

glReadPixels

NAME

glReadPixels- read a block of pixels from the frame buffer

C SPECIFICATION

void glReadPixelg GLint x, GLinty, GLsizeiwidth, GLsizeiheight GLenumformat, GLenumtype,

GLvoid *pixels)
PARAMETERS
XY Specify the window coordinates of the first pixel that is read from the frame

buffer. This location is the lower left corner of a rectangular block of pixels.

width, height Specify the dimensions of the pixel rectanghdth andheightof one
correspond to a single pixel.

format Specifies the format of the pixel data. The following symbolic values are
acceptedGL_COLOR_INDEX , GL_STENCIL_INDEX,
GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE , and
GL_LUMINANCE_ALPHA .

type Specifies the data type of the pixel data. Must be one of
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP ,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, or

GL_FLOAT .
pixels Returns the pixel data.
DESCRIPTION

glReadPixelsreturns pixel data from the frame buffer, starting with the pixel whose lower left corne:
is at location X, y), into client memory starting at locatipixels Several parameters control the
processing of the pixel data before it is placed into client memory. These parameters are set with
three commandgjlPixelStore, glPixelTransfer, andglPixelMap. This reference page describes the
effects onglReadPixelsof most, but not all of the parameters specified by these three commands.

glReadPixelsreturns values from each pixel with lower left—-hand corner-at, { +j) for
O<i<width and &j<height This pixel is said to be thth pixel in thejth row. Pixels are returned in
row order from the lowest to the highest row, left to right in each row.

format specifies the format for the returned pixel values. Accepted valuisrftat are as follows:

GL_COLOR_INDEX
Color indices are read from the color buffer selectediBgadBuffer. Each
index is converted to fixed point, shifted left or right depending on the value and
sign of GL_INDEX_SHIFT , and added tGL_INDEX_OFFSET . If
GL_MAP_COLOR is GL_TRUE, indices are replaced by their mappings in the
tableGL_PIXEL_MAP_I_TO_1I .

GL_STENCIL_INDEX

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 145

Stencil values are read from the stencil buffer. Each index is converted to fixed
point, shifted left or right depending on the value and sign of
GL_INDEX_SHIFT , and added t6L_INDEX_OFFSET. If

GL_MAP_STENCIL is GL_TRUE, indices are replaced by their mappings in
the tableGL_PIXEL_MAP_S TO_S.

GL_DEPTH_COMPONENT
Depth values are read from the depth buffer. Each component is converted to
floating point such that the minimum depth value maps to 0.0 and the maximum
value maps to 1.0. Each component is then multipliedlbyDEPTH_SCALE,
added toGL_DEPTH_BIAS, and finally clamped to the range [0,1].

GL_RED
GL_GREEN
GL_BLUE
GL_ALPHA
GL_RGB
GL_RGBA
GL_LUMINANCE

GL_LUMINANCE_ALPHA
Processing differs depending on whether color buffers store color indices or
RGBA color components. If color indices are stored, they are read from the colc
buffer selected bglReadBuffer. Each index is converted to fixed point, shifted
left or right depending on the value and sigrshf INDEX_SHIFT , and added
toGL_INDEX_OFFSET. Indices are then replaced by the red, green, blue, and
alpha values obtained by indexing tAe_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_ TO_G,GL_PIXEL_MAP_I_TO B, and
GL_PIXEL_MAP_I_TO_A tables.

If RGBA color components are stored in the color buffers, they are read from the
color buffer selected byiReadBuffer. Each color component is converted to
floating point such that zero intensity maps to 0.0 and full intensity maps to 1.0.
Each component is then multiplied 8._c SCALE and added t&L_c_BIAS,
wherecis GL_RED, GL_GREEN, GL_BLUE, andGL_ALPHA . Each
component is clamped to the range [0,1]. Finallglif MAP_COLOR is
GL_TRUE, each color components replaced by its mapping in the table
GL_PIXEL_MAP_c_TO_c, wherecagain isGL_RED, GL_GREEN,

GL_BLUE, andGL_ALPHA . Each component is scaled to the size its
corresponding table before the lookup is performed.

Finally, unneeded data is discarded. For exangple RED discards the green,
blue, and alpha components, whde_RGB discards only the alpha component.
GL_LUMINANCE computes a single component value as the sum of the red,
green, and blue components, &id LUMINANCE_ALPHA does the same,
while keeping alpha as a second value.

The shift, scale, bias, and lookup factors described above are all speciji@ideyTransfer. The
lookup table contents themselves are specifiedlBixelMap.

The final step involves converting the indices or components to the proper format, as specified by
type Ifformatis GL_COLOR_INDEX orGL_STENCIL_INDEX andtypeis notGL_FLOAT ,

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 146

each index is masked with the mask value given in the following tabtgpdis GL_FLOAT , then
each integer index is converted to single—precision floating—point format.

If formatis GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA , GL_RGB, GL_RGBA,
GL_LUMINANCE , orGL_LUMINANCE_ALPHA andtypeis notGL_FLOAT , each component

is multiplied by the multiplier shown in the following table. If typ&sis FLOAT , then each
component is passed as is (or converted to the client’s single—precision floating—point format if it i<
different from the one used by the GL).

type index mask component conversion
GL_UNSIGNED_BYTE (28 -1)c

28-1

GL_BYTE [(27 -3)c-1]/2
27 -1

GL_BITMAP 1

1

GL_UNSIGNED_SHORT (216—1)C

216 1

GL_SHORT [(215-1)c-1]/2
2151

GL_UNSIGNED_INT (232—1)0

232

GL_INT [(231 -1)c-1]/2
231

GL_FLOAT c

none

Return values are placed in memory as followdorihatis GL_COLOR_INDEX ,
GL_STENCIL_INDEX , GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA , or GL_LUMINANCE , a single value is returned and the data foitthpixel in the
jth row is placed in locatiofp) width + i. GL_RGB returns three value§L_RGBA returns four
values, an@5L_LUMINANCE_ALPHA returns two values for each pixel, with all values
corresponding to a single pixel occupying contiguous spguigefs. Storage parameters set by
glPixelStore, such agsL PACK_SWAP_BYTES andGL_PACK_LSB_FIRST, affect the way
that data is written into memory. SggPixelStore" for a description.

NOTES

Values for pixels that lie outside the window connected to the current GL context are undefined.

If an error is generated, no change is made to the contgritels

ERRORS
GL_INVALID_ENUM is generated iformatortypeis not an accepted value.
GL_INVALID_VALUE is generated if eithavidth or heightis negative.

GL_INVALID_OPERATION is generated iformatisGL_COLOR_INDEX and the color buffers
store RGBA color components.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 147

GL_INVALID_OPERATION is generated iformatisGL_STENCIL_INDEX and there is no
stencil buffer.

GL_INVALID_OPERATION is generated iformatisGL_DEPTH_COMPONENT and there is
no depth buffer.

GL_INVALID_OPERATION is generated ifjlReadPixelsis called between a call giBegin and
the corresponding call gEnd.

ASSOCIATED GETS

glGetwith argumenGL_INDEX_MODE

SEE ALSO

"glCopyPixels’ "glDrawPixels", "glPixelMap" , "glPixelStore", "glPixelTransfer", "gIReadBuffer"

glRect

NAME

glRectd, glRectf, glRecti, glRects, glRectdv, glRectfv, glRectiv, glRects\draw a rectangle

C SPECIFICATION

void gIRectd(GLdoublex1, GLdoubleyl, GLdoublex2, GLdoubley?2)
void glRectf(GLfloatx1, GLfloatyl, GLfloatx2, GLfloaty2)

void glRecti(GLint x1, GLintyl, GLintx2, GLinty2)

void gIRectq GLshortx1, GLshortyl, GLshortx2, GLshorty2)

PARAMETERS
x1,yl Specify one vertex of a rectangle.
X2, y2 Specify the opposite vertex of the rectangle.

C SPECIFICATION
void gIRectdv(const GLdoublévl, const GLdoublév2)
void glRectfv(const GLfloatvl, const GLfloat'v2)

void glRectiv(const GLint*v1, const GLint'v2)
void glRects\ const GLshortvl, const GLshortv2)

PARAMETERS

vl Specifies a pointer to one vertex of a rectangle.

v2 Specifies a pointer to the opposite vertex of the rectangle.

DESCRIPTION

glRect supports efficient specification of rectangles as two corner points. Each rectangle comman
takes four arguments, organized either as two consecutive paitg)afdordinates, or as two
pointers to arrays, each containing ag)(pair. The resulting rectangle is defined inzh@ plane.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 148

glRect(x], y1, x2, y2) is exactly equivalent to the following sequence:

gl Begi n(GL_PCOLYGON);
gl Vertex2(x1, yl);
gl Vertex2(x2, yl);
gl Vertex2(x2, y2);
gl Vertex2(x1l, y2);
gl End();

Note that if the second vertex is above and to the right of the first vertex, the rectangle is construct
with a counterclockwise winding.

ERRORS

GL_INVALID_OPERATION is generated ifjIRectis called between a call ggBegin and the

corresponding call tglEnd.

SEE ALSO

"glBegin”, "glVertex"

glRenderMode

NAME

glRenderMode- set rasterization mode

C SPECIFICATION

GLint gIRenderModeg(GLenummode)

PARAMETERS

mode Specifies the rasterization mode. Three values are accgiteRENDER,
GL_SELECT, andGL_FEEDBACK . The default value i6L_RENDER.

DESCRIPTION

glRenderMode sets the rasterization mode. It takes one argummde which can assume one of
three predefined values:

GL_RENDER
Render mode. Primitives are rasterized, producing pixel fragments, which are
written into the frame buffer. This is the normal mode and also the default mode

GL_SELECT
Selection mode. No pixel fragments are produced, and no change to the frame
buffer contents is made. Instead, a record of the names of primitives that would
have been drawn if the render mode W&s RENDER is returned in a select
buffer, which must be created (SggSelectBuffer") before selection mode is
entered.

GL_FEEDBACK

Feedback mode. No pixel fragments are produced, and no change to the frame
buffer contents is made. Instead, the coordinates and attributes of vertices that

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 149

would have been drawn had the render mode B@eRENDER is returned in a
feedback buffer, which must be created (ggEeedbackBuffer) before
feedback mode is entered.

The return value ajlRenderModeis determined by the render mode at the gfieenderModeis
called, rather than bynode The values returned for the three render modes are as follows:

GL_RENDER
Zero.

GL_SELECT
The number of hit records transferred to the select buffer.

GL_FEEDBACK
The number of values (not vertices) transferred to the feedback buffer.

Refer to theglSelectBufferandglFeedbackBufferreference pages for more details concerning
selection and feedback operation.

NOTES

If an error is generated|RenderModereturns zero regardless of the current render mode.

ERRORS

GL_INVALID_ENUM is generated imodeis not one of the three accepted values.

GL_INVALID_OPERATION is generated ifjlSelectBufferis called while the render mode is
GL_SELECT, or ifgIRenderModeis called with argumersL_SELECT beforeglSelectBufferis
called at least once.

GL_INVALID_OPERATION is generated ifjiIFeedbackBufferis called while the render mode is
GL_FEEDBACK, or if glRenderModeis called with argumenL._ FEEDBACK before
glFeedbackBufferis called at least once.

GL_INVALID_OPERATION is generated ijilRenderModeis called between a call ¢ggBegin
and the corresponding call ¢tEnd.

ASSOCIATED GETS

glGet with argumenGL_RENDER_MODE

SEE ALSO

"glFeedbackBuffer"glinitNames", "glLoadName", "gIPassThrough; "glPushName’;
"glSelectBuffer"

glRotate

NAME

glRotated, glRotatef— multiply the current matrix by a rotation matrix

C SPECIFICATION

void glRotated(GLdoubleangle GLdoublex, GLdoubley, GLdoublez)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 150

void glRotatef(GLfloatangle GLfloatx, GLfloaty, GLfloatz)

PARAMETERS
angle Specifies the angle of rotation, in degrees.

XY, Z Specify thex, y, andzcoordinates of a vector, respectively.

DESCRIPTION

glRotate computes a matrix that performs a counterclockwise rotatiangledegrees about the
vector from the origin through the poixt g, 2).

The current matrix (séglMatrixMode") is multiplied by this rotation matrix, with the product
replacing the current matrix. That is, if M is the current matrix and R is the translation matrix, then
M is replaced with M o R.

If the matrix mode is eitheésL_ MODELVIEW orGL_PROJECTION, all objects drawn after
glRotateis called are rotated. UgéPushMatrix andglPopMatrix to save and restore the unrotated
coordinate system.

ERRORS

GL_INVALID_OPERATION is generated i§lRotate is called between a call gBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_MATRIX_MODE

glGet with argumenGL_MODELVIEW_MATRIX
glGet with argumenGL_PROJECTION_MATRIX
glGetwith argumenGL_TEXTURE_MATRIX

SEE ALSO

"gIMatrixMode", "gIMultMatrix" , "glPushMatrix", "glScale", "glTranslate"

glScale

NAME

glScaled, glScalef multiply the current matrix by a general scaling matrix

C SPECIFICATION

void glScaled GLdoublex, GLdoubley, GLdoublez)
void glScalef(GLfloatx, GLfloaty, GLfloatz)

PARAMETERS

XY, Z Specify scale factors along tRey, andzaxes, respectively.

DESCRIPTION

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 151

glScaleproduces a general scaling alongsthg andz axes. The three arguments indicate the
desired scale factors along each of the three axes. The resulting matrix is

x000
0y 00
00z0
0001]

The current matrix (séglMatrixMode") is multiplied by this scale matrix, with the product
replacing the current matrix. That is, if M is the current matrix and S is the scale matrix, then M is
replaced with M o S.

If the matrix mode is eitheé6L._ MODELVIEW orGL_PROJECTION, all objects drawn after
glScaleis called are scaled. UglPushMatrix andglPopMatrix to save and restore the unscaled
coordinate system.

NOTES

If scale factors other than 1.0 are applied to the modelview matrix and lighting is enabled, automat
normalization of normals should probably also be enalgliéshéble andglDisablewith argument
GL_NORMALIZE).

ERRORS

GL_INVALID_OPERATION is generated ifjlScaleis called between a call ggBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_MATRIX_MODE

glGet with argumenGL_MODELVIEW_MATRIX
glGet with argumenGL_PROJECTION_MATRIX
glGet with argumenGL_TEXTURE_MATRIX

SEE ALSO

"gIMatrixMode", "gIMultMatrix" , "glPushMatrix", "glRotate", "glTranslate

glScissor

NAME

glScissor— define the scissor box

C SPECIFICATION

void glScissof GLintx, GLinty, GLsizeiwidth, GLsizeiheight)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 152

PARAMETERS

XY Specify the lower left corner of the scissor box. Initially (0,0).

width, height Specify the width and height of the scissor box. When a GL contrdtis
attached to a windowyidth andheightare set to the dimensions of that window.

DESCRIPTION

TheglScissorroutine defines a rectangle, called the scissor box, in window coordinates. The first
two argumentsg andy, specify the lower left corner of the bowidth andheightspecify the width
and height of the box.

The scissor test is enabled and disabled ugliagable andglDisable with argument
GL_SCISSOR_TEST. While the scissor test is enabled, only pixels that lie within the scissor box
can be modified by drawing commands. Window coordinates have integer values at the shared
corners of frame buffer pixels, giScissof0,0,1,1) allows only the lower left pixel in the window to
be modified, andjlScissoK0,0,0,0) disallows modification to all pixels in the window.

When the scissor test is disabled, it is as though the scissor box includes the entire window.

ERRORS
GL_INVALID_VALUE is generated if eithevidth or heightis negative.

GL_INVALID_OPERATION is generated iflScissoris called between a call ggBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_SCISSOR_BOX
gllsEnabled with argumenGL_SCISSOR_TEST

SEE ALSO

"glEnable’, "glViewport"

glSelectBuffer

NAME

glSelectBuffer— establish a buffer for selection mode values

C SPECIFICATION

void glSelectBuffer(GLsizeisize GLuint*buffer)

PARAMETERS
size Specifies the size dfuffer.

buffer Returns the selection data.

DESCRIPTION

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 153

glSelectBuffer has two argumentbufferis a pointer to an array of unsigned integers,sarel

indicates the size of the arralgufferreturns values from the name stack (ggitNames”,
"glLoadName", "glPushName’) when the rendering mode®._SELECT (se€'glRenderMode?).
glSelectBuffer must be issued before selection mode is enabled, and it must not be issued while th
rendering mode i&L_SELECT.

Selection is used by a programmer to determine which primitives are drawn into some region of a
window. The region is defined by the current modelview and perspective matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if a primitive
intersects the clipping volume defined by the viewing frustum and the user—defined clipping planes
this primitive causes a selection hit. (With polygons, no hit occurs if the polygon is culled.) When ¢
change is made to the name stack, or wgiBenderModeis called, a hit record is copiedliaffer if

any hits have occurred since the last such event (name stack chgiiRenolerMode call). The hit
record consists of the number of names in the name stack at the time of the event, followed by the
minimum and maximum depth values of all vertices that hit since the previous event, followed by ti
name stack contents, bottom name first.

Returned depth values are mapped such that the largest unsigned integer value corresponds to
window coordinate depth 1.0, and zero corresponds to window coordinate depth 0.0.

An internal index intdoufferis reset to zero whenever selection mode is entered. Each time a hit
record is copied intbuffer, the index is incremented to point to the cell just past the end of the block
of names - that is, to the next available cell. If the hit record is larger than the number of remainin
locations inbuffer, as much data as can fit is copied, and the overflow flag is set. If the name stack
empty when a hit record is copied, that record consists of zero followed by the minimum and
maximum depth values.

Selection mode is exited by calligiRenderMode with an argument other th&1L._SELECT.
WheneveglRenderModeis called while the render modeG@._SELECT, it returns the number of
hit records copied tbuffer, resets the overflow flag and the selection buffer pointer, and initializes
the name stack to be empty. If the overflow bit was set \gheenderModewas called, a negative
hit record count is returned.

NOTES

The contents dbufferare undefined untglRenderModeis called with an argument other than
GL_SELECT.

gIBegir/glEnd primitives and calls tglRasterPoscan result in hits.

ERRORS
GL_INVALID_VALUE is generated Hizeis negative.

GL_INVALID_OPERATION is generated ifjlSelectBufferis called while the render mode is
GL_SELECT, or ifgIRenderModeis called with argumer®L_SELECT beforeglSelectBufferis
called at least once.

GL_INVALID_OPERATION is generated ifjISelectBufferis called between a call gBeginand
the corresponding call tglEnd.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 154

ASSOCIATED GETS

glGet with argumenGL_NAME_STACK_DEPTH

SEE ALSO

"glFeedbackBuffer™glinitNames", "glLoadName", "gIPushName", "glRenderMode"

glShadeModel

NAME

glShadeModel- select flat or smooth shading

C SPECIFICATION

void glShadeMode{ GLenummode)

PARAMETERS

mode Specifies a symbolic value representing a shading technique. Accepted values
areGL_FLAT andGL_SMOOTH. The default iSL_SMOOTH.

DESCRIPTION

GL primitives can have either flat or smooth shading. Smooth shading, the default, causes the
computed colors of vertices to be interpolated as the primitive is rasterized, typically assigning
different colors to each resulting pixel fragment. Flat shading selects the computed color of just or
vertex and assigns it to all the pixel fragments generated by rasterizing a single primitive. In either
case, the computed color of a vertex is the result of lighting, if lighting is enabled, or it is the curren
color at the time the vertex was specified, if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Counting vertices and primitives from on
starting whergIBeginis issued, each flat—-shaded line segrnsrdiven the computed color of vertex

i + 1, its second vertex. Counting similarly from one, each flat—-shaded polygon is given the
computed color of the vertex listed in the following table. This is the last vertex to specify the

polygon in all cases except single polygons, where the first vertex specifies the flat—shaded color.
primitive type of polygon i vertex

Single polygon (=1)
1

Triangle strip

i+ 2

Triangle fan

i+ 2

Independent triangle
3i

Quad strip

2i+ 2

Independent quad
4i

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 155

Flat and smooth shading are specifiedjil8hadeModelwith modeset toGL_FLAT and
GL_SMOOTH, respectively.

ERRORS

GL_INVALID_ENUM is generated iodeis any value other thaBL_FLAT or GL_SMOOTH.
GL_INVALID_OPERATION is generated ijilShadeModelis called between a call ggBegin
and the corresponding call ¢gdEnd.

ASSOCIATED GETS

glGet with argumenGL_SHADE_MODEL

SEE ALSO

"glBegin”, "glColor" , "glLight" , "glLightModel"

glStencilFunc

NAME

glStencilFunc - set function and reference value for stencil testing

C SPECIFICATION

void glStencilFunc(GLenumfung GLintref, GLuint mask)

PARAMETERS

func Specifies the test function. Eight tokens are v&hd: NEVER, GL_LESS,
GL_LEQUAL , GL_GREATER, GL_GEQUAL, GL_EQUAL,
GL_NOTEQUAL , andGL_ALWAYS.

ref Specifies the reference value for the stencil testis clamped to the range [6,2
-1], wheren is the number of bitplanes in the stencil buffer.

mask Specifies a mask that is ANDed with both the reference value and the stored
stencil value when the test is done.

DESCRIPTION

Stenciling, like z—buffering, enables and disables drawing on a per—pixel basis. You draw into the
stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering
algorithms to achieve special effects, such as decals, outlining, and constructive solid geometry
rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between thi
reference value and the value in the stencil buffer. The test is enalgéthlaple andglDisable
with argumentGL_STENCIL . Actions taken based on the outcome of the stencil test are specified

with glStencilOp.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 156

funcis a symbolic constant that determines the stencil comparison function. It accepts one of eigh
values, shown belowef is an integer reference value that is used in the stencil comparison. It is

clamped to the range [('2-1], wheren is the number of bitplanes in the stencil bufferaskis
bitwise ANDed with both the reference value and the stored stencil value, with the ANDed values
participating in the comparison.

If stencilrepresents the value stored in the corresponding stencil buffer location, the following list
shows the effect of each comparison function that can be speciffaddyOnly if the comparison
succeeds is the pixel passed through to the next stage in the rasterization protgi&tésedOp").

All tests treastencilvalues as unsigned integers in the rangd[013, wheren is the number of
bitplanes in the stencil buffer.

Here are the values acceptedinyc:

GL_NEVER Always fails.

GL_LESS Passes if fef & mask) < (stencil& mask).
GL_LEQUAL Passes if (ef & mask) < (stencil& mask).

GL_GREATER
Passes if fef & mask) > (stencil& mask).

GL_GEQUAL Passes if (ef & mask) = (stencil& mask).
GL_EQUAL Passes if fef & mask) = (' stencil& mask).

GL_NOTEQUAL
Passes if fef & mask) # (stencil& mask).

GL_ALWAYS Always passes.

NOTES

Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur at
it is as if the stencil test always passes.

ERRORS
GL_INVALID_ENUM is generated ifuncis not one of the eight accepted values.

GL_INVALID_OPERATION is generated ifjlStencilFuncis called between a call gdBegin and
the corresponding call gEnd.

ASSOCIATED GETS

glGet with argumenGL_STENCIL_FUNC

glGet with argumenGL_STENCIL_VALUE_MASK
glGet with argumenGL_STENCIL_REF

glGet with argumenGL_STENCIL_BITS
gllsEnabled with argumenGL_STENCIL_TEST

SEE ALSO

"glAlphaFunc', "gIBlendFunc", "glDepthFunc", "glEnable", "glisEnabled", "glLogicOp" ,
"gIStencilOp”

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 157

glStencilMask

NAME

glStencilMask — control the writing of individual bits in the stencil planes

C SPECIFICATION

void glStencilMask(GLuint mask)

PARAMETERS

mask Specifies a bit mask to enable and disable writing of individual bits in the stencil
planes. Initially, the mask is all ones.

DESCRIPTION

glStencilMask controls the writing of individual bits in the stencil planes. The least signifidaitg

of mask wheren is the number of bits in the stencil buffer, specify a mask. Wherever a one appear
in the mask, the corresponding bit in the stencil buffer is made writable. Where a zero appears, th
bit is write—protected. Initially, all bits are enabled for writing.

ERRORS

GL_INVALID_OPERATION is generated iflStencilMask is called between a call ggBeginand
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_STENCIL_WRITEMASK
glGet with argumenGL_STENCIL_BITS

SEE ALSO
"glColorMask’", "glDepthMask", "glindexMask", "glStencilFunc", "glStencilOp"

glStencilOp

NAME

glStencilOp — set stencil test actions

C SPECIFICATION

void gIStencilOp(GLenumfail, GLenumzfail, GLenumzpass)

PARAMETERS

fall Specifies the action to take when the stencil test fails. Six symbolic constants at
acceptedGL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_DECR,
andGL_INVERT .

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 158

zfail Specifies stencil action when the stencil test passes, but the depth tegfadils.
accepts the same symbolic constantfaias

zpass Specifies stencil action when both the stencil test and the depth test pass, or wh
the stencil test passes and either there is no depth buffer or depth testing is not
enabled.zpassaccepts the same symbolic constant@ias

DESCRIPTION

Stenciling, like z—buffering, enables and disables drawing on a per—pixel basis. You draw into the
stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering
algorithms to achieve special effects, such as decals, outlining, and constructive solid geometry
rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between thi
value in the stencil buffer and a reference value. The test is enableglEvitble andglDisable
calls with argumenGL_STENCIL , and controlled witlylStencilFunc

glStencilOp takes three arguments that indicate what happens to the stored stencil value while
stenciling is enabled. If the stencil test fails, no change is made to the pixel’s color or depth buffer:
andfail specifies what happens to the stencil buffer contents. The six possible actions are as follo\

GL_KEEP Keeps the current value.
GL_ZERO Sets the stencil buffer value to zero.
GL_REPLACE Sets the stencil buffer value ttef, as specified bglStencilFunc

GL_INCR Increments the current stencil buffer value. Clamps to the maximum
representable unsigned value.

GL_DECR Decrements the current stencil buffer value. Clamps to zero.
GL_INVERT Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. When incremented and decremented, valu

are clamped to 0 and'21, wheren is the value returned by queryii._STENCIL_BITS.

The other two arguments gStencilOp specify stencil buffer actions should subsequent depth
buffer tests succeedgasyor fail (zfail). (See"glDepthFunc".) They are specified using the same
six symbolic constants dail. Note thatzfail is ignored when there is no depth buffer, or when the
depth buffer is not enabled. In these cafsandzpassspecify stencil action when the stencil test
fails and passes, respectively.

NOTES

Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur an
it is as if the stencil tests always pass, regardless of any ¢gditencilOp.

ERRORS

GL_INVALID_ENUM is generated ifail, zfail, orzpassis any value other than the six defined
constant values.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 159

GL_INVALID_OPERATION is generated ifjIStencilOp is called between a call ggBeginand
the corresponding call gENd.

ASSOCIATED GETS

glGet with argumenGL_STENCIL_FAIL

glGet with argumenGL_STENCIL_PASS_DEPTH_PASS
glGet with argumenGL_STENCIL_PASS DEPTH_FAIL
glGet with argumenGL_STENCIL_BITS

gllsEnabled with argumenGL_STENCIL_TEST

SEE ALSO

"glAlphaFunc’; "glBlendFunc", "glDepthFunc”, "glEnable", "glLogicOp", "glStencilFunc"

glTexCoord

NAME

glTexCoord1d, glTexCoord1f, glTexCoord1li, glTexCoord1ls, giTexCoord2d, glTexCoord2f,
glTexCoord2i, glTexCoord2s, glTexCoord3d, glTexCoord3f, glITexCoord3i, glTexCoord3s,
glTexCoord4d, glTexCoord4f, glTexCoord4i, glTexCoord4s, giTexCoord1dv, giTexCoord1fv,
glTexCoord1liv, glTexCoordlsv, glTexCoord2dv, glTexCoord2fv, glTexCoord2iv,
glTexCoord2sv, glTexCoord3dv, glTexCoord3fv, glTexCoord3iv, glTexCoord3sv,
glTexCoord4dv, glTexCoord4fv, glTexCoord4iv, giITexCoord4sw set the current texture
coordinates

C SPECIFICATION

void glTexCoord1d(GLdoubles)

void glTexCoord1f(GLfloats)

void glTexCoord1li(GLints)

void glTexCoord1lgq GLshorts)

void glTexCoord2d(GLdoubles, GLdoublet)

void glTexCoord2f(GLfloats, GLfloatt)

void glTexCoord2i(GLints, GLintt)

void glTexCoord29 GLshorts, GLshortt)

void glTexCoord3d(GLdoubles, GLdoublet, GLdoubler)
void glTexCoord3f(GLfloats, GLfloatt, GLfloatr)

void glTexCoord3i(GLints, GLintt, GLintr)

void glTexCoord3g GLshorts, GLshortt, GLshortr)

void glTexCoord4d(GLdoubles, GLdoublet, GLdoubler, GLdoubleq)
void glTexCoord4f(GLfloats, GLfloatt, GLfloatr, GLfloatq)
void glTexCoord4i(GLints, GLintt, GLintr, GLintq)

void glTexCoord4q GLshorts, GLshortt GLshortr, GLshortq)

PARAMETERS

str,q Specifys, t, r, andq texture coordinates. Not all parameters are present in all
forms of the command.

C SPECIFICATION

void glTexCoord1dv(const GLdoublé&v)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 160

void glTexCoord1fv(const GLfloatv)
void glTexCoord1liv(const GLint*v)
void glTexCoord1sy const GLshortv)
void glTexCoord2dv(const GLdoublév)
void glTexCoord2fv(const GLfloatv)
void glTexCoord2iv(const GLint*v)
void glTexCoord2s\ const GLshortv)
void glTexCoord3dv(const GLdoublév)
void glTexCoord3fv(const GLfloatv)
void glTexCoord3iv(const GLint*v)
void glTexCoord3s\ const GLshortv)
void glTexCoord4dv(const GLdoublé&v)
void glTexCoord4fv(const GLfloatv)
void glTexCoord4iv(const GLint*v)
void glTexCoord4s\ const GLshortv)

PARAMETERS

% Specifies a pointer to an array of one, two, three, or four elements, which in turn
specify thes, t, r, andq texture coordinates.

DESCRIPTION

The current texture coordinates are part of the data that is associated with polygon vertices. They
set withglTexCoord.

glTexCoord specifies texture coordinates in one, two, three, or four dimensiphiexCoord1 sets
the current texture coordinates @, 0, 1); a call tglTexCoord2 sets them tos(t, 0, 1).
Similarly, glTexCoord3 specifies the texture coordinates g4,(r, 1), andglTexCoord4 defines all
four components explicitly as, , r,).

NOTES

The current texture coordinates can be updated at any time. In partfigaiCoord can be called
between a call tglBegin and the corresponding callgtEnd.

ASSOCIATED GETS

glGetwith argumenGL_CURRENT_TEXTURE_COORDS

SEE ALSO

"glVertex"

glTexEnv

NAME

glTexEnvf, glTexEnvi, giTexEnvfv, gITexEnviv— set texture environment parameters

C SPECIFICATION

void glTexEnvf(GLenumtarget, GLenumpname GLfloatparam)
void glTexEnvi(GLenumtarget, GLenumpname GLint param)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 161

PARAMETERS
target Specifies a texture environment. Must®le TEXTURE_ENV .

pname Specifies the symbolic name of a single-valued texture environment parameter.
Must beGL_TEXTURE_ENV_MODE .

param Specifies a single symbolic constant, on&bf MODULATE , GL_DECAL ,
or GL_BLEND.

C SPECIFICATION

void gITexEnvfv(GLenumtarget GLenumpname const GLfloat'params)
void gITexEnviv(GLenumtarget, GLenumpname const GLint‘params)

PARAMETERS
target Specifies a texture environment. Must®le TEXTURE_ENV .
pname Specifies the symbolic name of a texture environment parameter. Accepted

values aré&GL._ TEXTURE_ENV_MODE and
GL_TEXTURE_ENV_COLOR .

params Specifies a pointer to an array of parameters: either a single symbolic constant ¢
an RGBA color.

DESCRIPTION

A texture environment specifies how texture values are interpreted when a fragment is textured.
targetmust beGL_TEXTURE_ENV . pnamecan be eitheGL_TEXTURE_ENV_MODE or
GL_TEXTURE_ENV_COLOR .

If pnameisGL_TEXTURE_ENV_MODE , thenparamsis (or points to) the symbolic name of a
texture function. Three texture functions are defirt@ld: MODULATE , GL_DECAL , and
GL_BLEND

A texture function acts on the fragment to be textured using the texture image value that applies tc
the fragment (se'glTexParameter) and produces an RGBA color for that fragment. The following
table shows how the RGBA color is produced for each of the three texture functions that can be
chosen.C is a triple of color values (RGB) ardis the associated alpha value. RGBA values
extracted from a texture image are in the range [0,1]. The sulfs@ipts to the incoming fragment,
the subscript to the texture image, the subscigb the texture environment color, and subsaript
indicates a value produced by the texture function.

A texture image can have up to four components per texture elemetyl{s®@dmagelD" and
"glTeximage2D"). In a one—component imageindicates that single component. A

two—component image udgsaandA;. A three—component image has only a color v&jueA
four-component image has both a color va@ijuand an alpha valu.

Number of texture function texture function texture function
components GL_MODULA GL_DECAL GL_BLEND
TE
1 undefined
Cv=Lt G Cv=(1-1k)C+
AV = Af

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 162

Lt

CAv = Af
2 undefined
Cv=LCr Cy=(1-L)C+
Ay = At A LtCc
Ay = At A
3 Cy=Ct
Cv=GCC Ay = Af
Ay = Af undefined
4 Cy=(1-A)C +
Cv==Ct At Gt
Av = At A Ay = Af
undefined

If pnameisGL_TEXTURE_ENV_COLOR , paramsis a pointer to an array that holds an RGBA
color consisting of four values. Integer color components are interpreted linearly such that the mo:
positive integer maps to 1.0, and the most negative integer maps to —1.0. The values are clampec
the range [0,1] when they are specifi€}; takes these four values.

GL_TEXTURE_ENV_MODE defaults tocGL_MODULATE and
GL_TEXTURE_ENV_COLOR defaults to (0,0,0,0).

ERRORS

GL_INVALID_ENUM is generated whetargetor pnameds not one of the accepted defined values,
or whenparamsshould have a defined constant value (based on the vainam® and does not.

GL_INVALID_OPERATION is generated ifjiITexEnv is called between a call gBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGetTexEnv

SEE ALSO

"gITexlmagelD! "glTeximage2D", "glTexParameter"

glTexGen

NAME

glTexGend, glTexGenf, glTexGeni, giITexGendv, giTexGenfv, glTexGenivcontrol the
generation of texture coordinates

C SPECIFICATION

void glTexGend(GLenumcoord, GLenumpname GLdoubleparam)
void glTexGenf{ GLenumcoord GLenumpname GLfloatparam)
void glTexGeni(GLenumcoord GLenumpname GLint param)

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 163

PARAMETERS

coord Specifies a texture coordinate. Must be one of the followig:S, GL_T,
GL_ R, orGL_Q.
pname Specifies the symbolic name of the texture—coordinate generation function. Mus

beGL_TEXTURE_GEN_MODE .
param Specifies a single-valued texture generation parameter, one of
GL_OBJECT_LINEAR ,GL_EYE_LINEAR , or GL_SPHERE_MAP.
C SPECIFICATION

void glTexGendv(GLenumcoord, GLenumpname const GLdoubléparams)
void glTexGenfy GLenumcoord GLenumpname const GLfloat'params)
void glTexGeniv(GLenumcoord GLenumpname const GLint‘params)

PARAMETERS
coord Specifies a texture coordinate. Must be one of the followiig:S, GL_T,
GL_R, orGL_Q.
pname Specifies the symbolic name of the texture—coordinate generation function or

function parameters. Must B2, TEXTURE_GEN_MODE ,
GL_OBJECT_PLANE, orGL_EYE_PLANE.

params Specifies a pointer to an array of texture generation parametgnsanfes
GL_TEXTURE_GEN_MODE , then the array must contain a single symbolic
constant, one d6L_ OBJECT_ LINEAR ,GL_EYE_LINEAR , or
GL_SPHERE_MAP. Otherwiseparamsholds the coefficients for the
texture—coordinate generation function specifiegname

DESCRIPTION

glTexGen selects a texture—coordinate generation function or supplies coefficients for one of the
functions. coordnames one of the,{r,g) texture coordinates, and it must be one of these symbols:
GL_S,GL_T,GL_R, orGL_Q. pnamemust be one of three symbolic constants:
GL_TEXTURE_GEN_MODE , GL_OBJECT_PLANE, orGL_EYE_PLANE. If pnameis
GL_TEXTURE_GEN_MODE , thenparamschooses a mode, one@f. OBJECT_LINEAR,
GL_EYE_LINEAR , orGL_SPHERE_MAP. If pnames eitherGL_OBJECT_PLANE or
GL_EYE_PLANE, paramscontains coefficients for the corresponding texture generation function.

If the texture generation function@._OBJECT_LINEAR , the function
g=P1LX *P2Yo+ P3Zo+ P4 Wo

is used, wherg is the value computed for the coordinate namezbord p1, p2, p3, andp4 are the
four values supplied iparams andxq, Yo, Zg, andwg are the object coordinates of the vertex. This
function can be used to texture—map terrain using sea level as a reference plane (definped by
p3, andpg). The altitude of a terrain vertex is computed byGhe OBJECT_LINEAR coordinate

generation function as its distance from sea level; that altitude is used to index the texture image t
map white snow onto peaks and green grass onto foothills, for example.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 164

If the texture generation function@._EYE_LINEAR , the function
g=p1 Xet p2' Ye + P3 Ze + P4’ We

is used, where

(P2 P2 P3' p4’) = (p1p2p3pa) ML
andxg, Ye, Ze andwe are the eye coordinates of the verigx,p2, p3, andp4 are the values supplied
in params andM is the modelview matrix whegiTexGenis invoked. IfM is poorly conditioned or

singular, texture coordinates generated by the resulting function may be inaccurate or undefined.

Note that the values paramsdefine a reference plane in eye coordinates. The modelview matrix
that is applied to them may not be the same one in effect when the polygon vertices are transformi
This function establishes a field of texture coordinates that can produce dynamic contour lines on
moving objects.

If pnameisGL_SPHERE_MAP and coordis eitherGL_S orGL_T, s andt texture coordinates are
generated as follows. Latbe the unit vector pointing from the origin to the polygon vertex (in eye
coordinates). Leh primebe the current normal, after transformation to eye coordinated. + et

(fx § fz)T be the reflection vector such that
f=u-2nnTu

Finally, let

m = 2in+f§+ (f,+1)°

Then the values assigned to thandt texture coordinates are

= —+ -
m 2

A texture—coordinate generation function is enabled or disabledgiEmaple or glDisablewith one

of the symbolic texture—coordinate nanek (TEXTURE_GEN_S, GL_TEXTURE_GEN_T,
GL_TEXTURE_GEN_R, orGL_TEXTURE_GEN_Q) as the argument. When enabled, the
specified texture coordinate is computed according to the generating function associated with that
coordinate. When disabled, subsequent vertices take the specified texture coordinate from the cui
set of texture coordinates. Initially, all texture generation functions areGét ©YE_LINEAR

and are disabled. Bo#iplane equations are (1,0,0,0), bofilane equations are (0,1,0,0), and all
andq plane equations are (0,0,0,0).

ERRORS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 165

GL_INVALID_ENUM is generated whetoordor pnameis not an accepted defined value, or when
pnameisGL_TEXTURE_GEN_MODE andparamsis not an accepted defined value.

GL_INVALID_ENUM is generated whepnameds GL_TEXTURE_GEN_MODE, paramsis
GL_SPHERE_MAP, andcoordis eitheilGL_R orGL_Q.

GL_INVALID_OPERATION is generated i§lTexGenis called between a call ggBeginand the
corresponding call tglEnd.

ASSOCIATED GETS

glGetTexGen

glisEnabled with argumenGL_TEXTURE_GEN_S

glisEnabled with argumenGL_TEXTURE_GEN_T

glisEnabled with argumenGL_TEXTURE_GEN_R
glisEnabled with argumenGL_TEXTURE_GEN_Q

SEE ALSO

"glTexEnv", "gITeximagelD", "gITeximage2D", "glTexParameter

glTexlmagelD

NAME

glTeximagelD- specify a one—-dimensional texture image

C SPECIFICATION

void glTeximagel(GLenumtarget, GLintlevel GLintcomponentsGLsizeiwidth, GLint border,
GLenumformat, GLenumtype const GLvoid*pixels)

PARAMETERS
target Specifies the target texture. Must®e_TEXTURE_1D.
level Specifies the level-of-detail number. Level 0 is the base image leveln lsevel

the nth mipmap reduction image.

components Specifies the number of color components in the texture. Must be 1, 2, 3, or 4.

width Specifies the width of the texture image. Must Be-2 (border)for some
integern. The height of the texture image is 1.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. The following symbolic values are
acceptedGL_COLOR_INDEX , GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA , GL_RGB, GL_RGBA, GL_LUMINANCE , and
GL_LUMINANCE_ALPHA .

type Specifies the data type of the pixel data. The following symbolic values are
acceptedGL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP ,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 166

andGL_FLOAT .

pixels Specifies a pointer to the image data in memory.

DESCRIPTION

Texturing maps a portion of a specifigokture imagento each graphical primitive for which
texturing is enabled. One-dimensional texturing is enabled and disableglHsizge and
glDisablewith argumeniGL_TEXTURE_1D.

Texture images are defined wighTexiImagelD. The arguments describe the parameters of the
texture image, such as width, width of the border, level-of-detail numb&gi {se®arameter),

and number of color components provided. The last three arguments describe the way the image
represented in memory, and they are identical to the pixel formats usgDrfawPixels.

Data is read frompixelsas a sequence of signed or unsigned bytes, shorts, or longs, or
single—precision floating—point values, dependingpmn These values are grouped into sets of one,
two, three, or four values, dependingformat, to form elements. typeis GL_BITMAP , the data

is considered as a string of unsigned bytes famdat must beGL_COLOR_INDEX). Each data
byte is treated as eight 1-hbit elements, with bit ordering determiréd RYNPACK _LSB_FIRST
(see"glPixelStore").

format determines the composition of each elemeptxals. It can assume one of nine symbolic
values:

GL_COLOR_INDEX
Each element is a single value, a color index. Itis converted to fixed point (with
an unspecified number of zero bits to the right of the binary point), shifted left or
right depending on the value and sigrGaf INDEX_SHIFT , and added to
GL_INDEX_OFFSET (see'glPixelTransfer"). The resulting index is
converted to a set of color components usingxhePIXEL_MAP_I TO_R,
GL_PIXEL_MAP_I_TO_G,GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_|_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. It is converted to floating point and
assembled into an RGBA element by attaching 0.0 for green and blue, and 1.0 f
alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bigd_c_BIAS, and clamped to the range
[0,1] (se€'glPixelTransfer").

GL_GREEN Each element is a single green component. It is converted to floating point and
assembled into an RGBA element by attaching 0.0 for red and blue, and 1.0 for
alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bigd. c_BIAS, and clamped to the range
[0,1] (se€'glPixelTransfer").

GL_BLUE Each element is a single blue component. It is converted to floating point and
assembled into an RGBA element by attaching 0.0 for red and green, and 1.0 fo
alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bigd. ¢ BIAS, and clamped to the range
[0,1] (se€'glPixelTransfer").

GL_ALPHA Each element is a single red component. It is converted to floating point and
assembled into an RGBA element by attaching 0.0 for red, green, and blue. Ea¢

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 167

component is then multiplied by the signed scale faBtorc_ SCALE, added to
the signed bia&L_c_BIAS, and clamped to the range [0,1] (see
"glPixelTransfer").

GL_RGB Each element is an RGB triple. It is converted to floating point and assembled
into an RGBA element by attaching 1.0 for alpha. Each component is then
multiplied by the signed scale fact®t_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] (sgtPixelTransfer").

GL_RGBA Each element is a complete RGBA element. It is converted to floating point.
Each component is then multiplied by the signed scale f&ttoc SCALE,
added to the signed bi&l._c_BIAS, and clamped to the range [0,1] (see
"glPixelTransfer").

GL_LUMINANCE
Each element is a single luminance value. It is converted to floating point, then
assembled into an RGBA element by replicating the luminance value three time:
for red, green, and blue and attaching 1.0 for alpha. Each component is then

multiplied by the signed scale fact®t_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] ($gtPixelTransfer").

GL_LUMINANCE_ALPHA
Each element is a luminance/alpha pair. It is converted to floating point, then
assembled into an RGBA element by replicating the luminance value three time:
for red, green, and blue. Each component is then multiplied by the signed scale
factorGL_c_SCALE, added to the signed bi@t._c_BIAS, and clamped to the
range [0,1] (se&glPixelTransfer").

A texture image can have up to four components per texture element, depenzhngponents A

one—component texture image uses only the red component of the RGBA color extracpéxkfeom

A two—component image uses the R and A values. A three—component image uses the R, G, and

values. A four—-component image uses all of the RGBA components.

NOTES

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pl@sawRixels
command, except th&@L STENCIL _INDEX andGL_DEPTH_COMPONENT cannot be used.
glPixelStore andglPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

A texture image with zero width indicates the null texture. If the null texture is specified for
level-of-detail O, it is as if texturing were disabled.

ERRORS

GL_INVALID_ENUM is generated whetargetis notGL_TEXTURE_1D.

GL_INVALID_ENUM is generated wheformatis not an acceptefdrmatconstant. Format
constants other thabL_STENCIL_INDEX andGL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated whetypeis not atype constant.

GL_INVALID_ENUM is generated ifypeisGL_BITMAP andformatis not
GL_COLOR_INDEX .

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 168

GL_INVALID_VALUE is generated ievelis less than zero or greater tHagpmax wheremaxis
the returned value 6L MAX_TEXTURE_SIZE .

GL_INVALID_VALUE is generated domponentss not 1, 2, 3, or 4.

GL_INVALID_VALUE is generated ifvidth is less than zero or greater than 2 +

GL_MAX_TEXTURE_SIZE , or if it cannot be represented d5#22(border) for some integer
value ofn.

GL_INVALID_VALUE is generated thorderis not O or 1.
GL_INVALID_OPERATION is generated ifjlTeximagelDis called between a call ghBegin
and the corresponding call ¢gdEnd.

ASSOCIATED GETS

glGetTeximage
gllsEnabled with argumenGL_TEXTURE_1D

SEE ALSO

"gIDrawPixels", "glFog", "glPixelStore", "glPixelTransfer", "gITexEnv", "glTexGen",
"glTeximage2D", "glTexParameter"

glTexlmage2D

NAME

glTeximage2D- specify a two—dimensional texture image

C SPECIFICATION

void glTeximage2D(GLenumtarget, GLintlevel GLintcomponentsGLsizeiwidth, GLsizei
height GLintborder, GLenumformat GLenumtype const GLvoidpixels)

PARAMETERS
target Specifies the target texture. Must®e_TEXTURE_2D.
level Specifies the level-of-detail number. Level O is the base image leveln lsevel

the nth mipmap reduction image.

components Specifies the number of color components in the texture. Must be 1, 2, 3, or 4.

width Specifies the width of the texture image. Must Be-2 (border)for some
integem.

height Specifies the height of the texture image. Must'Be+22 (border)for some
integerm.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. The following symbolic values are

acceptedSL_COLOR_INDEX , GL_RED, GL_GREEN, GL_BLUE,

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 169

GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE , and
GL_LUMINANCE_ALPHA .

type Specifies the data type of the pixel data. The following symbolic values are
acceptedGL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP ,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,
andGL_FLOAT .

pixels Specifies a pointer to the image data in memory.

DESCRIPTION

Texturing maps a portion of a specifiecture imagento each graphical primitive for which
texturing is enabled. Two—dimensional texturing is enabled and disabledlisiagle and
glDisablewith argumeniGL_TEXTURE_2D.

Texture images are defined wighTeximage2D. The arguments describe the parameters of the
texture image, such as height, width, width of the border, level-of-detail number (see
"glTexParameter}, and number of color components provided. The last three arguments describe
the way the image is represented in memory, and they are identical to the pixel formats used for
glDrawPixels.

Data is read frompixelsas a sequence of signed or unsigned bytes, shorts, or longs, or
single—precision floating—point values, dependirtgpm These values are grouped into sets of one,
two, three, or four values, dependingformat, to form elements. typeis GL_BITMAP , the data

is considered as a string of unsigned bytes famdat must beGL._COLOR_INDEX). Each data
byte is treated as eight 1-bit elements, with bit ordering determired RYNPACK_LSB_FIRST
(see"glPixelStore").

format determines the composition of each elemeptxals. It can assume one of nine symbolic
values:

GL_COLOR_INDEX
Each element is a single value, a color index. Itis converted to fixed point (with
an unspecified number of zero bits to the right of the binary point), shifted left or
right depending on the value and sigrGéf INDEX_SHIFT , and added to
GL_INDEX_OFFSET (see'glPixelTransfer"). The resulting index is
converted to a set of color components usingzhePIXEL_MAP_I_TO R,
GL_PIXEL_MAP_|I_TO_G ,GL_PIXEL_MAP_I_TO B, and
GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. It is converted to floating point and
assembled into an RGBA element by attaching 0.0 for green and blue, and 1.0 f
alpha. Each component is then multiplied by the signed scale factor

GL_c_SCALE, added to the signed bigd. ¢ BIAS, and clamped to the range
[0,1] (se€'glPixelTransfer").

GL_GREEN Each element is a single green component. It is converted to floating point and
assembled into an RGBA element by attaching 0.0 for red and blue, and 1.0 for
alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bigd_c_BIAS, and clamped to the range
[0,1] (se€'glPixelTransfer").

GL_BLUE Each element is a single blue component. It is converted to floating point and

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 170

assembled into an RGBA element by attaching 0.0 for red and green, and 1.0 fo
alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bigd. c_BIAS, and clamped to the range
[0,1] (se€'glPixelTransfer").

GL_ALPHA Each element is a single red component. It is converted to floating point and
assembled into an RGBA element by attaching 0.0 for red, green, and blue. Ea«
component is then multiplied by the signed scale faGtorc_ SCALE, added to
the signed bia&L_c_BIAS, and clamped to the range [0,1] (see
"glPixelTransfer").

GL_RGB Each element is an RGB triple. It is converted to floating point and assembled
into an RGBA element by attaching 1.0 for alpha. Each component is then
multiplied by the signed scale fact@t._c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] ($gtPixelTransfer").

GL_RGBA Each element is a complete RGBA element. It is converted to floating point.
Each component is then multiplied by the signed scale f&ttoc SCALE,
added to the signed big&l._c_BIAS, and clamped to the range [0,1] (see
"glPixelTransfer").

GL_LUMINANCE
Each element is a single luminance value. It is converted to floating point, then
assembled into an RGBA element by replicating the luminance value three time:
for red, green, and blue and attaching 1.0 for alpha. Each component is then

multiplied by the signed scale fact®t_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] ($gtPixelTransfer").

GL_LUMINANCE_ALPHA
Each element is a luminance/alpha pair. It is converted to floating point, then
assembled into an RGBA element by replicating the luminance value three time:
for red, green, and blue. Each component is then multiplied by the signed scale
factorGL_c_SCALE, added to the signed bi@t. _c_BIAS, and clamped to the
range [0,1] (se&glPixelTransfer").
Please refer to thgiDrawPixels reference page for a description of the acceptable values fiypthe
parameter. A texture image can have up to four components per texture element, depending on
components A one—component texture image uses only the red component of the RGBA color
extracted fronpixels A two—component image uses the R and A values. A three—component imag
uses the R, G, and B values. A four—-component image uses all of the RGBA components.

NOTES

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the piEsawRixels
command, except th&L_STENCIL_INDEX andGL_DEPTH_COMPONENT cannot be used.
glPixelStore andglPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

A texture image with zero height or width indicates the null texture. If the null texture is specified
for level-of-detail O, it is as if texturing were disabled.

ERRORS

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 171

GL_INVALID_ENUM is generated whetargetis notGL_TEXTURE_2D.

GL_INVALID_ENUM is generated wheformatis not an acceptefdrmatconstant. Format
constants other thabL_STENCIL_INDEX andGL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated whetypeis not atype constant.

GL_INVALID_ENUM is generated ifypeisGL_BITMAP andformatis not
GL_COLOR_INDEX .

GL_INVALID_VALUE is generated iEvelis less than zero or greater tHagz max wheremaxis
the returned value dbL_MAX_TEXTURE_SIZE .

GL_INVALID_VALUE is generated fomponentss not 1, 2, 3, or 4.

GL_INVALID_VALUE is generated ifvidth or heightis less than zero or greater than 2 +

GL_MAX_ TEXTURE_SIZE , or if either cannot be represented ESFZ(border) for some integer
value ofk.

GL_INVALID_VALUE is generated thorderis not O or 1.
GL_INVALID_OPERATION is generated ifjiTeximage2Dis called between a call ¢ggBegin
and the corresponding call ¢dEnd.

ASSOCIATED GETS

glGetTexImage
glisEnabled with argumenGL_TEXTURE_2D

SEE ALSO

"glDrawPixels"; "glFog", "glPixelStore", "glPixelTransfer", "glTexEnv", "glTexGen",
"glTexlmagelD", "glTexParameter”

glTexParameter

NAME

glTexParameterf, glTexParameteri, glTexParameterfv, glTexParameteriv set texture
parameters

C SPECIFICATION

void glTexParameterf(GLenumtarget, GLenumpname GLfloatparam)
void glTexParameter{ GLenumtarget, GLenumpname GLint param)

PARAMETERS

target Specifies the target texture, which must be ei@lerTEXTURE_1D or
GL_TEXTURE_2D.

pname Specifies the symbolic name of a single-valued texture pararpetanecan be
one of the followingGL_TEXTURE_MIN_FILTER ,
GL_TEXTURE_MAG_FILTER , GL_TEXTURE_WRAP_S, or

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 172

GL_TEXTURE_WRAP_T.

param Specifies the value gfname

C SPECIFICATION

void glTexParameterfy(GLenumtarget, GLenumpname const GLfloatparams)
void glTexParameteri(GLenumtarget, GLenumpname const GLint‘params)

PARAMETERS

target Specifies the target texture, which must be ei@lerTEXTURE_1D or
GL_TEXTURE_2D.

pname Specifies the symbolic name of a texture paramgiramecan be one of the
following: GL_TEXTURE_MIN_FILTER , GL_TEXTURE_MAG_FILTER |,
GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, or
GL_TEXTURE_BORDER_COLOR.

params Specifies a pointer to an array where the value or valugsarheare stored.

DESCRIPTION

Texture mapping is a technique that applies an image onto an object’s surface as if the image wer
decal or cellophane shrink-wrap. The image is created in texture space, with @ofdinate

system. A texture is a one— or two—dimensional image and a set of parameters that determine ho
samples are derived from the image.

glTexParameterassigns the value or valuesgaramsto the texture parameter specifiedpasme
targetdefines the target texture, eitt@c_TEXTURE_1D orGL_TEXTURE_2D. The following
symbols are acceptedpmame

GL_TEXTURE_MIN_FILTER
The texture minifying function is used whenever the pixel being textured maps tc
an area greater than one texture element. There are six defined minifying
functions. Two of them use the nearest one or nearest four texture elements to
compute the texture value. The other four use mipmaps.

A mipmap is an ordered set of arrays representing the same image at

progressively lower resolutions. If the texture has dimensiBx@Pthere are
max (n, m) + 1 mipmaps. The first mipmap is the original texture, with

dimensions 2x2M. Each subsequent mipmap has dimensidhs 2! -1
where ¥x2! are the dimensions of the previous mipmap, until ekheD or

I=0. At that point, subsequent mipmaps have dimensignl T1 or 2k~ L1
until the final mipmap, which has dimensionll Mipmaps are defined using
glTexlmagelDor glTexlmage2Dwith the level-of-detail argument indicating
the order of the mipmaps. Level O is the original texture; level mar(is
the final 1x1 mipmap.

paramssupplies a function for minifying the texture as one of the following:

GL_NEAREST Returns the value of the texture element that is nearest (in Manhattan distance)
the center of the pixel being textured.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 173

GL_LINEAR Returns the weighted average of the four texture elements that are closest to the
center of the pixel being textured. These can include border texture elements,
depending on the values@GL_TEXTURE_WRAP_S and
GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_NEAREST_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being
textured and uses tl@&l._NEAREST criterion (the texture element nearest to
the center of the pixel) to produce a texture value.

GL_LINEAR_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being
textured and uses tl@@._LINEAR criterion (a weighted average of the four
texture elements that are closest to the center of the pixel) to produce a texture
value.

GL_NEAREST_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being
textured and uses tl@@. NEAREST criterion (the texture element nearest to
the center of the pixel) to produce a texture value from each mipmap. The final
texture value is a weighted average of those two values.

GL_LINEAR_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being
textured and uses tl@@._LINEAR criterion (a weighted average of the four
texture elements that are closest to the center of the pixel) to produce a texture
value from each mipmap. The final texture value is a weighted average of those
two values.

As more texture elements are sampled in the minification process, fewer aliasing
artifacts will be apparent. While titd.NEAREST andGL_LINEAR

minification functions can be faster than the other four, they sample only one or
four texture elements to determine the texture value of the pixel being rendered
and can produce moire patterns or ragged transitions. The default value of
GL_TEXTURE_MIN_FILTER isGL_NEAREST MIPMAP_LINEAR .

GL_TEXTURE_MAG_FILTER
The texture magnification function is used when the pixel being textured maps tc
an area less than or equal to one texture element. It sets the texture magnificati
function to either of the following:

GL_NEAREST
Returns the value of the texture element that is nearest (in Manhattan distance)
the center of the pixel being textured.

GL_LINEAR Returns the weighted average of the four texture elements that are
closest to the center of the pixel being textured. These can include border textu
elements, depending on the valuessef TEXTURE_WRAP_S and
GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_NEAREST is generally faster thaBL_LINEAR , but it can produce
textured images with sharper edges because the transition between texture
elements is not as smooth. The default value of
GL_TEXTURE_MAG_FILTER isGL_LINEAR .

GL_TEXTURE_WRAP_S
Sets the wrap parameter for texture coordisateeitherGL_CLAMP or
GL_REPEAT. GL_CLAMP causes coordinates to be clamped to the range

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 174

[0,1] and is useful for preventing wrapping artifacts when mapping a single
image onto an objeciGL_REPEAT causes the integer part of theoordinate

to be ignored; the GL uses only the fractional part, thereby creating a repeating
pattern. Border texture elements are accessed only if wrapping is set to
GL_CLAMP . Initially, GL_TEXTURE_WRAP_S is set toGL_REPEAT.

GL_TEXTURE_WRAP_T
Sets the wrap parameter for texture coordib&becitherGL_CLAMP or
GL_REPEAT. See the discussion undet. TEXTURE_WRAP_S. Initially,
GL_TEXTURE_WRAP_T is set toGL_REPEAT.

GL_TEXTURE_BORDER_COLOR
Sets a border coloparamscontains four values that comprise the RGBA color
of the texture border. Integer color components are interpreted linearly such tha
the most positive integer maps to 1.0, and the most negative integer maps to -1

The values are clamped to the range [0,1] when they are specified. Initially, the
border color is (0, 0, O, 0).

NOTES

Suppose texturing is enabled (by callgifnable with argumenGL_TEXTURE_1D or
GL_TEXTURE_2D) andGL_TEXTURE_MIN_FILTER is set to one of the functions that

requires a mipmap. If either the dimensions of the texture images currently defined (with previous
calls toglTeximagelDorglTexlmage2D do not follow the proper sequence for mipmaps
(described above), or there are fewer texture images defined than are needed, or the set of texture
images have differing numbers of texture components, then it is as if texture mapping were disable

Linear filtering accesses the four nearest texture elements only in 2-D textures. In 1-D textures,
linear filtering accesses the two nearest texture elements.

ERRORS

GL_INVALID_ENUM is generated whetargetor pnamds not one of the accepted defined values,
or whenparamsshould have a defined constant value (based on the vainam® and does not.

GL_INVALID_OPERATION is generated ifjiITexParameteris called between a call giBegin
and the corresponding call ¢dEnd.

ASSOCIATED GETS

glGetTexParameter
glGetTexLevelParameter

SEE ALSO

"glTexEnv", "glTeximagelD", "gITeximage2D", "glTexGen"

glTranslate

NAME

glTranslated, glTranslatef— multiply the current matrix by a translation matrix

C SPECIFICATION

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 175

void glTranslated(GLdoublex, GLdoubley, GLdoublez)
void glTranslatef(GLfloatx, GLfloaty, GLfloatz)

PARAMETERS

XY, 2 Specify thex, y, andzcoordinates of a translation vector.

DESCRIPTION

glTranslate moves the coordinate system origin to the point specified,iag)(The translation
vector is used to compute aftranslation matrix:

100 x
010y
0012
0001]

The current matrix (s€glMatrixMode") is multiplied by this translation matrix, with the product
replacing the current matrix. That is, if M is the current matrix and T is the translation matrix, then
M is replaced withM o T.

If the matrix mode is eitheeL._ MODELVIEW orGL_PROJECTION, all objects drawn after
glTranslate is called are translated. UgkPushMatrix andglPopMatrix to save and restore the
untranslated coordinate system.

ERRORS

GL_INVALID_OPERATION is generated ifjiTranslate is called between a call ggBeginand
the corresponding call gEnd.

ASSOCIATED GETS

glGet with argumenGL_MATRIX_MODE

glGet with argumenGL_MODELVIEW_MATRIX

glGet with argumenGL_PROJECTION_MATRIX
glGet with argumenGL_TEXTURE_MATRIX

SEE ALSO

"gIMatrixMode", "glMultMatrix" , "glPushMatrix", "glRotate", "glScale"

glVertex

NAME

glVertex2d, glVertex2f, glVertex2i, glVertex2s, glVertex3d, glVertex3f, glVertex3i, glVertex3s,
glVertex4d, glVertex4f, glVertexdi, glVertexds, glVertex2dv, glVertex2fv, glVertex2iv,
glVertex2sv, glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv, glVertex4dv, glVertex4fv,

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 176

glVertexdiv, glVertex4sv— specify a vertex

C SPECIFICATION

void glVertex2d(GLdoublex, GLdoubley)

void glVertex2f(GLfloatx, GLfloaty)

void glVertex2i(GLintx, GLinty)

void glVertex2g(GLshortx, GLshorty)

void glVertex3d(GLdoublex, GLdoubley, GLdoublez)

void glVertex3f(GLfloatx, GLfloaty, GLfloatz)

void glVertex3i(GLintx, GLinty, GLint z)

void glVertex3g(GLshortx, GLshorty, GLshortz)

void glVertex4d(GLdoublex, GLdoubley, GLdoublez, GLdoublew)
void glVertex4f(GLfloat x, GLfloaty, GLfloatz, GLfloat w)
void glVertex4i(GLintx, GLinty, GLint z GLintw)

void glVertex4s(GLshortx, GLshorty, GLshortz, GLshortw)

PARAMETERS

XY, Z,W Specifyx, y, z, andw coordinates of a vertex. Not all parameters are present in
all forms of the command.

C SPECIFICATION

void glVertex2dv(const GLdoublév)
void glVertex2fv(const GLfloat*v)
void glVertex2iv(const GLint*v)
void glVertex2sV const GLshortv)
void glVertex3dv(const GLdoublév)
void glVertex3fv(const GLfloat*v)
void glVertex3iv(const GLint*v)
void glVertex3s\V const GLshortv)
void glVertex4dv(const GLdoublév)
void glVertex4fv(const GLfloat*v)
void glVertex4iv(const GLint*v)
void glVertex4s\ const GLshortv)

PARAMETERS

% Specifies a pointer to an array of two, three, or four elements. The elements of
two—element array axeandy; of a three—element arrayy, andz; and of a
four—element array, y, z andw.

DESCRIPTION

glVertex commands are used withifBegin/glEnd pairs to specify point, line, and polygon vertices.
The current color, normal, and texture coordinates are associated with the verte\enesx is
called.

When onlyx andy are specifiedz defaults to 0.0 and defaults to 1.0. Whexy y,andz are
specifiedw defaults to 1.0.

NOTES

Invoking glVertex outside of ayIBegin/glEnd pair results in undefined behavior.

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 177

SEE ALSO

"gIBegin”, "gICallList" , "glColor", "glEdgeFlag", "glEvalCoord", "glindex" , "glMaterial" ,
"gINormal", "glRect", "glTexCoord"

glViewport

NAME

glViewport — set the viewport

C SPECIFICATION

void glViewport (GLint x, GLinty, GLsizeiwidth, GLsizeiheight)

PARAMETERS
Xy Specify the lower left corner of the viewport rectangle, in pixels. The default is
(0,0).

width, height Specify the width and height, respectively, of the viewport. When a GL context
is first attached to a windowyidth andheightare set to the dimensions of that
window.

DESCRIPTION

glViewport specifies the affine transformation>ofndy from normalized device coordinates to
window coordinates. Lekfd, Ynd) be normalized device coordinates. Then the window coordinates

(xw» YWw) are computed as follows:

width
X, = [xnd+1] — + X
height

yw [!’I‘lnd'l'l] T +y

Viewport width and height are silently clamped to a range that depends on the implementation. Tt
range is queried by callingGet with argumenGL_MAX_VIEWPORT_DIMS .

ERRORS
GL_INVALID_VALUE is generated if eithavidth or heightis negative.

GL_INVALID_OPERATION is generated ifjlViewport is called between a call ggBeginand
the corresponding call tglEnd.

ASSOCIATED GETS

glGet with argumenGL_VIEWPORT

OpenGL Reference Manual — Chapter 5, OpenGL Reference Pages — 178

glGet with argumenGL_MAX_VIEWPORT_DIMS

SEE ALSO

"gIDepthRange"

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 179

Chapter 6
GLU Reference Pages

This chapter contains the reference pages, in alphabetical order, for all the routines comprising the
OpenGL Utility Library (GLU).

gluBeginCurve

NAME

gluBeginCurve, gluEndCurve — delimit a NURBS curve definition

C SPECIFICATION

void gluBeginCurve(GLUnurbsObjnobj)
void gluEndCurve(GLUnurbsObjnobj)
PARAMETERS

nobj Specifies the NURBS object (created williNewNurbsRendere).

DESCRIPTION

UsegluBeginCurve to mark the beginning of a NURBS curve definition. After calling
gluBeginCurve, make one or more calls gguNurbsCurve to define the attributes of the curve.
Exactly one of the calls tgluNurbsCurve must have a curve type 6GL_MAP1_VERTEX_3 or
GL_MAP1 VERTEX 4. To mark the end of the NURBS curve definition, giliEndCurve.

OpenGL evaluators are used to render the NURBS curve as a series of line segments. Evaluator
is preserved during rendering wigiPushAttrib (GL_EVAL_BIT) andglPopAttrib (). See the
"glPushAttrib" reference page for details on exactly what state these calls preserve.

EXAMPLE

The following commands render a textured NURBS curve with normals; texture coordinates and
normals are also specified as NURBS curves:

gluBeginCurve(nobj);
gluNurbsCurve(nobj, ..., GL_MAP1_TEXTURE_COORD_2);
gluNurbsCurve(nobj, ..., GL_MAP1_NORMAL);
gluNurbsCurve(nobj, ..., GL_MAP1_VERTEX_4);
gluEndCurve(nobj);

SEE ALSO

"gluBeginSurface™gluBeginTrim", "gluNewNurbsRenderer,"gluNurbsCurve", glPopAttrib ,
"glPushAttrib"

gluBeginPolygon

NAME

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 1

gluBeginPolygon, gluEndPolygon- delimit a polygon description

C SPECIFICATION
void gluBeginPolygon| GLUtriangulatorObjftobj)
void gluEndPolygon(GLUtriangulatorObjtobj)

PARAMETERS

tobj Specifies the tessellation object (created gitiNewTes3.

DESCRIPTION

gluBeginPolygonandgluEndPolygondelimit the definition of a nonconvex polygon. To define
such a polygon, first cafjluBeginPolygon Then define the contours of the polygon by calling
gluTessVertexfor each vertex angluNextContour to start each new contour. Finally, call
gluEndPolygonto signal the end of the definition. See'theTessVertex"and"gluNextContour"
reference pages for more detalils.

OncegluEndPolygonis called, the polygon is tessellated, and the resulting triangles are described
through callbacks. SégluTessCallback"for descriptions of the callback functions.

EXAMPLE
A quadrilateral with a triangular hole in it can be described like this:

gluBeginPolygon(tobj);
gluTessVertex(tobj, v1, v1);
gluTessVertex(tobj, v2, v2);
gluTessVertex(tobj, v3, v3);
gluTessVertex(tobj, v4, v4);

gluNextContour(tobj, GLU_INTERIOR);
gluTessVertex(tobj, v5, vb);
gluTessVertex(tobj, v6, v6);
gluTessVertex(tobj, v7, v7);

gluEndPolygon(tobj);

SEE ALSO

"gluNewTess; "gluNextContour", "gluTessCallback’, "gluTessVertex"

gluBeginSurface

NAME

gluBeginSurface, gluEndSurface- delimit a NURBS surface definition

C SPECIFICATION

void gluBeginSurfacg GLUnurbsObjnobj)
void gluEndSurface(GLUnurbsObj*nobj)

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 2

PARAMETERS

nobj Specifies the NURBS object (created wiflikNewNurbsRendere).

DESCRIPTION

UsegluBeginSurfaceto mark the beginning of a NURBS surface definition. After calling
gluBeginSurface make one or more calls gduNurbsSurfaceto define the attributes of the surface.
Exactly one of these calls gduNurbsSurface must have a surface type@f_MAP2_VERTEX_3

or GL_MAP2 VERTEX_ 4. To mark the end of the NURBS surface definition, call
gluEndSurface.

Trimming of NURBS surfaces is supported wgthBeginTrim, gluPwICurve, gluNurbsCurve,
andgluEndTrim . Refer to thegluBeginTrim reference page for details.

OpenGL evaluators are used to render the NURBS surface as a set of polygons. Evaluator state i
preserved during rendering wigiPushAttrib (GL_EVAL_BIT) andglPopAttrib (). See the
"glPushAttrib" reference page for details on exactly what state these calls preserve.

EXAMPLE

The following commands render a textured NURBS surface with normals; the texture coordinates
and normals are also described as NURBS surfaces:

gluBeginSurface(nobj);
gluNurbsSurface(nobj, ..., GL_MAP2_TEXTURE_COORD_2);
gluNurbsSurface(nobj, ..., GL_MAP2_NORMAL);
gluNurbsSurface(nobj, ..., GL_MAP2_VERTEX_4);
gluEndSurface(nobj);

SEE ALSO

"gluBeginCurve; "gluBeginTrim", "gluNewNurbsRenderer,

"gluNurbsSurface'’, "gluPwICurve"

gluNurbsCurve",

gluBeginTrim

NAME

gluBeginTrim, gluEndTrim - delimit a NURBS trimming loop definition

C SPECIFICATION

void gluBeginTrim (GLUnurbsObjnobj)
void gluEndTrim (GLUnurbsObjnobj)

PARAMETERS

nobj Specifies the NURBS object (created wifliNewNurbsRendere).

DESCRIPTION

UsegluBeginTrim to mark the beginning of a trimming loop, agldEndTrim to mark the end of a

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 3

trimming loop. A trimming loop is a set of oriented curve segments (forming a closed curve) that
define boundaries of a NURBS surface. You include these trimming loops in the definition of a
NURBS surface, between callsgtuBeginSurfaceandgluEndSurface

The definition for a NURBS surface can contain many trimming loops. For example, if you wrote a
definition for a NURBS surface that resembled a rectangle with a hole punched out, the definition
would contain two trimming loops. One loop would define the outer edge of the rectangle; the oth
would define the hole punched out of the rectangle. The definitions of each of these trimming loop
would be bracketed byguBeginTrim/gluEndTrim pair.

The definition of a single closed trimming loop can consist of multiple curve segments, each
described as a piecewise linear curve (gag”?wICurve") or as a single NURBS curve (see
"gluNurbsCurve"), or as a combination of both in any order. The only library calls that can appear
a trimming loop definition (between the callsggiaBeginTrim andgluEndTrim) aregluPwICurve
andgluNurbsCurve.

The area of the NURBS surface that is displayed is the region in the domain to the left of the
trimming curve as the curve parameter increases. Thus, the retained region of the NURBS surfac
inside a counterclockwise trimming loop and outside a clockwise trimming loop. For the rectangle
mentioned earlier, the trimming loop for the outer edge of the rectangle runs counterclockwise, wh
the trimming loop for the punched-out hole runs clockwise.

If you use more than one curve to define a single trimming loop, the curve segments must form a
closed loop (that is, the endpoint of each curve must be the starting point of the next curve, and th
endpoint of the final curve must be the starting point of the first curve). If the endpoints of the curv
are sufficiently close together but not exactly coincident, they will be coerced to match. If the
endpoints are not sufficiently close, an error results"geélurbsCallback?).

If a trimming loop definition contains multiple curves, the direction of the curves must be consisten
(that is, the inside must be to the left of all of the curves). Nested trimming loops are legal as long
the curve orientations alternate correctly. Trimming curves cannot be self-intersecting, nor can th
intersect one another (or an error results).

If no trimming information is given for a NURBS surface, the entire surface is drawn.

EXAMPLE

This code fragment defines a trimming loop that consists of one piecewise linear curve, and two
NURBS curves:

gluBeginTrim(nobj);
gluPwlICurve(..., GLU_MAP1_TRIM_2);
gluNurbsCurve(..., GLU_MAP1_TRIM_2);
gluNurbsCurve(..., GLU_MAP1_TRIM_3);
gluEndTrim(nobj);

SEE ALSO

"gluBeginSurface
"gluPwICurve"

gluNewNurbsRenderer,"'gluNurbsCallback’, "gluNurbsCurve",

gluBuild1DMipmaps

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 4

NAME

gluBuild1DMipmaps - create 1-D mipmaps

C SPECIFICATION

int gluBuild1DMipmaps (GLenuntarget, GLint componentsGLint width, GLenumformat,
GLenumtype void *data)

PARAMETERS

target Specifies the target texture. Must®e_TEXTURE_1D.

components Specifies the number of color components in the texture. Must be 1, 2, 3, or 4.
width Specifies the width of the texture image.

format Specifies the format of the pixel data. Must be on@lof COLOR_INDEX,

GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA , GL_RGB, GL_RGBA,
GL_LUMINANCE , andGL_LUMINANCE_ALPHA .

type Specifies the data type fdata. Must be one o6L_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP , GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, or GL_FLOAT .

data Specifies a pointer to the image data in memory.

DESCRIPTION

gluBuild1DMipmaps obtains the input image and generates all mipmap images (using
gluScalelmagé so that the input image can be used as a mipmapped texture ighagelmagelD

is then called to load each of the images. If the width of the input image is not a power of two, thei
the image is scaled to the nearest power of two before the mipmaps are generated.

A return value of zero indicates success. Otherwise, a GLU error code is returned (see
"gluErrorString").

Please refer to thggTexImagelDreference page for a description of the acceptable values for the
format parameter. See tHglDrawPixels" reference page for a description of the acceptable values
for thetype parameter.

SEE ALSO

"glTeximagelDy "gluBuild2DMipmaps", "gluErrorString”, "gluScalelmage"

gluBuild2DMipmaps

NAME

gluBuild2DMipmaps - create 2-D mipmaps

C SPECIFICATION

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 5

int gluBuild2DMipmaps (GLenuntarget, GLint componentsGLint width, GLint height GLenum
format, GLenumtype void *data)

PARAMETERS

target Specifies the target texture. Must®e_TEXTURE_2D.

components Specifies the number of color components in the texture. Must be 1, 2, 3, or 4.
width, height

Specifies the width and height, respectively, of the texture image.

format Specifies the format of the pixel data. Must be on&af: COLOR_INDEX
GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA , GL_RGB, GL_RGBA,
GL_LUMINANCE , andGL_LUMINANCE_ALPHA .

type Specifies the data type fdata Must be one ofGL_UNSIGNED_ BYTE,
GL_BYTE, GL_BITMAP , GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, or GL_FLOAT .

data Specifies a pointer to the image data in memory.

DESCRIPTION

gluBuild2DMipmaps obtains the input image and generates all mipmap images (using
gluScalelmagé so that the input image can be used as a mipmapped texture ighagelmage2D

is then called to load each of the images. If the dimensions of the input image are not powers of tv
then the image is scaled so that both the width and height are powers of two before the mipmaps ¢
generated.

A return value of 0 indicates success. Otherwise, a GLU error code is returnéglyBeerString"

)-

Please refer to thgiTexImagelDreference page for a description of the acceptable values for the
format parameter. See thglDrawPixels" reference page for a description of the acceptable values
for thetype parameter.

SEE ALSO

"glDrawPixels", "glTeximagelD", "glTexImage2D", "gluBuild1DMipmaps", "gluErrorString",
"gluScalelmage"

gluCylinder

NAME

gluCylinder — draw a cylinder

C SPECIFICATION

void gluCylinder (GLUquadricObj*qobj, GLdoublebaseRadiusGLdoubletopRadius GLdouble
height GLintslices GLint stacks)

PARAMETERS

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 6

qobj Specifies the quadrics object (created witiNewQuadric).

baseRadius Specifies the radius of the cylinderzat 0.
topRadius Specifies the radius of the cylinderzat height
height Specifies the height of the cylinder.

slices Specifies the number of subdivisions aroundzthgis.
stacks Specifies the number of subdivisions alongzlais.
DESCRIPTION

gluCylinder draws a cylinder oriented along thaxis. The base of the cylinder is placeaatO,
and the top atz = height Like a sphere, a cylinder is subdivided aroundzthes into slices, and
along thez axis into stacks.

Note that iftopRadiusis set to zero, then this routine will generate a cone.

If the orientation is set t&LU_OUTSIDE (with gluQuadricOrientation), then any generated
normals point away from theaxis. Otherwise, they point toward thexis.

If texturing is turned on (witlgluQuadricTexture), then texture coordinates are generated sd that
ranges linearly from 0.0 at= 0 to 1.0 az = height ands ranges from 0.0 at they-axis, to 0.25 at
the 4 axis, to 0.5 at the/-axis, to 0.75 at thex-axis, and back to 1.0 at thg axis.

SEE ALSO

"gluDisk", "gluNewQuadric", "gluPartialDisk", "gluQuadricTexture’, "gluSphere"

gluDeleteNurbsRenderer

NAME

gluDeleteNurbsRenderer- destroy a NURBS object

C SPECIFICATION

void gluDeleteNurbsRendere(GLUnurbsObj*nobj)

PARAMETERS

nobj Specifies the NURBS object to be destroyed (created with
gluNewNurbsRenderej.

DESCRIPTION

gluDeleteNurbsRendererdestroys the NURBS object and frees any memory used by it. Once
gluDeleteNurbsRendererhas been calledobj cannot be used again.

SEE ALSO

"gluNewNurbsRenderer"

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 7

gluDeleteQuadric

NAME

gluDeleteQuadric— destroy a quadrics object

C SPECIFICATION

void gluDeleteQuadriq(GLUquadricObjtstate)

PARAMETERS

state Specifies the quadrics object to be destroyed (createdyivilewQuadric).

DESCRIPTION

gluDeleteQuadric destroys the quadrics object and frees any memory used by it. Once
gluDeleteQuadric has been calledtatecannot be used again.

SEE ALSO

"gluNewQuadric"

gluDeleteTess

NAME

gluDeleteTess- destroy a tessellation object

C SPECIFICATION

void gluDelete Tes§ GLUtriangulatorObjtobj)

PARAMETERS

tobj Specifies the tessellation object to destroy (createdglitNewTes3.

DESCRIPTION

gluDeleteTesdlestroys the indicated tessellation object and frees any memory that it used.

SEE ALSO

"gluBeginPolygon;"gluNewTess", "gluTessCallback"

gluDisk

NAME

gluDisk — draw a disk

C SPECIFICATION

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 8

void gluDisk(GLUquadricObj*qobj, GLdoubleinnerRadius GLdoubleouterRadiusGLintslices

GLint loops)

PARAMETERS

qobj Specifies the quadrics object (created witiNewQuadric).

innerRadius Specifies the inner radius of the disk (may be 0).

outerRadius Specifies the outer radius of the disk.

slices Specifies the number of subdivisions aroundzthgis.

loops Specifies the number of concentric rings about the origin into which the disk is
subdivided.

DESCRIPTION

gluDisk renders a disk on thie= 0 plane. The disk has a radiusaferRadiusand contains a
concentric circular hole with a radiusioherRadius If innerRadiuss 0, then no hole is generated.
The disk is subdivided around thexis into slices (like pizza slices), and also aboutkthes into
rings (as specified bglicesandloops respectively).

With respect to orientation, the side of the disk is considered to be "outside" (see
"gluQuadricOrientation’). This means that if the orientation is seBtdJ_OUTSIDE, then any
normals generated point along theakis. Otherwise, they point along theaxis.

If texturing is turned on (witlgluQuadricTexture), texture coordinates are generated linearly such
that wherer = outerRadius, the value atr(0, 0) is (1, 0.5), at (0, 0) itis (0.5, 1), at (-0, 0) itis
(0, 0.5), and at (Or-0) it is (0.5, 0).

SEE ALSO

"gluCylinder", "gluNewQuadric", "gluPartialDisk", "gluQuadricOrientation’; "gluQuadricTexture"
, "gluSphere"

gluErrorString

NAME

gluErrorString - produce an error string from an OpenGL or GLU error code

C SPECIFICATION

const GLubyte*gluErrorString (GLenumerrorCode)

PARAMETERS

errorCode Specifies an OpenGL or GLU error code.

DESCRIPTION

gluErrorString produces an error string from an OpenGL or GLU error code. The string is in an
ISO Latin 1 format. For examplgluErrorString (GL_OUT_OF_MEMORY) returns the string

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 9

out of memory

The standard GLU error codes &eU_INVALID_ENUM , GLU_INVALID_VALUE , and
GLU_OUT_OF_MEMORY . Certain other GLU functions can return specialized error codes
through callbacks. Refer to tig¢GetError reference page for the list of OpenGL error codes.

SEE ALSO

"glGetError'; "gluNurbsCallback'", "gluQuadricCallback’, "gluTessCallback"

gluGetNurbsProperty

NAME

gluGetNurbsProperty — get a NURBS property

C SPECIFICATION

void gluGetNurbsProperty(GLUnurbsObjnobj, GLenumproperty, GLfloat*value)

PARAMETERS
nobj Specifies the NURBS object (created wiflikNewNurbsRendere).
property Specifies the property whose value is to be fetched. Valid values are

GLU_CULLING , GLU_SAMPLING_TOLERANCE ,
GLU_DISPLAY_MODE , andGLU_AUTO_LOAD_MATRIX .

value Specifies a pointer to the location into which the value of the named property is
written.
DESCRIPTION

gluGetNurbsProperty is used to retrieve properties stored in a NURBS object. These properties
affect the way that NURBS curves and surfaces are rendered. Please refghuiNuhiesProperty
reference page for information about what the properties are and what they do.

SEE ALSO

"gluNewNurbsRenderer"gluNurbsProperty"

gluLoadSamplingMatrices

NAME

gluLoadSamplingMatrices— load NURBS sampling and culling matrices

C SPECIFICATION

void gluLoadSamplingMatrices(GLUnurbsObjnobj, const GLfloatmodelMatrix[16] const
GLfloat projMatrix[16], const GLintviewport[4]);)

PARAMETERS

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 10

nobj Specifies the NURBS object (created wifliNewNurbsRendere).

modelMatrix Specifies a modelview matrix (as frongksetFloatv call).
projMatrix Specifies a projection matrix (as frongksetFloatv call).
viewport; Specifies a viewport (as fromgdGetintegerv call).
DESCRIPTION

gluLoadSamplingMatrices useamodelMatrix projMatrix, andviewport;to recompute the sampling
and culling matrices stored mobj. The sampling matrix determines how finely a NURBS curve or
surface must be tessellated to satisfy the sampling tolerance (as determined by the
GLU_SAMPLING_TOLERANCE property). The culling matrix is used in deciding if a NURBS
curve or surface should be culled before rendering (whe@lthe CULLING property is turned

on).

gluLoadSamplingMatrices is necessary only if theLU_AUTO_LOAD_MATRIX property is
turned off (seégluNurbsProperty’). Although it can be convenient to leave the
GLU_AUTO_LOAD_MATRIX property turned on, there can be a performance penalty for doing
so. (A round trip to the OpenGL server is needed to fetch the current values of the modelview
matrix, projection matrix, and viewport.)

SEE ALSO

"gluGetNurbsProperty™gluNewNurbsRenderer,"'gluNurbsProperty"

gluLookAt

NAME

gluLookAt - define a viewing transformation

C SPECIFICATION

void gluLookAt (GLdoubleeyex GLdoubleeyey GLdoubleeyez GLdoublecenterx GLdouble
centery GLdoublecenterz GLdoubleupx, GLdoubleupy, GLdoubleupz)

PARAMETERS

eyex eyey eyez
Specifies the position of the eye point.

centerxcentery centerz
Specifies the position of the reference point.

upx upy, upz Specifies the direction of the up vector.

DESCRIPTION

gluLookAt creates a viewing matrix derived from an eye point, a reference point indicating the
center of the scene, and an up vector. The matrix maps the reference point to the nagistaed
the eye point to the origin, so that, when a typical projection matrix is used, the center of the scene

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 11

maps to the center of the viewport. Similarly, the direction described by the up vector projected or
the viewing plane is mapped to the positvaxis so that it points upward in the viewport. The up
vector must not be parallel to the line of sight from the eye to the reference point.

The matrix generated yluLookAt postmultiplies the current matrix.

SEE ALSO

"glFrustum’; "gluPerspective"

gluNewNurbsRenderer

NAME

gluNewNurbsRenderer— create a NURBS object

C SPECIFICATION

GLUnurbsObj*gluNewNurbsRenderer(void)

DESCRIPTION

gluNewNurbsRenderercreates and returns a pointer to a new NURBS object. This object must be
referred to when calling NURBS rendering and control functions. A return value of zero means the
there is not enough memory to allocate the object.

SEE ALSO

"gluBeginCurve; "gluBeginSurface", "gluBeginTrim" , "gluDeleteNurbsRenderer"
"gluNurbsCallback”, "gluNurbsProperty"

gluNewQuadric

NAME

gluNewQuadric — create a quadrics object

C SPECIFICATION

GLUquadricObj*gluNewQuadric(void)

DESCRIPTION

gluNewQuadric creates and returns a pointer to a new quadrics object. This object must be referre
to when calling quadrics rendering and control functions. A return value of zero means that there i
not enough memory to allocate the object.

SEE ALSO

"gluCylinder", "gluDeleteQuadric’; "gluDisk" , "gluPartialDisk", "gluQuadricCallback’
"gluQuadricDrawStyle', "gluQuadricNormals", "gluQuadricOrientation; "gluQuadricTexture’,
"gluSphere"

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 12

gluNewTess

NAME

gluNewTess- create a tessellation object

C SPECIFICATION

GLUtriangulatorObj*gluNewTes$ void)

DESCRIPTION

gluNewTesscreates and returns a pointer to a new tessellation object. This object must be referre:
when calling tessellation functions. A return value of zero means that there is not enough memory
allocate the object.

SEE ALSO

"gluBeginPolygon;"gluDeleteTess'; "gluTessCallback"

gluNextContour

NAME

gluNextContour — mark the beginning of another contour

C SPECIFICATION

void gluNextContour(GLUtriangulatorObjtobj, GLenumtype)

PARAMETERS

tobj Specifies the tessellation object (created witiNewTes3.

type Specifies the type of the contour being defined. Valid values are
GLU_EXTERIOR , GLU_INTERIOR , GLU_UNKNOWN, GLU_CCW, and
GLU_CW.

DESCRIPTION

gluNextContour is used in describing polygons with multiple contours. After the first contour has
been described through a serieglofTessVertexcalls, agluNextContour call indicates that the
previous contour is complete and that the next contour is about to begin. Another series of
gluTessVertexcalls is then used to describe the new contour. This process can be repeated until ¢
contours have been described.

typedefines what type of contour follows. The legal contour types are as follows:

GLU_EXTERIOR
An exterior contour defines an exterior boundary of the polygon.

GLU_INTERIOR
An interior contour defines an interior boundary of the polygon (such as a hole).

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 13

GLU_UNKNOWN
An unknown contour is analyzed by the library to determine if it is interior or
exterior.

GLU_CCW, GLU_CW
The firstGLU_CCW or GLU_CW contour defined is considered to be exterior.
All other contours are considered to be exterior if they are oriented in the same
direction (clockwise or counterclockwise) as the first contour, and interior if they
are not. If one contour is of tygd U_CCW or GLU_CW, then all contours
must be of the same type (if they are not, theall_CCW andGLU_CW
contours will be changed t8BLU_UNKNOWN). Note that there is no real
difference between th@eLU_CCW andGLU_CW contour types.

gluNextContour can be called before the first contour is described to define the type of the first

contour. IfgluNextContour is not called before the first contour, then the first contour is marked
GLU_EXTERIOR .

EXAMPLE
A quadrilateral with a triangular hole in it can be described as follows:

gluBeginPolygon(tobj);
gluTessVertex(tobj, v1, vl);
gluTessVertex(tobj, v2, v2);
gluTessVertex(tobj, v3, v3);
gluTessVertex(tobj, v4, v4);

gluNextContour(tobj, GLU_INTERIOR);
gluTessVertex(tobj, v5, v5);
gluTessVertex(tobj, v6, v6);
gluTessVertex(tobj, v7, v7);

gluEndPolygon(tobj);

SEE ALSO

"gluBeginPolygon;"gluNewTess", "gluTessCallback’, "gluTessVertex"

gluNurbsCallback

NAME

gluNurbsCallback — define a callback for a NURBS object

C SPECIFICATION

void gluNurbsCallback(GLUnurbsObj*nobj, GLenumwhich void (*fn)()

PARAMETERS

nobj Specifies the NURBS object (created wifliNewNurbsRendere).

which Specifies the callback being defined. The only valid val@is_ERROR.
fn Specifies the function that the callback calls.

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 14

DESCRIPTION

gluNurbsCallback is used to define a callback to be used by a NURBS object. If the specified
callback is already defined, then it is replacedn I§ NULL, then any existing callback is erased.

The one legal callback SLU_ERROR:

GLU_ERROR The error function is called when an error is encountered. Its single argument is
of type GLenum, and it indicates the specific error that occurred. There are 37
errors unigue to NURBS nam&LU_NURBS_ERROR1through
GLU_NURBS_ERROR37. Character strings describing these errors can be
retrieved withgluErrorString .

SEE ALSO

"gluErrorString’; "gluNewNurbsRenderer"

gluNurbsCurve

NAME

gluNurbsCurve - define the shape of a NURBS curve

C SPECIFICATION

void gluNurbsCurve(GLUnurbsObjnobj, GLint nknots GLfloat*knot, GLint stride, GLfloat
*ctlarray, GLint order, GLenumtype)

PARAMETERS
nobj Specifies the NURBS object (created williNewNurbsRendere).
nknots Specifies the number of knotsknot nknotsequals the number of control points

plus the order.
knot Specifies an array afknotsnondecreasing knot values.

stride Specifies the offset (as a number of single—precision floating—point values)
between successive curve control points.

ctlarray Specifies a pointer to an array of control points. The coordinates must agree wit
type specified below.

order Specifies the order of the NURBS curvarder equals degree + 1, hence a cubic
curve has an order of 4.

type Specifies the type of the curve. If this curve is defined within a
gluBeginCurve/gluEndCurve pair, then the type can be any of the valid
one-dimensional evaluator types (sucBlasMAP1 VERTEX 3 or
GL_MAP1_COLOR_4). Between g@luBeginTrim/gluEndTrim pair, the only
valid types aré&sLU_MAP1_TRIM_2 andGLU_MAP1_TRIM_3.

DESCRIPTION

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 15

UsegluNurbsCurve to describe a NURBS curve.

WhengluNurbsCurve appears betweengtuBeginCurve/gluEndCurve pair, it is used to describe

a curve to be rendered. Positional, texture, and color coordinates are associated by presenting ea
a separatgluNurbsCurve between gluBeginCurve/gluEndCurve pair. No more than one call to
gluNurbsCurve for each of color, position, and texture data can be made within a single
gluBeginCurve/gluEndCurve pair. Exactly one call must be made to describe the position of the
curve (atypeof GL_MAP1 VERTEX_ 3 orGL_MAP1_VERTEX 4).

WhengluNurbsCurve appears betweengiuBeginTrim/gluEndTrim pair, it is used to describe a
trimming curve on a NURBS surface.typeis GLU_MAP1_TRIM_2, then it describes a curve in
two—dimensionalilandv) parameter space. If itGLU_MAP1 TRIM_3, then it describes a curve
in two—dimensional homogeneousy, andw) parameter space. See tBeginTrim" reference
page for more discussion about trimming curves.

EXAMPLE

The following commands render a textured NURBS curve with normals:

gluBeginCurve(nobj);
gluNurbsCurve(nobj, ..., GL_MAP1_TEXTURE_COORD_?2);
gluNurbsCurve(nobj, ..., GL_MAP1_NORMAL);
gluNurbsCurve(nobj, ..., GL_MAP1_VERTEX_4);
gluEndCurve(nobj);

SEE ALSO

"gluBeginCurve; "gluBeginTrim", "gluNewNurbsRenderer,

gluPwICurve"

gluNurbsProperty

NAME

gluNurbsProperty — set a NURBS property

C SPECIFICATION

void gluNurbsProperty (GLUnurbsObjnobj, GLenumproperty GLfloatvalue)

PARAMETERS
nobj Specifies the NURBS object (created wiflikNewNurbsRendere).
property Specifies the property to be set. Valid values are

GLU_SAMPLING_TOLERANCE , GLU_DISPLAY_MODE ,
GLU_CULLING , andGLU_AUTO_LOAD_MATRIX .

value Specifies the value to which to set the indicated property.

DESCRIPTION

gluNurbsProperty is used to control properties stored in a NURBS object. These properties affect
the way that a NURBS curve is rendered. The legal valugsdpertyare as follows:

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 16

GLU_SAMPLING_TOLERANCE
value specifies the maximum length, in pixels, of line segments or edges of
polygons used to render NURBS curves or surfaces. The NURBS code is
conservative when rendering a curve or surface, so the actual length can be
somewhat shorter. The default value is 50.0 pixels.

GLU_DISPLAY_MODE
valuedefines how a NURBS surface should be rendevatiie can be set to
GLU_FILL , GLU_OUTLINE_POLYGON , orGLU_OUTLINE_PATCH .
When set t&sLU_FILL , the surface is rendered as a set of polygons.
GLU_OUTLINE_POLYGON instructs the NURBS library to draw only the
outlines of the polygons created by tessellatiGhU_OUTLINE_PATCH

causes just the outlines of patches and trim curves defined by the user to be
drawn. The default value GLU_FILL .

GLU_CULLING
valueis a Boolean value that, when seGio TRUE , indicates that a NURBS
curve should be discarded prior to tessellation if its control points lie outside the
current viewport. The default GBL_FALSE (because a NURBS curve cannot
fall entirely within the convex hull of its control points).

GLU_AUTO_LOAD_MATRIX
valueis a Boolean value. When setGh_TRUE, the NURBS code downloads
the projection matrix, the modelview matrix, and the viewport from the OpenGL
server to compute sampling and culling matrices for each NURBS curve that is
rendered. Sampling and culling matrices are required to determine the tesselati
of a NURBS surface into line segments or polygons and to cull a NURBS surfac
if it lies outside of the viewport. If this mode is se@b_FALSE, then the user
needs to provide a projection matrix, a modelview matrix, and a viewport for the
NURBS renderer to use to construct sampling and culling matrices. This can be
done with thegluLoadSamplingMatrices function. The default for this mode is
GL_TRUE. Changing this mode frof8L_TRUE to GL_FALSE does not
affect the sampling and culling matrices ugtilLoadSamplingMatricesis
called.

SEE ALSO

"gluGetNurbsProperty™gluLoadSamplingMatrices; "gluNewNurbsRenderer"

gluNurbsSurface

NAME

gluNurbsSurface— define the shape of a NURBS surface

C SPECIFICATION

void gluNurbsSurface(GLUnurbsObjnobj, GLint sknot_countGLfloat*sknot, GLint
tknot_countGLfloat*tknot, GLint s_stride GLint t_stride GLfloat *ctlarray, GLintsorder, GLint
torder, GLenumtype)

PARAMETERS

nobj Specifies the NURBS object (created wiflikNewNurbsRendere).
sknot_count Specifies the number of knots in the parametuirection.

sknot Specifies an array aknot_counhondecreasing knot values in the parametric

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 17

direction.

tknot_count Specifies the number of knots in the parametidirection.

tknot Specifies an array @¢knot_counnhondecreasing knot values in the parametric
direction.

s_stride Specifies the offset (as a number of single—precision floating point values)

between successive control points in the parametric u directalairay.

t_stride Specifies the offset (in single—precision floating—point values) between successi
control points in the parametndirection inctlarray.

ctlarray Specifies an array containing control points for the NURBS surface. The offsets
between successive control points in the parametandv directions are given
by s_strideandt_stride

sorder Specifies the order of the NURBS surface in the parametficection. The
order is one more than the degree, hence a surface that is cubiasrau order
of 4.

torder Specifies the order of the NURBS surface in the paramettiection. The
order is one more than the degree, hence a surface that is cubiasras order
of 4.

type Specifies type of the surfacéypecan be any of the valid two—-dimensional
evaluator types (such & MAP2_VERTEX_3 or GL_MAP2_COLOR_4).

DESCRIPTION

UsegluNurbsSurface within a NURBS (Non-Uniform Rational B-Spline) surface definition to
describe the shape of a NURBS surface (before any trimming). To mark the beginning of a NURB
surface definition, use thgguBeginSurfacecommand. To mark the end of a NURBS surface
definition, use thgluEndSurface command. CalyluNurbsSurface within a NURBS surface

definition only.

Positional, texture, and color coordinates are associated with a surface by presenting each as a
separatgluNurbsSurface between gluBeginSurfacdgluEndSurface pair. No more than one call

to gluNurbsSurface for each of color, position, and texture data can be made within a single
gluBeginSurfacegluEndSurface pair. Exactly one call must be made to describe the position of the
surface (aypeof GL_MAP2_VERTEX_ 3 orGL_MAP2_VERTEX_ 4).

A NURBS surface can be trimmed by using the commaghdsurbsCurve andgluPwICurve
between calls tgluBeginTrim andgluEndTrim .

Note that agluNurbsSurface with sknot_counknots in the u direction artnot_countknots in thes
direction with ordersorderandtorder must have gknot_countsordel) x (tknot_count-torder)
control points.

EXAMPLE

The following commands render a textured NURBS surface with normals; the texture coordinates
and normals are also NURBS surfaces:

gluBeginSurface(nobj);

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 18

gluNurbsSurface(nobj, ..., GL_ MAP2_TEXTURE_COORD_2);

gluNurbsSurface(nobj, ..., GL_MAP2_NORMAL);

gluNurbsSurface(nobj, ..., GL_MAP2_VERTEX_ 4);
gluEndSurface(nobj);

SEE ALSO

"gluBeginSurface™gluBeginTrim", "gluNewNurbsRenderer,"gluNurbsCurve", "gluPwICurve"

gluOrtho2D

NAME

gluOrtho2D - define a 2—-D orthographic projection matrix

C SPECIFICATION

void gluOrtho2D (GLdoubleleft, GLdoubleright, GLdoublebottom GLdoubletop)

PARAMETERS
left, right Specify the coordinates for the left and right vertical clipping planes.

bottom top Specify the coordinates for the bottom and top horizontal clipping planes.

DESCRIPTION

gluOrtho2D sets up a two—dimensional orthographic viewing region. This is equivalent to calling
glOrtho with near = -l1and far=1.

SEE ALSO

"glOrtho", "gluPerspective"

gluPartialDisk

NAME

gluPartialDisk — draw an arc of a disk

C SPECIFICATION

void gluPartialDisk (GLUquadricObfgobj, GLdoubleinnerRadius GLdoubleouterRadiusGLint
slices GLint loops GLdoublestartAngle GLdoublesweepAng|é

PARAMETERS

qobj Specifies a quadrics object (created wjitNewQuadric).
innerRadius Specifies the inner radius of the partial disk (can be zero).
outerRadius Specifies the outer radius of the partial disk.

slices Specfies the number of subdivisions aroundztheis.

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 19

loops Specifies the number of concentric rings about the origin into which the partial
disk is subdivided.

startAngle Specifies the starting angle, in degrees, of the disk portion.
sweepAngle Specifies the sweep angle, in degrees, of the disk portion.
DESCRIPTION

gluPartialDisk renders a partial disk on the= 0 plane. A partial disk is similar to a full disk,
except that only the subset of the disk fretartAnglethroughstartAngle+ sweepAnglés included
(where 0 degrees is along thgaxis, 90 degrees along the axis, 180 along the/axis, and 270
along the xaxis).

The partial disk has a radius aiiterRadiusand contains a concentric circular hole with a radius of
innerRadius If innerRadiugs zero, then no hole is generated. The partial disk is subdivided arounc
the z axis into slices (like pizza slices), and also about thés into rings (as specified lsjicesand

loops respectively).

With respect to orientation, the side of the partial disk is considered to be outside (see
"gluQuadricOrientation’). This means that if the orientation is seGtdJ OUTSIDE, then any
normals generated point along theaxis. Otherwise, they point along tteaxis.

If texturing is turned on (witkhyluQuadricTexture), texture coordinates are generated linearly such
that wherer = outerRadius, the value atr(0, 0) is (1, 0.5), at (0, 0) itis (0.5, 1), at (0, 0) it is
(0, 0.5), and at (Or-0) it is (0.5, 0).

SEE ALSO

"gluCylinder", "gluDisk" , "gluNewQuadric", "gluQuadricOrientation’; "gluQuadricTexture',
"gluSphere”

gluPerspective

NAME

gluPerspective—- set up a perspective projection matrix

C SPECIFICATION

void gluPerspectivéd GLdoublefovy, GLdoubleaspect GLdoublezNear GLdoublezFar)

PARAMETERS
fovy Specifies the field of view angle, in degrees, inytldérection.
aspect Specifies the aspect ratio that determines the field of view ixdirection. The

aspect ratio is the ratio &f(width) toy (height).

zNear Specifies the distance from the viewer to the near clipping plane (always
positive).
zFar Specifies the distance from the viewer to the far clipping plane (always positive).

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 20

DESCRIPTION

gluPerspectivespecifies a viewing frustum into the world coordinate system. In general, the aspec
ratio ingluPerspectiveshould match the aspect ratio of the associated viewport. For example,
aspect = 2.0means the viewer’s angle of view is twice as widr &s it is iny. If the viewport is

twice as wide as it is tall, it displays the image without distortion.

The matrix generated kyluPerspectiveis multipled by the current matrix, just agiMultMatrix
were called with the generated matrix. To load the perspective matrix onto the current matrix stacl
instead, precede the callgtuPerspectivewith a call toglLoadldentity .

SEE ALSO

"glFrustum?; "glLoadldentity", "glMultMatrix" , "gluOrtho2D"

gluPickMatrix

NAME

gluPickMatrix — define a picking region

C SPECIFICATION

void gluPickMatrix (GLdoublex, GLdoubley, GLdoublewidth, GLdoubleheight GLint
viewport[4])

PARAMETERS

XY Specify the center of a picking region in window coordinates.

width, height Specify the width and height, respectively, of the picking region in window
coordinates.

viewport Specifies the current viewport (as frongl&etintegerv call).

DESCRIPTION

gluPickMatrix creates a projection matrix that can be used to restrict drawing to a small region of
the viewport. This is typically useful to determine what objects are being drawn near the cursor. L
gluPickMatrix to restrict drawing to a small region around the cursor. Then, enter selection mode
(with gIRenderModeand rerender the scene. All primitives that would have been drawn near the
cursor are identified and stored in the selection buffer.

The matrix created bgluPickMatrix is multiplied by the current matrix just agiMultMatrix is

called with the generated matrix. To effectively use the generated pick matrix for picking, first call
glLoadldentity to load an identity matrix onto the perspective matrix stack. Then call
gluPickMatrix , and finally, call a command (suchglsPerspectivg to multiply the perspective
matrix by the pick matrix.

When usinggluPickMatrix to pick NURBS, be careful to turn off the NURBS property
GLU_AUTO_LOAD_MATRIX . If GLU_AUTO_LOAD_MATRIX is not turned off, then any
NURBS surface rendered is subdivided differently with the pick matrix than the way it was

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 21

subdivided without the pick matrix.

EXAMPLE
When rendering a scene as follows:

glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(...);
glMatrixMode(GL_MODELVIEW);
[* Draw the scene */

a portion of the viewport can be selected as a pick region like this:

glMatrixMode(GL_PROJECTION);
glLoadldentity();

gluPickMatrix(x, y, width, height, viewport);
gluPerspective(...);
glMatrixMode(GL_MODELVIEW);

[* Draw the scene */

SEE ALSO

"glGet", "glLoadldentity”, "gIMultMatrix" , "glRenderMode", "gluPerspective"

gluProject

NAME

gluProject — map object coordinates to window coordinates

C SPECIFICATION

int gluProject(GLdoubleobjx, GLdoubleobjy, GLdoubleobjz, const GLdoublenodelMatrix[16],
const GLdoublgrojMatrix[16], const GLintviewport[4], GLdouble*winx, GLdouble*winy,
GLdouble*winz)

PARAMETERS

objx, objy, objz Specify the object coordinates.

modelMatrix Specifies the current modelview matrix (as frogi@etDoublev call).
projMatrix Specifies the current projection matrix (as frogi@etDoublev call).
viewport Specifies the current viewport (as frongl&etintegerv call).

winx, winy, winz
Return the computed window coordinates.

DESCRIPTION

gluProject transforms the specified object coordinates into window coordinates msidglMatrix
projMatrix, andviewport The result is stored inx, winy, andwinz. A return value oGL_TRUE

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 22

indicates success, a@l._FALSE indicates failure.

SEE ALSO

"glGet", "gluUnProject

gluPwICurve

NAME

gluPwlICurve - describe a piecewise linear NURBS trimming curve

C SPECIFICATION

void gluPwICurve(GLUnurbsObjnobj, GLint count GLfloat*array, GLint stride GLenumtype)

PARAMETERS

nobj Specifies the NURBS object (created wifliNewNurbsRendere).

count Specifies the number of points on the curve.

array Specifies an array containing the curve points.

stride Specifies the offset (a number of single—precision floating—point values) betweel

points on the curve.

type Specifies the type of curve. Must be eitGéU MAP1_TRIM_2 or
GLU_MAP1_TRIM_3.

DESCRIPTION

gluPwlICurve describes a piecewise linear trimming curve for a NURBS surface. A piecewise linea
curve consists of a list of coordinates of points in the parameter space for the NURBS surface to b
trimmed. These points are connected with line segments to form a curve. If the curve is an
approximation to a real curve, the points should be close enough that the resulting path appears
curved at the resolution used in the application.

If typeisGLU_MAP1_TRIM_2, then it describes a curve in two—dimensionar(dv) parameter
space. IfitisGLU_MAP1_TRIM_3, then it describes a curve in two—dimensional homogengous (
v, andw) parameter space. Please refer tggthBeginTrim reference page for more information
about trimming curves.

SEE ALSO

"gluBeginCurve; "gluBeginTrim", "gluNewNurbsRenderer,

gluNurbsCurve"

gluQuadricCallback

NAME

gluQuadricCallback - define a callback for a quadrics object

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 23

C SPECIFICATION
void gluQuadricCallback (GLUquadricObjqobj, GLenumwhich, void (*fn)()

PARAMETERS
qobj Specifies the quadrics object (created witiNewQuadric).
which Specifies the callback being defined. The only valid val@is ERROR.

fn Specifies the function to be called.

DESCRIPTION

gluQuadricCallback is used to define a new callback to be used by a quadrics object. If the
specified callback is already defined, then it is replaceth i NULL, then any existing callback is
erased.

The one legal callback GLU_ERROR:

GLU_ERROR The function is called when an error is encountered. Its single argument is of
type GLenum, and it indicates the specific error that occurred. Character strings
describing these errors can be retrieved witlgthErrorString call.

SEE ALSO

"gluErrorString’; "gluNewQuadric"

gluQuadricDrawStyle

NAME

gluQuadricDrawStyle — specify the draw style desired for quadrics

C SPECIFICATION

void gluQuadricDrawStyle(GLUquadricObj*quadObject GLenumdrawStyle)

PARAMETERS
quadObject Specifies the quadrics object (created witiNewQuadric).
drawStyle Specifies the desired draw style. Valid values@ité) FILL , GLU_LINE ,

GLU_SILHOUETTE , andGLU_POINT .

DESCRIPTION

gluQuadricDrawStyle specifies the draw style for quadrics rendered githdObject The legal
values are as follows:

GLU_FILL Quadrics are rendered with polygon primitives. The polygons are drawn in a
counterclockwise fashion with respect to their normals (as defined with
gluQuadricOrientation).

GLU_LINE Quadrics are rendered as a set of lines.

OpenGL Reference Manual — Chapter 6, GLU Reference Pages - 24

GLU_SILHOUETTE
Quadrics are rendered as a set of lines, except that edges separating coplanar
faces will not be drawn.

GLU_POINT Quadrics are rendered as a set of points.

SEE ALSO

"gluNewQuadric; "gluQuadricNormals'; "gluQuadricOrientation’; "gluQuadricTexture"

gluQuadricNormals

NAME

gluQuadricNormals - specify what kind of normals are desired for quadrics

C SPECIFICATION

void gluQuadricNormals(GLUquadricObj*quadObject GLenumnormals)

PARAMETERS
quadObject Specifes the quadrics object (created gltiNewQuadric).
normals Specifies the desired type of normals. Valid valuesGild NONE,

GLU_FLAT , andGLU_SMOOTH .

DESCRIPTION

gluQuadricNormals specifies what kind of normals are desired for quadrics rendered with
quadObiject The legal values are as follows:

GLU_NONE No normals are generated.
GLU_FLAT One normal is generated for every facet of a quadric.

GLU_SMOOTH
One normal is generated for every vertex of a quadric. This is the default.

SEE ALSO

"gluNewQuadric; "gluQuadricDrawStyle', "gluQuadricOrientation’, "gluQuadricTexture"

gluQuadricOrientation

NAME

gluQuadricOrientation — specify inside/outside orientation for quadrics

C SPECIFICATION

void gluQuadricOrientation (GLUquadricObjrquadObject GLenumorientation)

PARAMETERS

OpenGL Reference Manual — Chapter 6, GLU Reference Pages - 25

quadObject Specifies the quadrics object (created witiNewQuadric).

orientation Specifies the desired orientation. Valid values@ké) OUTSIDE and
GLU_INSIDE.
DESCRIPTION

gluQuadricOrientation specifies what kind of orientation is desired for quadrics rendered with
quadObject Theorientationvalues are as follows:

GLU_OUTSIDE
Quadrics are drawn with normals pointing outward.

GLU_INSIDE Normals point inward. The default@_U_OUTSIDE.

Note that the interpretation ofitward andinward depends on the quadric being drawn.

SEE ALSO

"gluNewQuadric} "gluQuadricDrawStyle', "gluQuadricNormals", "gluQuadricTexture"

gluQuadricTexture

NAME

gluQuadricTexture — specify if texturing is desired for quadrics

C SPECIFICATION

void gluQuadricTexture (GLUquadricObj*quadObject GLbooleartextureCoord9

PARAMETERS

quadObject Specifies the quadrics object (created witiNewQuadric).

textureCoords Specifies a flag indicating if texture coordinates should be generated.

DESCRIPTION

gluQuadricTexture specifies if texture coordinates should be generated for quadrics rendered with
quadObiject If the value ofextureCoordss GL_TRUE, then texture coordinates are generated, and
if textureCoordss GL_FALSE, they are not. The default@._FALSE.

The manner in which texture coordinates are generated depends upon the specific quadric render:

SEE ALSO

"gluNewQuadric} "gluQuadricDrawStyle', "gluQuadricNormals", "gluQuadricOrientation"

gluScalelmage

NAME

gluScalelmage- scale an image to an arbitrary size

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 26

C SPECIFICATION

int gluScalelmagé¢ GLenumformat, GLintwidthin, GLint heightin GLenumtypein const void
*datain, GLintwidthout GLint heightout GLenumtypeout void *dataout)

PARAMETERS

format Specifies the format of the pixel data. The following symbolic values are valid:
GL_COLOR_INDEX , GL_STENCIL_INDEX ,
GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA,GL_RGB, GL_RGBA, GL_LUMINANCE , and
GL_LUMINANCE_ALPHA .

widthin, heightin
Specify the width and height, respectively, of the source image that is scaled.

typein Specifies the data type fdatain Must be one o6L_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP , GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, or GL_FLOAT .

datain Specifies a pointer to the source image.

widthout heightout
Specify the width and height, respectively, of the destination image.

typeout Specifies the data type fdataout Must be one o6L_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP , GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, or GL_FLOAT .

dataout Specifies a pointer to the destination image.

DESCRIPTION

gluScalelmagescales a pixel image using the appropriate pixel store modes to unpack data from tr
source image and pack data into the destination image.

When shrinking an imagegluScalelmageuses a box filter to sample the source image and create
pixels for the destination image. When magnifying an image, the pixels from the source image are
linearly interpolated to create the destination image.

A return value of zero indicates success, otherwise a GLU error code is returned indicating what tt
problem was (setgluErrorString").

Please refer to thggReadPixelsreference page for a description of the acceptable values for the
format, typein andtypeoutparameters.

SEE ALSO

"glDrawPixels", "glIReadPixels", "gluBuild1DMipmaps", "gluBuild2DMipmaps", "gluErrorString"

gluSphere

NAME

gluSphere- draw a sphere

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 27

C SPECIFICATION

void gluSphere(GLUquadricObjqobj, GLdoubleradius, GLintslices GLint stacks)

PARAMETERS

qobj Specifies the quadrics object (created witiNewQuadric).

radius Specifies the radius of the sphere.

slices Specifies the number of subdivisions aroundzthgis (similar to lines of
longitude).

stacks Specifies the number of subdivisions alongzfais (similar to lines of latitude).

DESCRIPTION

gluSpheredraws a sphere of the given radius centered around the origin. The sphere is subdivide:
around the axis into slices and along thexis into stacks (similar to lines of longitude and
latitude).

If the orientation is set t&LU_OUTSIDE (with gluQuadricOrientation), then any normals
generated point away from the center of the sphere. Otherwise, they point toward the center of the
sphere.

If texturing is turned on (witlgluQuadricTexture), then texture coordinates are generated sd that
ranges from 0.0 az = —radiusto 1.0 atz = radius (t increases linearly along longitudinal lines),
andsranges from 0.0 at they-axis, to 0.25 at thextaxis, to 0.5 at the/-axis, to 0.75 at thex-axis,
and back to 1.0 at they-axis.

SEE ALSO

"gluCylinder", "gluDisk" , "gluNewQuadric", "gluPartialDisk", "gluQuadricOrientation’,
"gluQuadricTexture"

gluTessCallback

NAME

gluTessCallback- define a callback for a tessellation object

C SPECIFICATION

void gluTessCallback GLUtriangulatorObjftobj, GLenumwhich, void (*fn)()

PARAMETERS

tobj Specifies the tessellation object (created gitiNewTes3.

which Specifies the callback being defined. The following values are valid:
GLU_BEGIN, GLU_EDGE_FLAG, GLU_VERTEX, GLU_END, and
GLU_ERROR.

fn Specifies the function to be called.

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 28

DESCRIPTION

gluTessCallbackis used to indicate a callback to be used by a tessellation object. If the specified
callback is already defined, then it is replacedn I§ NULL, then the existing callback is erased.

These callbacks are used by the tessellation object to describe how a polygon specified by the use
broken into triangles.

The legal callbacks are as follows:

GLU_BEGIN The begin callback is invoked likgBegin to indicate the start of a (triangle)
primitive. The function takes a single argument of type GLenum that is either
GL_TRIANGLE_FAN , GL_TRIANGLE_STRIP , orGL_TRIANGLES .

GLU_EDGE_FLAG
The edge flag callback is similar g¢gEdgeFlag The function takes a single
Boolean flag that indicates which edges of the created triangles were part of the
original polygon defined by the user, and which were created by the tessellation
process. If the flag iI6L_TRUE, then each vertex that follows begins an edge
that was part of the original polygon. If the flagik_FALSE, then each vertex
that follows begins an edge that was generated by the tessellator. The edge fla
callback (if defined) is invoked before the first vertex callback is made.

Since triangle fans and triangle strips do not support edge flags, the begin
callback is not called witL_TRIANGLE_FAN or GL_TRIANGLE_STRIP

if an edge flag callback is provided. Instead, the fans and strips are converted tc
independent triangles.

GLU_VERTEX
The vertex callback is invoked between the begin and end callbacks. It is simila
to glVertex, and it defines the vertices of the triangles created by the tessellation
process. The function takes a pointer as its only argument. This pointer is
identical to the opaque pointer provided by the user when the vertex was
described (selgluTessVertex").

GLU_END The end callback serves the same purpogtEasl. It indicates the end of a

primitive and it takes no arguments.

GLU_ERROR The error callback is called when an error is encountered. The one argument is
type GLenum, and it indicates the specific error that occurred. There are eight
errors unigue to polygon tessellation, narGdd) TESS ERROR21through
GLU_TESS_ERRORS8 Character strings describing these errors can be
retrieved with theluErrorString call.

EXAMPLE

Polygons tessellated can be rendered directly like this:

gluTessCallback(tobj, GLU_BEGIN, gIBegin);
gluTessCallback(tobj, GLU_VERTEX, glVertex3dv);
gluTessCallback(tobj, GLU_END, glEnd);
gluBeginPolygon(tobj);

gluTessVertex(tobj, v, v);

gluEndPolygon(tobj);

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 29

Typically, the tessellated polygon should be stored in a display list so that it does not need to be
retessellated every time it is rendered.

SEE ALSO

"gIBegin”, "glEdgeFlag", "glVertex" , "gluDeleteTess', "gluErrorString”, "gluNewTess",
"gluTessVertex"

gluTessVertex

NAME

gluTessVertex— specify a vertex on a polygon

C SPECIFICATION

void gluTessVerteX GLUtriangulatorObjtobj, GLdoublev[3], void*data)

PARAMETERS

tobj Specifies the tessellation object (created gitiNewTes3.

Y% Specifies the location of the vertex.

data Specifies an opaque pointer passed back to the user with the vertex callback (as

specified bygluTessCallback.

DESCRIPTION

gluTessVertexdescribes a vertex on a polygon that the user is defining. SucaglsSieesVertex
calls describe a closed contour. For example, if the user wants to describe a quadrilateral, then
gluTessVertexshould be called four timegluTessVertexcan only be called between
gluBeginPolygonandgluEndPolygon

datanormally points to a structure containing the vertex location, as well as other per-vertex
attributes such as color and normal. This pointer is passed back to the user through the
GLU_VERTEX callback after tessellation (see tigguTessCallback"reference page).

EXAMPLE
A quadrilateral with a triangular hole in it can be described as follows:

gluBeginPolygon(tobj);
gluTessVertex(tobj, v1, v1);
gluTessVertex(tobj, v2, v2);
gluTessVertex(tobj, v3, v3);
gluTessVertex(tobj, v4, v4);

gluNextContour(tobj, GLU_INTERIOR);
gluTessVertex(tobj, v5, v5);
gluTessVertex(tobj, v6, v6);
gluTessVertex(tobj, v7, v7);

gluEndPolygon(tobj);

OpenGL Reference Manual — Chapter 6, GLU Reference Pages — 30

SEE ALSO

"gluBeginPolygon;"gluNewTess", "gluNextContour", "gluTessCallback"

gluUnProject

NAME

gluUnProject — map window coordinates to object coordinates

C SPECIFICATION

int gluUnProject(GLdoublewinx, GLdoublewiny, GLdoublewinz const GLdouble
modelMatrix[16] const GLdoublg@rojMatrix[16], const GLintviewport[4], GLdouble*objx,
GLdouble*objy, GLdouble*objz)

PARAMETERS

winx, winy, winz
Specify the window coordinates to be mapped.

modelMatrix Specifies the modelview matrix (as froml&etDoublev call).
projMatrix Specifies the projection matrix (as frongl&etDoublevcall).
viewport Specifies the viewport (as frongéGetintegerv call).

objx, objy, objz
Returns the computed object coordinates.

DESCRIPTION

gluUnProject maps the specified window coordinates into object coordinates msidglMatrix
projMatrix, andviewport The result is stored objx, objy, andobjz A return value o6L_TRUE
indicates success, af@l._FALSE indicates failure.

SEE ALSO

"glGet", "gluProject”

OpenGL Reference Manual — Chapter 7, GLX Reference Pages — 31

Chapter 7
GLX Reference Pages

This chapter contains the reference pages, in alphabetical order, for all the routines comprising the
OpenGL extension to X (GLX). Note that there igl&Intro page, which gives an overview of
OpenGL in the X Window System; you might want to start with this page.

gIXChooseVisual

NAME

gIXChooseVisual- return a visual that matches specified attributes

C SPECIFICATION

XVisuallnfo* gIXChooseVisual Display*dpy, int screen int *attribList)

PARAMETERS

dpy Specifies the connection to the X server.

screen Specifies the screen number.

attribList Specifies a list of Boolean attributes and integer attribute/value pairs. The last

attribute must bé&\one

DESCRIPTION

gIXChooseVisualreturns a pointer to an XVisuallnfo structure describing the visual that best meets
minimum specification. The Boolean GLX attributes of the visual that is returned will match the
specified values, and the integer GLX attributes will meet or exceed the specified minimum values
If all other attributes are equivalent, then TrueColor and PseudoColor visuals have priority over
DirectColor and StaticColor visuals, respectively. If no conforming visual ekislisl. is returned.

To free the data returned by this function, ¥&eee.

All Boolean GLX attributes default tealse exceptGLX USE_GL, which defaults tarrue. All

integer GLX attributes default to zero. Default specifications are superseded by attributes includec
attribList. Boolean attributes included attribList are understood to B&ue. Integer attributes are
followed immediately by the corresponding desired or minimum value. The list must be terminatec

with None.
The interpretations of the various GLX visual attributes are as follows:
GLX _USE_GL Ignored. Only visuals that can be rendered with GLX are considered.

GLX_BUFFER_SIZE
Must be followed by a honnegative integer that indicates the desired color index
buffer size. The smallest index buffer of at least the specified size is preferred.
Ignored ifGLX_RGBA is asserted.

GLX_LEVEL Must be followed by an integer buffer—level specification. This specification is
honored exactly. Buffer level zero corresponds to the default frame buffer of the
display. Buffer level one is the first overlay frame buffer, level two the second
overlay frame buffer, and so on. Negative buffer levels correspond to underlay

OpenGL Reference Manual — Chapter 7, GLX Reference Pages - 1

frame buffers.

GLX_RGBA If present, only TrueColor and DirectColor visuals are considered. Otherwise,
only PseudoColor and StaticColor visuals are considered.

GLX_DOUBLEBUFFER
If present, only double-buffered visuals are considered. Otherwise, only
single—buffered visuals are considered.

GLX_STEREO
If present, only stereo visuals are considered. Otherwise, only monoscopic
visuals are considered.

GLX_AUX_BUFFERS
Must be followed by a nonnegative integer that indicates the desired number of
auxiliary buffers. Visuals with the smallest number of auxiliary buffers that
meets or exceeds the specified number are preferred.

GLX_RED_SIZE
Must be followed by a nonnegative minimum size specification. If this value is
zero, the smallest available red buffer is preferred. Otherwise, the largest
available red buffer of at least the minimum size is preferred.

GLX_GREEN_SIZE
Must be followed by a honnegative minimum size specification. If this value is
zero, the smallest available green buffer is preferred. Otherwise, the largest
available green buffer of at least the minimum size is preferred.

GLX_BLUE_SIZE
Must be followed by a honnegative minimum size specification. If this value is
zero, the smallest available blue buffer is preferred. Otherwise, the largest
available blue buffer of at least the minimum size is preferred.

GLX_ALPHA_SIZE
Must be followed by a nonnegative minimum size specification. If this value is
zero, the smallest available alpha buffer is preferred. Otherwise, the largest
available alpha buffer of at least the minimum size is preferred.

GLX_DEPTH_SIZE
Must be followed by a nonnegative minimum size specification. If this value is
zero, visuals with no depth buffer are preferred. Otherwise, the largest available
depth buffer of at least the minimum size is preferred.

GLX_STENCIL_SIZE
Must be followed by a nonnegative integer that indicates the desired number of
stencil bitplanes. The smallest stencil buffer of at least the specified size is
preferred. If the desired value is zero, visuals with no stencil buffer are preferrec

GLX_ACCUM_RED_SIZE
Must be followed by a nonnegative minimum size specification. If this value is
zero, visuals with no red accumulation buffer are preferred. Otherwise, the
largest possible red accumulation buffer of at least the minimum size is preferre«

GLX_ACCUM_GREEN_SIZE
Must be followed by a nonnegative minimum size specification. If this value is
zero, visuals with no green accumulation buffer are preferred. Otherwise, the
largest possible green accumulation buffer of at least the minimum size is
preferred.

GLX_ACCUM_BLUE_SIZE
Must be followed by a nonnegative minimum size specification. If this value is
zero, visuals with no blue accumulation buffer are preferred. Otherwise, the
largest possible blue accumulation buffer of at least the minimum size is

OpenGL Reference Manual — Chapter 7, GLX Reference Pages - 2

preferred.

GLX_ACCUM_ALPHA_SIZE
Must be followed by a honnegative minimum size specification. If this value is
zero, visuals with no alpha accumulation buffer are preferred. Otherwise, the
largest possible alpha accumulation buffer of at least the minimum size is
preferred.

EXAMPLES

attribList = {GLX_RGBA, GLX_RED_SIZE, 4,GLX_GREEN_SIZE, 4,
GLX_BLUE_SIZE , 4,Noné;

Specifies a single—buffered RGB visual in the normal frame buffer, not an overlay or underlay buff
The returned visual supports at least four bits each of red, green, and blue, and possibly no bits of
alpha. It does not support color index mode, double-buffering, or stereo display. It may or may n
have one or more auxiliary color buffers, a depth buffer, a stencil buffer, or an accumulation buffer,

NOTES

XVisuallnfo is defined inXutil.h. It is a structure that includessual visuallD, screen anddepth
elements.

gIXChooseVisualis implemented as a client-side utility using of@etVisuallnfo and
gIXGetConfig. Calls to these two routines can be used to implement selection algorithms other the
the generic one implemented g)KChooseVisual

GLX implementers are strongly discouraged, but not proscribed, from changing the selection
algorithm used bglXChooseVisual Therefore, selections may change from release to release of
the client-side library.

There is no direct filter for picking only visuals that support GLXPixmaps. GLXPixmaps are
supported for visuals whos§d X_BUFFER_SIZE . is one of the Pixmap depths supported by the X
server.

ERRORS

NULL is returned if an undefined GLX attribute is encounterexttitbList.

SEE ALSO

"gIXCreateContext"glXGetConfig"

gIXCopyContext

NAME

glIXCopyContext — copy state from one rendering context to another

C SPECIFICATION

void gIXCopyContext(Display*dpy, GLXContextsrc, GLXContextdst, GLuint mask)

PARAMETERS

OpenGL Reference Manual — Chapter 7, GLX Reference Pages - 3

dpy Specifies the connection to the X server.

src Specifies the source context.

dst Specifies the destination context.

mask Specifies which portions @frc state are to be copied dst
DESCRIPTION

gIXCopyContext copies selected groups of state variables Bonto dst maskindicates which

groups of state variables are to be copiméskcontains the bitwise OR of the same symbolic names
that are passed to the OpenGL commglidishAttrib. The single symbolic constant
GL_ALL_ATTRIB_BITS can be used to copy the maximum possible portion of rendering state.

The copy can be done only if the renderers namextdgnddst share an address space. Two
rendering contexts share an address space if both are nondirect using the same server, or if both i
direct and owned by a single process. Note that in the nondirect case it is not necessary for the
calling threads to share an address space, only for their related rendering contexts to share an adc
space.

Not all values for OpenGL state can be copied. For example, pixel pack and unpack state, render
mode state, and select and feedback state are not copied. The state that can be copied is exactly
state that is manipulated by OpenGL commgiRdishAttrib .

An implicit glFlush is done byglXCopyContext if srcis the current context for the calling thread.
If srcis not the current context for the thread issuing the request, then the staterotthrgext is

undefined.

NOTES

Two rendering contexts share an address space if both are nondirect using the same server, or if t
are direct and owned by a single process.

A processs a single execution environment, implemented in a single address space, consisting of
one or more threads.

A threadis one of a set of subprocesses that share a single address space, but maintain separate
program counters, stack spaces, and other related global diteeadithat is the only member of its
subprocess group is equivalent tpracess

ERRORS

BadMatch is generated if rendering contests anddstdo not share an address space or were not
created with respect to the same screen.

BadAccessis generated dstis current to any thread (including the calling thread) at the time
gIXCopyContext is called.

GLXBadCurrentWindow is generated i§rcis the current context and the current drawable is a
window that is no longer valid.

GLX_Bad_Context is generated if eitherc ordstis not a valid GLX context.

BadValueis generated if undefinedaskbits are specified.

OpenGL Reference Manual — Chapter 7, GLX Reference Pages - 4

SEE ALSO

"glPushAttrib", "gIXCreateContext'; "glXlIsDirect"

gIXCreateContext

NAME

glXCreateContext— create a new GLX rendering context

C SPECIFICATION

GLXContextglXCreateContex{(Display *dpy, XVisuallnfo *vis, GLXContextshareList Bool

direct)

PARAMETERS

dpy Specifies the connection to the X server.

Vvis Specifies the visual that defines the frame buffer resources available to the
rendering context. It is a pointer to AWisuallnfo structure, not a visual ID or a
pointer to aVisual.

shareList Specifies the context with which to share display liN&ILL indicates that no
sharing is to take place.

direct Specifies whether rendering is to be done with a direct connection to the graphic
system if possibleTrue) or through the X serveFalse.

DESCRIPTION

gIXCreateContext creates a GLX rendering context and returns its handle. This context can be us
to render into both windows and GLX pixmaps glikCreateContext fails to create a rendering

contextNULL is returned.

If directis True, then a direct rendering context is created if the implementation supports direct
rendering and the connection is to an X server that is locdirelftis False then a rendering

context that renders through the X server is always created. Direct rendering provides a performa
advantage in some implementations. However, direct rendering contexts cannot be shared outsid
single process, and they cannot be used to render to GLX pixmaps.

If shareListis notNULL , then all display—-list indexes and definitions are shared by cehtmet ist

and by the newly created context. An arbitrary number of contexts can share a single display-list
space. However, all rendering contexts that share a single display—-list space must themselves exi
the same address space. Two rendering contexts share an address space if both are nondirect us
the same server, or if both are direct and owned by a single process. Note that in the nondirect ca
it is not necessary for the calling threads to share an address space, only for their related renderin
contexts to share an address space.

NOTES

XVisuallnfo is defined inXutil.h. It is a structure that includegsual, visuallD, screen anddepth

OpenGL Reference Manual — Chapter 7, GLX Reference Pages - 5

elements.

A processs a single execution environment, implemented in a single address space, consisting of
one or more threads.

A threadis one of a set of subprocesses that share a single address space, but maintain separate
program counters, stack spaces, and other related global ditseadthat is the only member of its
subprocess group is equivalent tpracess

ERRORS
NULL is returned if execution fails on the client side.

BadMatch is generated if the context to be created would not share the address space or the scres
the context specified bshareL.ist

BadValueis generated i¥isis not a valid visual (e.g., if the GLX implementation does not support
it).
GLX_Bad_Context is generated BhareListis not a GLX context and is nNULL .

BadAlloc is generated if the server does not have enough resources to allocate the new context.

SEE ALSO

"gIXDestroyContext;'"'gIXGetConfig" , "glXIsDirect" , "gIXMakeCurrent"

gIXCreateGLXPixmap

NAME

glXCreateGLXPixmap — create an off-screen GLX rendering area

C SPECIFICATION

GLXPixmapglXCreateGLXPixmap(Display*dpy, XVisuallnfo*vis, Pixmappixmap)

PARAMETERS
dpy Specifies the connection to the X server.
Vvis Specifies the visual that defines the structure of the rendering area. It is a pointe

to anXVisuallnfo structure, not a visual ID or a pointer t¥igual.
pixmap Specifies the X pixmap that will be used as the front left color buffer of the

off-screen rendering area.

DESCRIPTION

glXCreateGLXPixmap creates an off-screen rendering area and returns its XID. Any GLX
rendering context that was created with respeeistoan be used to render into this off-screen area.
UseglXMakeCurrent to associate the rendering area with a GLX rendering context.

The X pixmap identified bypixmapis used as the front left buffer of the resulting off-screen
rendering area. All other buffers specifiedviy including color buffers other than the front left

OpenGL Reference Manual — Chapter 7, GLX Reference Pages - 6

buffer, are created without externally visible names. GLX pixmaps with double-buffering are
supported. HoweveglXSwapBuffersis ignored by these pixmaps.

Direct rendering contexts cannot be used to render into GLX pixmaps.

NOTES

XVisuallnfo is defined inXutil.h. It is a structure that includessual visuallD, screen anddepth
elements.

ERRORS

BadMatch is generated if the depth pikmapdoes not match theLX_ BUFFER_SIZE value of
vis, or if pixmapwas not created with respect to the same screés. as

BadValueis generated i¥isis not a valid XVisuallnfo pointer (e.g., if the GLX implementation does
not support this visual).

BadPixmapis generated ipixmapis not a valid pixmap.

BadAlloc is generated if the server cannot allocate the GLX pixmap.

SEE ALSO

"gIXCreateContext™glXlIsDirect" , "gIXMakeCurrent"

glXDestroyContext

NAME

glXDestroyContext — destroy a GLX context

C SPECIFICATION

void gIXDestroyContex{(Display *dpy, GLXContextctx)

PARAMETERS
dpy Specifies the connection to the X server.

ctx Specifies the GLX context to be destroyed.

DESCRIPTION

If GLX rendering contexttx is not current to any threaglXDestroyContext destroys it
immediately. Otherwisestxis destroyed when it becomes not current to any thread. In either case,
the resource ID referenced bix is freed immediately.

ERRORS

GLX_ Bad_Context is generated itx is not a valid GLX context.

SEE ALSO

"gIXCreateContext"glXMakeCurrent"

OpenGL Reference Manual — Chapter 7, GLX Reference Pages - 7

gIXDestroyGLXPixmap

NAME

glXDestroyGLXPixmap — destroy a GLX pixmap

C SPECIFICATION

void gIXDestroyGLXPixmap (Display*dpy, GLXPixmappix)

PARAMETERS

dpy Specifies the connection to the X server.

pix Specifies the GLX pixmap to be destroyed.

DESCRIPTION

If GLX pixmap pix is not current to any clieng/XDestroyGLXPixmap destroys it immediately.
Otherwisepix is destroyed when it becomes not current to any client. In either case, the resource |
is freed immediately.

ERRORS

GLX_ Bad_Pixmap is generated ihix is not a valid GLX pixmap.
SEE ALSO

"gIXCreateGLXPixmap/"'gIXMakeCurrent"

gIXGetConfig

NAME

gIXGetConfig — return information about GLX visuals

C SPECIFICATION

int gIXGetConfig(Display*dpy, XVisuallnfo *vis, int attrib, int *value)

PARAMETERS
dpy Specifies the connection to the X server.
vis Specifies the visual to be queried. It is a pointer tX\isuallnfo structure, not

a visual ID or a pointer to\disual.

attrib Specifies the visual attribute to be returned.
value Returns the requested value.
DESCRIPTION

gIXGetConfig setsvalueto theattrib value of windows or GLX pixmaps created with respe#ito

OpenGL Reference Manual — Chapter 7, GLX Reference Pages - 8

gIXGetConfig returns an error code if it fails for any reason. Otherwise, zero is returned.
attrib is one of the following:
GLX USE_GL True if OpenGL rendering is supported by this vistr|seotherwise.

GLX_BUFFER_SIZE
Number of bits per color buffer. For RGBA visua®,X_BUFFER_SIZE is
the sum ofGLX_RED_SIZE, GLX_GREEN_SIZE, GLX_BLUE_SIZE , and
GLX_ALPHA_SIZE . For color index visualsGLX_BUFFER_SIZE is the
size of the color indexes.

GLX_LEVEL Frame buffer level of the visual. Level zero is the default frame buffer. Positive
levels correspond to frame buffers that overlay the default buffer, and negative
levels correspond to frame buffers that underlay the default buffer.

GLX _RGBA True if color buffers store red, green, blue, and alpha vakedseif they store
color indexes.

GLX_DOUBLEBUFFER
True if color buffers exist in front/back pairs that can be swappalde
otherwise.

GLX_STEREO True if color buffers exist in left/right pairgalseotherwise.

GLX_AUX_BUFFERS
Number of auxiliary color buffers that are available. Zero indicates that no
auxiliary color buffers exist.

GLX_RED_SIZE
Number of bits of red stored in each color buffer. Undefin&LX_RGBA is
False

GLX_GREEN_SIZE
Number of bits of green stored in each color buffer. Undefin€lLX_RGBA
is False

GLX_BLUE_SIZE
Number of bits of blue stored in each color buffer. Undefin&LX_ RGBA is
False

GLX_ALPHA_SIZE
Number of bits of alpha stored in each color buffer. Undefin€lL.X_RGB is
False

GLX_DEPTH_SIZE
Number of bits in the depth buffer.

GLX_STENCIL_SIZE
Number of bits in the stencil buffer.

GLX_ACCUM_RED_SIZE
Number of bits of red stored in the accumulation buffer.

GLX_ACCUM_GREEN_SIZE
Number of bits of green stored in the accumulation buffer.

GLX_ACCUM_BLUE_SIZE
Number of bits of blue stored in the accumulation buffer.

GLX_ACCUM_ALPHA_SIZE
Number of bits of alpha stored in the accumulation buffer.

OpenGL Reference Manual — Chapter 7, GLX Reference Pages - 9

The X protocol allows a single visual ID to be instantiated with different numbers of bits per pixel.
Windows or GLX pixmaps that will be rendered with OpenGL, however, must be instantiated with ¢
color buffer depth oGLX_BUFFER_SIZE.

Although a GLX implementation can export many visuals that support OpenGL rendering, it must
support at least two. One is an RGBA visual with at least one color buffer, a stencil buffer of at lea
1 bit, a depth buffer of at least 12 bits, and an accumulation buffer. Alpha bitplanes are optional in
this visual. However, its color buffer size must be as great as that of the deep€xtlor,

DirectColor, PseudoColor or StaticColor visual supported on level zero, and it must itself be made
available on level zero.

The other required visual is a color index one with at least one color buffer, a stencil buffer of at le¢
1 bit, and a depth buffer of at least 12 bits. This visual must have as many color bitplanes as the
deepesPseudoColoror StaticColor visual supported on level zero, and it must itself be made
available on level zero.

Applications are best written to select the visual that most closely meets their requirements. Creat
windows or GLX pixmaps with unnecessary buffers can result in reduced rendering performance a
well as poor resource allocation.

NOTES

XVisuallnfo is defined inXutil.h. It is a structure that includegsual, visuallD, screen anddepth
elements.

ERRORS

GLX_NO_EXTENSION is returned ifdlpydoes not support the GLX extension.
GLX_BAD_SCREEN is returned if the screen wis does not correspond to a screen.
GLX_BAD_ATTRIB s returned ifattrib is not a valid GLX attribute. GLX_BAD_VISUAL is

returned ifvis doesn’t support GLX and an attribute other tBarX_USE_GL is requested.

SEE ALSO

"gIXChooseVisual,"'gIXCreateContext"

gIXGetCurrentContext

NAME

gIXGetCurrentContext — return the current context

C SPECIFICATION

GLXContextgIXGetCurrentContext(void)

DESCRIPTION

gIXGetCurrentContext returns the current context, as specifiedy¥MakeCurrent . If there is no
current contexiNULL is returned. giXGetCurrentContext returns client-side information. It does
not make a round trip to the server.

OpenGL Reference Manual — Chapter 7, GLX Reference Pages — 10

SEE ALSO

"gIXCreateContext"glXMakeCurrent"

gIXGetCurrentDrawable

NAME

gIXGetCurrentDrawable — return the current drawable

C SPECIFICATION

GLXDrawableglXGetCurrentDrawable (void)

DESCRIPTION

glIXGetCurrentDrawable returns the current drawable, as specifiegb§MakeCurrent . If there
is no current drawabl®&oneis returned. gIXGetCurrentDrawable returns client-side information.
It does not make a round trip to the server.

SEE ALSO

"gIXCreateGLXPixmap,"'gIXMakeCurrent"

glXintro

NAME

glXintro - Introduction to OpenGL in the X window system

OVERVIEW

OpenGL is a high—-performance 3—-D-oriented renderer. It is available in the X window system
through the GLX extension. UgiXQueryExtension andglXQueryVersion to establish whether

the GLX extension is supported by an X server, and if so, what version is supported. GLX extend
servers make a subset of their visuals available for OpenGL rendering. Drawables created with th
visuals can also be rendered using the core X renderer and with the renderer of any other X exten
that is compatible with all core X visuals. GLX extends drawables with several buffers other than
the standard color buffer. These buffers include back and auxiliary color buffers, a depth buffer, a
stencil buffer, and a color accumulation buffer. Some or all are included in each X visual that
supports OpenGL. To render using OpenGL into an X drawable, you must first choose a visual th
defines the required OpenGL buffegiXChooseVisualcan be used to simplify selecting a
compatible visual. If more control of the selection process is requireGet/isualinfo and
gIXGetConfig to select among all the available visuals. Use the selected visual to create both a
GLX context and an X drawable. GLX contexts are createdgiitGreateContext, and drawables

are created with eithe¢CreateWindow or gIXCreateGLXPixmap. Finally, bind the context and

the drawable together usigtXMakeCurrent . This context/drawable pair becomes the current
context and current drawable, and it is used by all OpenGL commandgl¥MikeCurrent is

called with different arguments. Both core X and OpenGL commands can be used to operate on-
current drawable. The X and OpenGL command streams are not synchronized, however, except :

OpenGL Reference Manual — Chapter 7, GLX Reference Pages — 11

explicitly created boundaries generated by caliildVaitGL , gIXWaitX , XSyng andglFlush.

EXAMPLES

Below is the minimum code required to create an RGBA-format, OpenGL-compatible X window a
clear it to yellow. The code is correct, but it does not include any error checking. Returrdpglues
vi, cx, cmap andwin should all be tested.

#include <GL/glx.h>
#include <GL/gl.h>
#include <unistd.h>
static int attributeList[] = { GLX_RGBA, None };
static Bool WaitForNotify(Display *d, XEvent *e, char *arg) {
return (e—>type == MapNotify) && (e->xmap.window == (Window)arg)
}
int main(int argc, char **argv) {
Display *dpy;
XVisuallnfo *vi;
Colormap cmap;
XSetWindowAttributes swa;
Window win;
GLXContext cx;
XEvent event;
/* get a connection */
dpy = XOpenDisplay(0);
/* get an appropriate visual */
vi = gIXChooseVisual(dpy, DefaultScreen(dpy), attributeList);
[* create a GLX context */
cx = gIXCreateContext(dpy, vi, 0, GL_FALSE);
/* create a color map */
cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
vi—>visual, AllocNone);
[* create a window */
swa.colormap = cmap;
swa.border_pixel = 0;
swa.event_mask = StructureNotifyMask;
win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0, 100,
100,
0, vi—>depth, InputOutput, vi->visual,
CWBorderPixel| CWColormap|CWEventMask, &swa);
XMapWindow(dpy, win);
XIfEvent(dpy, &event, WaitForNotify, (char*)win);
/* connect the context to the window */
glXMakeCurrent(dpy, win, cX);
[* clear the buffer */
glClearColor(1,1,0,1);
glClear(GL_COLOR_BUFFER_BIT);

OpenGL Reference Manual — Chapter 7, GLX Reference Pages — 12

glFlush();
/* wait a while */
sleep(10);

NOTES

A color map must be created and passeXiGreateWindow. See the example code above.

A GLX context must be created and attached to an X drawable before OpenGL commands can be
executed. OpenGL commands issued while no context/drawable pair is current are ignored.

Exposure events indicate tradt buffers associated with the specified window may be damaged and
should be repainted. Although certain buffers of some visuals on some systems may never requir
repainting (the depth buffer, for example), it is incorrect to code assuming that these buffers will nc
be damaged.

GLX commands manipulate XVisuallnfo structures rather than pointers to visuals or visual IDs.
XVisuallnfo structures contaivisual visuallD, screen anddepthelements, as well as other
X-specific information.

SEE ALSO

"glFinish", "glFlush", "gIXChooseVisual", "gIXCopyContext", "gIXCreateContext',
"gIXCreateGLXPixmap', "gIXDestroyContext", "gIXGetConfig", "gIXIsDirect" ,

"gIXMakeCurrent", "gIXQueryExtension’, "gIXQueryVersion", "gIXSwapBuffers",
"gIXUseXFont", "gIXWaitGL" , "gIXWaitX" , XCreateColormap, XCreateWindow, XSync

glXlsDirect

NAME

glXiIsDirect — indicate whether direct rendering is enabled

C SPECIFICATION

Bool giXIsDirect(Display *dpy, GLXContextctx)

PARAMETERS

dpy Specifies the connection to the X server.

ctx Specifies the GLX context that is being queried.

DESCRIPTION

glXIsDirect returnsTrue if ctx is a direct rendering conteXalseotherwise. Direct rendering

contexts pass rendering commands directly from the calling process’s address space to the rendel
system, bypassing the X server. Nondirect rendering contexts pass all rendering commands to the
server.

ERRORS

OpenGL Reference Manual — Chapter 7, GLX Reference Pages — 13

GLX_ Bad_Context is generated itx is not a valid GLX context.

SEE ALSO

"gIXCreateContext"

glXMakeCurrent

NAME

glXMakeCurrent — attach a GLX context to a window or a GLX pixmap

C SPECIFICATION

Bool giXMakeCurrent (Display *dpy, GLXDrawabledrawable GLXContextctx)

PARAMETERS

dpy Specifies the connection to the X server.

drawable Specifies a GLX drawable. Must be either an X window ID or a GLX pixmap
ID.

ctx Specifies a GLX rendering context that is to be attachedawable

DESCRIPTION

glXMakeCurrent does two things: It makegxthe current GLX rendering context of the calling
thread, replacing the previously current context if there was one, and it attactoes GLX

drawable, either a window or a GLX pixmap. As a result of these two actions, subsequent OpenG
rendering calls use rendering contetxtto modify GLX drawablelrawable Because

glXMakeCurrent always replaces the current rendering context etiththere can be only one

current context per thread.

Pending commands to the previous context, if any, are flushed before it is released.

The first timectx is made current to any thread, its viewport is set to the full sideawfable
Subsequent calls by any threadjt¥MakeCurrent with ctx have no effect on its viewport.

To release the current context without assigning a new onglXmbkeCurrent with drawable
andctx set toNoneandNULL respectively.

glXMakeCurrent returnsTrue if it is successfulFalseotherwise. IfFalseis returned, the
previously current rendering context and drawable (if any) remain unchanged.

NOTES

A processs a single—execution environment, implemented in a single address space, consisting of
one or more threads.

A threadis one of a set of subprocesses that share a single address space, but maintain separate
program counters, stack spaces, and other related global diteeadithat is the only member of its
subprocess group is equivalent tpracess

OpenGL Reference Manual — Chapter 7, GLX Reference Pages - 14

ERRORS

BadMatch is generated ifirawablewas not created with the same X screen and visuztkast is
also generated drawableis Noneandctxis notNone.

BadAccessis generated iftx was current to another thread at the tghMakeCurrent was called.
GLX Bad_Drawable is generated dirawableis not a valid GLX drawable.
GLX_Bad_Context is generated iftx is not a valid GLX context.

GLX_ Bad_Context_Stateis generated if the rendering context current to the calling thread has
OpenGL renderer stael._ FEEDBACK orGL_SELECT.

GLX Bad_Current_Window is generated if there are pending OpenGL commands for the previous
context and the current drawable is a window that is no longer valid.

BadAlloc may be generated if the server has delayed allocation of ancillary buffers until
glXMakeCurrent is called, only to find that it has insufficient resources to complete the allocation.

SEE ALSO

"gIXCreateContext"glXCreateGLXPixmap"

gIXQueryExtension

NAME

glIXQueryExtension — indicate whether the GLX extension is supported

C SPECIFICATION

Bool gIXQueryExtension(Display *dpy, int *errorBase int *eventBasg

PARAMETERS
dpy Specifies the connection to the X server.
errorBase Returns the base error code of the GLX server extension.

eventBase Returns the base event code of the GLX server extension.

DESCRIPTION

glXQueryExtensionreturnsTrue if the X server of connectiodpy supports the GLX extension,
Falseotherwise. IfTrue is returned, therrrorBaseandeventBaseeturn the error base and event
base of the GLX extension. OtherwiserorBaseandeventBasare unchanged.

errorBaseandeventBaselo not return values if they are specifiedNasi L .

NOTES

eventBasés included for future extensions. GLX does not currently define any events.

SEE ALSO

OpenGL Reference Manual — Chapter 7, GLX Reference Pages — 15

"gIXQueryVersion"

glXQueryVersion

NAME

glXQueryVersion - return the version numbers of the GLX extension

C SPECIFICATION

Bool gIXQueryVersion(Display*dpy, int *major, int *minor)

PARAMETERS
dpy Specifies the connection to the X server.
major Returns the major version humber of the GLX server extension.

minor Returns the minor version number of the GLX server extension.

DESCRIPTION

glXQueryVersion returns the major and minor version numbers of the GLX extension implementec
by the server associated with connectipy. Implementations with the same major version number
are upward compatible, meaning that the implementation with the higher minor number is a supers
of the version with the lower minor number.

major andminor do not return values if they are specifiedNa_ L .

ERRORS

glXQueryVersion returng-alseif it fails, True otherwise.major andminor are not updated when
Falseis returned.

SEE ALSO

"gIXQueryExtension"

gIXSwapBuffers
NAME

glIXSwapBuffers — make back buffer visible

C SPECIFICATION

void gIXSwapBuffers(Display *dpy, GLXDrawabledrawable)

PARAMETERS
dpy Specifies the connection to the X server.
drawable Specifies the window whose buffers are to be swapped.

OpenGL Reference Manual — Chapter 7, GLX Reference Pages — 16

DESCRIPTION

glIXSwapBuffers promotes the contents of the back buffedrafvableto become the contents of the
front buffer ofdrawable The contents of the back buffer then become undefined. The update
typically takes place during the vertical retrace of the monitor, rather than immediately after
gIXSwapBuffersis called. All GLX rendering contexts share the same notion of which are front
buffers and which are back buffers.

An implicit glFlush is done byglXSwapBuffers before it returns. Subsequent OpenGL commands
can be issued immediately after callgiXSwapBuffers, but are not executed until the buffer
exchange is completed.

If drawablewas not created with respect to a double-buffered vig&wapBuffers has no effect,
and no error is generated.

NOTES

Synchronization of multiple GLX contexts rendering to the same double-buffered window is the
responsibility of the clients. The X Synchronization Extension can be used to facilitate such
cooperation.

ERRORS

GLX_Bad_Drawable is generated iirawableis not a valid GLX drawable.

GLX_Bad_Current_Window is generated ifipyanddrawableare respectively the display and
drawable associated with the current context of the calling threadrawdbleidentifies a window
that is no longer valid.

SEE ALSO
"glFlush”

gliXUseXFont
NAME

glXUseXFont- create bitmap display lists from an X font

C SPECIFICATION

void gIXUseXFont(Fontfont intfirst, int count int listBase)

PARAMETERS

font Specifies the font from which character glyphs are to be taken.
first Specifies the index of the first glyph to be taken.

count Specifies the number of glyphs to be taken.

listBase Specifies the index of the first display list to be generated.
DESCRIPTION

OpenGL Reference Manual — Chapter 7, GLX Reference Pages — 17

glXUseXFont generatesountdisplay lists, namelistBasethroughlistBase+ count- 1, each
containing a singlglBitmap command. The parameters of giBitmap command of display list
listBase + iare derived from glypfirst + i. Bitmap parametersorig, yorig, width,andheightare
computed from font metrics aescent-1, —Ibearinggaring—Ibearingandascent+descent
respectively.xmoveis taken from the glyph'width metric, and/moveis set to zero. Finally, the
glyph’s image is converted to the appropriate formagfBitmap.

UsingglXUseXFont may be more efficient than accessing the X font and generating the display list
explicitly, both because the display lists are created on the server without requiring a round trip of 1
glyph data, and because the server may choose to delay the creation of each bitmap until it is
accessed.

Empty display lists are created for all glyphs that are requested and are not defiimed in
glXUseXFontis ignored if there is no current GLX context.

ERRORS

BadFontis generated ifontis not a valid font.

GLX_Bad_Context_Stateis generated if the current GLX context is in display-list construction
mode.

GLX_Bad_Current_Window is generated if the drawable associated with the current context of the
calling thread is a window, and that window is no longer valid.

SEE ALSO

"gIBitmap", "giXMakeCurrent"

gIXWaitGL

NAME

gIXWaitGL - complete GL execution prior to subsequent X calls

C SPECIFICATION

void gIXWaitGL (void)

DESCRIPTION

OpenGL rendering calls made priorgiXWaitGL are guaranteed to be executed before X rendering
calls made aftegIXWaitGL . Although this same result can be achieved ugiRipish,

gIXWaitGL does not require a round trip to the server, and it is therefore more efficient in cases
where client and server are on separate machines.

gIXWaitGL is ignored if there is no current GLX context.

NOTES

gIXWaitGL may or may not flush the X stream.

OpenGL Reference Manual — Chapter 7, GLX Reference Pages — 18

ERRORS

GLX Bad_Current_Window is generated if the drawable associated with the current context of the
calling thread is a window, and that window is no longer valid.

SEE ALSO

"glFinish", "glFlush", "gIXWaitX" , XSync

gIXWaitX

NAME

gIXWaitX — complete X execution prior to subsequent OpenGL calls

C SPECIFICATION

void gIXWaitX (void)

DESCRIPTION

X rendering calls made prior giXWaitX are guaranteed to be executed before OpenGL rendering
calls made aftegIXWaitX . Although this same result can be achieved uiBgnc, giXWaitX

does not require a round trip to the server, and it is therefore more efficient in cases where client a
server are on separate machines.

gIXWaitX is ignored if there is no current GLX context.

NOTES

gIXWaitX may or may not flush the OpenGL stream.

ERRORS

GLX_Bad_Current_Window is generated if the drawable associated with the current context of the
calling thread is a window, and that window is no longer valid.

SEE ALSO

"glFinish", "glFlush", "gIXWaitGL" , XSync

OpenGL Reference Manual — Chapter 7, GLX Reference Pages — 19

