
YAMS: Yet Another Machine Simulator
Reference Manual

Edition 1.2.3, for version 1.2.3 of YAMS
10 January 2005

Juha Aatrokoski, Timo Lilja, Leena Salmela,
Teemu Takanen and Aleksi Virtanen



Copyright c© 2002 Juha Aatrokoski, Timo Lilja, Leena Salmela, Teemu Takanen and Aleksi
Virtanen
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “Copying” and
“GNU General Public License” are included exactly as in the original, and provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.



Chapter 1: Overview 1

1 Overview

This manual documents YAMS version 1.2.3,
YAMS is a machine simulator. It contains simulated CPUs, memory and IO-mapped

simulated hardware devices such as disks and consoles.
The intended use of YAMS is to provide a platform for operating system implementation

courses. YAMS is very much like a real machine, but it can be used as a normal UNIX
process. YAMS has also very simple, but still realistic hardware interface. These features
make it an easy platform for OS development.



Chapter 2: Install 2

2 Install

Installation instructions can be found in file ’INSTALL’.



Chapter 3: Configuration 3

3 Configuration

3.1 Configuration Overview

The configuration files are looked (in this order):

1. in the current directory file ./yams.conf

2. in the home directory file $HOME/.yams.conf

3. in /etc/yams.conf

Configuration file consists of four kinds of sections. Sections are separated by the fol-
lowing syntax

Section "section-name"
var val
...

EndSection

Each var is an identifier, consisting of letters. Values val are either strings (inside
quotation marks) or integer values. Integers can be in decimal notation (the default), or in
hexadecimal when they are preceded with "0x". E.g., 1234 is in decimal and 0xFFFF is in
hexadecimal notation.

Comments begin with the hash mark ’#’. Everything up to the trailing newline will be
ignored.

The valid section names are:

"simulator" (Section 3.2 [Configuring the Simulator], page 3.)
"disk" (Section 3.3 [Configuring the Disk], page 4.)
"tty" (Section 3.4 [Configuring the Terminal], page 4.)
"nic" (Section 3.5 [Configuring the Network], page 5.)

The "simulator" section is mandatory. Other sections are optional and should be
specified only if the corresponding devices are to be included into the simulated machine.

3.2 Configuring the Simulator

cpus INTEGER

This option specifies the number of CPUs in the simulated machine. This can be an
integer from 1 to 64. That, is YAMS can support up to 64 different CPUs.
memory INTEGER

This option specifies the amount of memory in 4 kilobytes pages. So, for example, if
this option is set to 1024, this means that YAMS has totally 1024 * 4KB = 4096 KB of
memory. The maximum amount of memory YAMS supports is 512 megabytes, which
is 131072 pages.
clock-speed INTEGER This option specifies the "clock rate" of YAMS simulator.

All options in this section are mandatory.



Chapter 3: Configuration 4

3.3 Configuring the Disk

filename STRING

This option specifies the file name of the disk image. The simulator reads this disk
image or creates new if the file doesn’t exist.
sector-size INTEGER

This option specifies the sector size (in bytes) of the simulated disk device.
sectors INTEGER

This option specifies the number of sectors in the simulated disk device.
vendor STRING

This option specifies the vendor string of the simulated disk device. The maximum
length of the string is 8 characters.
irq INTEGER

This option specifies the IRQ of the simulated device. The valid values are from 0 to
4.
cylinders INTEGER

This option specifies the number of cylinders in the simulated disk device. Note that
the number of sectors must be a multiple of the number of cylinders.
rotation-time INTEGER

This option specifies the disk rotation time in simulated milliseconds.
seek-time INTEGER

This option specifies the full disk seek time in simulated milliseconds.

The options irq, filename, sector-size and sectors are mandatory, other are op-
tional.

3.4 Configuring the Terminal

unix-socket STRING

Specifies the UNIX domain socket file where the YAMS will connect to or listen for its
simulated terminal. YAMS will block until the connection has been established.
The recommended TTY mode is an outbound connection to a UNIX domain socket
with yamst on the other end, since this way YAMS can be exited and restarted without
input on the other end.
tcp-host STRING

Specifies the remote host name (either DNS name or IP address) of the host where to
connect the simulated terminal device. YAMS will block until the connection has been
established.
If listen is specified, this specifies which interfaces to listen at the local host. E.g. to
prevent connections from other hosts one provides localhost as the host name. Setting
the host name to the empty string "" means that all interfaces should be listened.
listen

Specifies that YAMS should wait for a connection on the socket instead of making an
outbound connection.



Chapter 3: Configuration 5

port INTEGER

Specifies the TCP port where to connect YAMS or if listen was specified where to start
the listening socket.
vendor STRING

This option specifies the vendor string of the simulated terminal device. The maximum
length of the string is 8 characters.
irq INTEGER

This option specifies the IRQ of the simulated device. The valid values are from 0 to
4.
send-delay INTEGER

The delay in milliseconds for writes to the device to complete. Value can be 0 (no
delay) or greater.

The mandatory options are irq, either unix-socket or tcp-host and port.

3.5 Configuring the Network

mtu INTEGER

This option specifies the MTU, maximum transfer unit of the simulated network inter-
face card (NIC) device in bytes. The MTU must be at least 10 bytes.
unix-socket STRING

This option specifies the file name of the unix domain socket, in which YAMS will connect
its simulated NIC device.
udp-host

Specifies the remote host name (either DNS name or IP address) to the host where to
send the network device packets. This must be a multicast address.
port

Specifies the udp port where the network packets will be sent.
send-delay INTEGER

Specifies the send delay of the network interface card (NIC). This is in simulated
milliseconds.
mac INTEGER

This option specifies the MAC (Media Access Control) address of the simulated network
device. The broadcast address is always 0xFFFFFFFF.
reliability INTEGER

This option specifies the reliability of the network device. The range is from 0 to 100.
The value zero means no reliability (everything is dropped), whereas 100 means total
reliability. Note that if the UDP socket is used, 100% reliability is not guaranteed,
though.
dma-delay INTEGER

This option specifies the delay of the direct memory access (DMA). The unit is simu-
lated milliseconds.



Chapter 3: Configuration 6

vendor STRING

This option specifies the vendor string of the simulated terminal device. The maximum
length of the string is 8 characters.
irq INTEGER

This option specifies the IRQ of the simulated device. The valid values are from 0 to
4.

The options mtu, irq and either unix-socket or udp-host and port are mandatory.

3.6 Config Example

# Simulator config file:

Section "simulator"
clock-speed 1000 # kHz, "milliseconds" in RTC

# are based on this
memory 16384 # in 4 kB pages
cpus 1

EndSection

Section "disk"
vendor "1MB-disk"
irq 3
sector-size 1024
cylinders 4
sectors 1024
rotation-time 10 # milliseconds
seek-time 100 # milliseconds, full seek
filename "store.file"

EndSection

Section "tty"
vendor "Terminal"
irq 4

unix-socket "tty0.socket" # path and filename
# to unix domain socket

# listen # uncomment to listen instead of connecting

# tcp-host "" # listen all interfaces
# port 9999 # at TCP port 9999
# listen

# tcp-host "localhost" # connect to localhost:1234
# port 1234

send-delay 0 # in milliseconds



Chapter 3: Configuration 7

EndSection

Section "nic"
vendor "6Com-NIC"
irq 2
mtu 1324
mac 0x0F010203 # in hex
reliability 100 # in percents
dma-delay 1 # in milliseconds
send-delay 1 # in milliseconds

# unix-socket "nic0.socket" # path and filename
# to unix domain socket

udp-host "239.255.0.0" # address of the remote host
port 31337 # udp port number

EndSection



Chapter 4: Invoking YAMS 8

4 Invoking YAMS

The format for running the YAMS program is:
yams option ... [binary-name [opt] ...]

YAMS supports the following options:

‘binary-name’
A binary file to be loaded into the memory and booted at startup (for example
an operating system kernel). Binary name may be followed by one or more
options, that are passed to the binary.

‘--help’
‘-h’ Print an informative help message describing the options and then exit.

‘--version’
‘-v’ Print the version number of YAMS. and then exit.

‘--config file’
‘-c file’ Read configuration file file. This will override YAMS default configuration search-

ing Section 3.1 [Configuration Overview], page 3.

‘--script file’
‘-s file’ Read commands from script file and after that drop to interactive prompt.

This argument can be given multiple times. Up to 255 different script files
are supported. The scripts are executed in the order they are specified in the
command line.



Chapter 5: Command Console 9

5 Command Console

When YAMS is started for interactive use, the simulation doesn’t start automatically.
Instead, the system is started into hardware command console. This console can be thought
as firmware code that exists in actual hardware.

The main uses of the console are data loading (kernel image loading) and simulator
running state control (starting and stopping). In addition to the basic functionality, the
console offers some features that are useful for debugging.

When the system is in the console mode a prompt is printed for user. The prompt looks
like this:

YAMS [0]>

Console commands can only be entered when command prompt is shown. The number
in parenthesis tells the number of hardware clock cycles the system has simulated so far.

The console understands the following commands:

5.1 help

Help command prints a list of available commands. If a command name is given as an
argument, extended help for that command is printed instead of the list.

5.2 quit

Quit command exits YAMS. By default, YAMS exists with exit code 0, but if some other
code is needed (usually when running scripted tests), exit value in range [0,255] can be
given as an argument to the quit-command.

5.3 memwrite

Memwrite reads a file and writes it into simulator’s memory. The first argument to
memwrite command must be a valid hardware memory address (memory address relative
to 0, not a segmented address) where to load the file. The second argument is the name of
the file to read in quotation marks.

The following example loads file ’test-binary’ into memory starting from address
0x00030000.

memwrite 0x00030000 "test-binary"

Note that no byte order conversions are done when loading the data. The binary must
already be in big-endian byte order.

See Section 5.4 [memread], page 10. See Section 5.16 [numbers], page 13.



Chapter 5: Command Console 10

5.4 memread

Memread reads simulator part of simulator memory and writes it in a file. The first ar-
gument to memread command must be a valid hardware memory address (memory address
relative to 0, not a segmented address) where to start the read from. The second argument
is the number of bytes to read. The third argument is the name of the file to be written in
quotation marks. If the file exists, it will be overwritten.

The following example dumps 4 kilobytes (one page) of memory starting from address
0x0003000 to file ’dump-test-file’.

memread 0x0003000 4096 "dump-test-file"

See Section 5.3 [memwrite], page 9. See Section 5.16 [numbers], page 13.

5.5 start

Start command starts the simulation loop. While running the simulation, YAMS doesn’t
take console commands. To return to console and stop the simulation, send interrupt signal
to YAMS (usually by pressing CTRL-C).

The stopped simulation can be continued with a new start command.

See Section 5.7 [step], page 10.

5.6 tlbdump

Tlbdump command prints the contents of translation look-aside buffer for CPU 0. If
numeric argument is given to the command, it specifies some other CPU than CPU 0 for
printing. Example:

tlbdump 1

5.7 step

Step runs the simulator for one clock cycle and then drops back to the console. If
numeric argument is given to step command, given number of clock cycles is simulated
before dropping back to the console.

If premature returning is needed, YAMS can be forced to drop back to the console by
sending interrupt signal (usually by pressing CTRL-C).

See Section 5.5 [start], page 10. See Section 5.16 [numbers], page 13.

5.8 break

Break command set hardware breakpoint at the address given as argument to the com-
mand. When any CPU in the system loads instruction from the given address, YAMS drops
to the console.

Only one breakpoint can be active at the same time.

See Section 5.9 [unbreak], page 11. See Section 5.16 [numbers], page 13.



Chapter 5: Command Console 11

5.9 unbreak

Unbreak command clears hardware breakpoints.
See Section 5.8 [break], page 10.

5.10 regdump

Regdump command prints contents of CPU and CP0 registers. By default CPU 0 and
it’s co-processor 0 status is printed. If some print for some other CPU is needed, regdump
takes numeric argument which specifies the processor number. Processors are numbered
starting from 0.

See Section 5.11 [regwrite], page 11.

5.11 regwrite

CPU and CP0 registers can be written with regwrite command. The first argument
for the command is the name of the register (register names can be seen with regdump
command). The second argument is the new value to store in the given register.

By default CPU 0 registers are affected, but register name can be prefixed by CPU
number and colon to store into some other CPU.

Some examples:
regwrite s0 0xdeadbeef
regwrite 1:sp 0x00030000

See Section 5.10 [regdump], page 11.

5.12 interrupt

Hardware and software interrupt lines can be raised with interrupt command. The
raising will be valid only for one clock cycle. After that, CPU will automatically clear the
interrupt as non-pending.

Interrupt command takes interrupt number as first argument. The second argument
specifies the identification number of the CPU which should get the interrupt request. By
default all requests go to CPU 0.

The interrupt number number in closed range [0,7]. The meaning of each number is (the
numbers correspond to interrupt register bit-fields in CP0):

‘0’ Software interrupt line 0

‘1’ Software interrupt line 1

‘2’ Hardware interrupt line 0

‘3’ Hardware interrupt line 1

‘4’ Hardware interrupt line 2

‘5’ Hardware interrupt line 3

‘6’ Hardware interrupt line 4

‘7’ Hardware interrupt line 5



Chapter 5: Command Console 12

5.13 dump

Contents of simulator memory can be seen with the dump command. By default, the
command prints 11 words surrounding CPU 0 program counter. This is useful when stepping
programs.

Dump takes the beginning address of the dump as an optional first argument. The
second, also optional, argument is the number of words to dump. The address argument
can be substituted by CPU register name, which may be prefixed by CPU id. Note that
for segmented addresses the TLB of CPU 0 is used for translation. For direct access, use
kernel unmapped segments as in example below.

Examples:

dump
dump v0
dump 0:v1
dump 0x80010000 20
dump 0:t2 10

5.14 poke

One word can be written into simulator memory by poke command. Poke takes the
memory address as the first argument and value to be stored as second argument. Only full
words can be written. Note that for mapped address segments the TLB of CPU 0 is used
for translation.

See Section 5.13 [dump], page 12.

5.15 boot

Boot command can be used to boot a kernel image. Boot command takes the name
of the kernel image file in quotation marks as its first argument. The second argument is
optional quoted string of kernel arguments.

For example, to boot Buenos kernel from "buenos.img" with arguments:

boot "buenos.img" "startproc=shell"

The exact boot process is:

1. Kernel image file is loaded into memory. This step is equivalent to command memwrite
"image" 0x00010000.

2. Program counters in all CPUs are set to 0x80010000. This could be done manually by
using command regwrite pc 0x80010000 for each CPU.

3. Kernel argument string is copied into its memory area. This can’t be done without
boot command.

4. Simulation is started. This step could be done manually with command start.

See Section 5.3 [memwrite], page 9. See Section 5.11 [regwrite], page 11. See Section 5.5
[start], page 10.



Chapter 5: Command Console 13

5.16 Entering numbers in the hardware console

When a number is needed as a part of hardware console command (either number of
bytes, offset or memory address), YAMS always accepts number in either binary, decimal or
hexadecimal form.

Decimal numbers (base 10) can be entered the usual way ("1234"). Binary numbers
must be prefixed by letter ’b’ ("b1010001"). Hexadecimal numbers must be prefixed by
either ’#’ or ’0x’ ("#a02be").

All numbers must be positive integers in closed range [0, 4294967295] (or 2^32-1). In
hex, this range is [#0, #ffffffff] and in binary [b0, b11111111111111111111111111111111].



Chapter 6: Simulated Machine 14

6 Simulated Machine

YAMS simulates a machine with RISC CPUs. The instruction set of the CPU emulates
MIPS32 instruction set.

Simulation environment simulates an entire computer, including memory, TLB, network
interface cards, disks and console devices. Both Direct Memory Access (DMA) and Memory
Mapped IO (MMIO) devices are present.

6.1 CPU

YAMS CPU emulates a big-endian MIPS32 processor. The CPU supports all instructions
of the MIPS32 instruction set architecture. The processor also contains a MIPS32 style
co-processor 0. See Section 6.2 [CP0], page 16. Coprocessor 1 (Floating Point Unit) is not
implemented.

6.1.1 CPU registers

Name Number Description

zero 0 Always contains 0

at 1 Reserved for assembler

v0 2 Function return

v1 3 Function return

a0 4 Argument register

a1 5 Argument register

a2 6 Argument register

a3 7 Argument register

t0 8 Temporary (Caller saves)

t1 9 Temporary (Caller saves)

t2 10 Temporary (Caller saves)

t3 11 Temporary (Caller saves)

t4 12 Temporary (Caller saves)



Chapter 6: Simulated Machine 15

t5 13 Temporary (Caller saves)

t6 14 Temporary (Caller saves)

t7 15 Temporary (Caller saves)

s0 16 Saved temporary (Callee saves)

s1 17 Saved temporary (Callee saves)

s2 18 Saved temporary (Callee saves)

s3 19 Saved temporary (Callee saves)

s4 20 Saved temporary (Callee saves)

s5 21 Saved temporary (Callee saves)

s6 22 Saved temporary (Callee saves)

s7 23 Saved temporary (Callee saves)

t8 24 Temporary (Caller saves)

t9 25 Temporary (Caller saves)

k0 26 Reserved for operating system

k1 27 Reserved for operating system

gp 28 Global pointer

sp 29 Stack pointer

fp 30 Frame pointer

ra 31 Return address

pc Program counter

hi Register used by multiply and divide instructions

lo Register used by multiply and divide instructions



Chapter 6: Simulated Machine 16

6.2 CP0

The CP0 registers discussed below are implemented in YAMS. Note that all the registers
shown in the YAMS hardware console are not implemented. Note also that all the registers
are writable through the hardware console. However, illegal values entered through the
hardware console can result in unpredictable behavior of YAMS.

YAMS supports two operating modes, kernel mode and user mode. The processor is in
kernel mode when the UM bit in the Status register is zero or when the EXL bit in the
Status register is one or when the ERL bit in the Status register is 1. Otherwise the
processor is in user mode.

6.2.1 Exceptions

When an exception occurs, the following steps are performed by the processor. The
EPC register and the BD field in Cause register are loaded appropriately if the EXL bit in
Status register is not set. The CE and ExcCode fields in Cause register are loaded. The
EXL bit in status register is set and execution is started at the exception vector. Some
exceptions load additional information to CP0 registers.

The base for the exception vector is 0x80000000 if the BEV bit in Status register is
zero. Otherwise the base is 0xbfc00000. Note that this address is not usable for code in
YAMS, so BEV should be set to zero.

The exception codes (found in field ExcCode in Cause register See Section 6.2.14 [Cause],
page 23.) and vector offsets for different exceptions are as follows:

0
0x00 Interrupt. An interrupt has occurred. If the IV field in Cause register is zero,

the vector offset is 0x180. Otherwise the vector offset is 0x200.

1
0x01 TLB modification exception. Software has attempted to store to a mapped

address but the D bit in TLB is set indicating that the page is not writable.
When this exception occurs, BadVAd, Context and EntryHi registers contain
the appropriate bits of the faulting address. The vector offset is 0x180.

2
0x02 TLB exception (load or instruction fetch). The desired entry either was not in

the TLB or it was not valid. When this exception occurs, BadVAd, Context and
EntryHi registers contain the appropriate bits of the faulting address. If the
entry was not in the TLB and the EXL bit in the Status register was zero, the
vector offset is 0x000. Otherwise the vector offset is 0x180.

3
0x03 TLB exception (store). Behaves in exactly the same way as the load or instruc-

tion fetch one.

4
0x04 Address error exception (load or instruction fetch). An address exception occurs

when memory reference was unaligned or when an attempt to reference kernel
address space is made in user mode. When this exception occurs the faulting
address is loaded to the BadVAd register. The vector offset is 0x180.



Chapter 6: Simulated Machine 17

5
0x05 Address error exception (store). Behaves in exactly the same way as the load

or instruction fetch one.

6
0x06 Bus error exception (instruction fetch). Bus error exception occurs when the

bus request is terminated in an error. The vector offset is 0x180.

7
0x07 Bus error exception (load or store). Behaves in exactly the same way as the

instruction fetch one.

8
0x08 Syscall exception. A syscall instruction was executed. The vector offset is

0x180.

9
0x09 Breakpoint exception. A break instruction was executed. The vector offset is

0x180.

10
0x0a Reserved instruction exception. An instruction which is not defined was exe-

cuted. The vector offset is 0x180.

11
0x0b Coprocessor unusable exception. Software attempted to execute a coprocessor

instruction but the corresponding coprocessor is not implemented in YAMS or a
coprocessor 0 instruction when the processor was running in user mode. The
vector offset is 0x180.

12
0x0c Arithmetic overflow. Arithmetic overflow occurred when executing an arith-

metic instruction. The vector offset is 0x180.

13
0x0d Trap exception. The condition of a trap instruction was true. The vector offset

is 0x180.

6.2.2 TLB

YAMS TLB contains 16 entries. Each entry contains an even entry and an odd entry. For
each pair of entries TLB contains the following fields:

VPN2 19 bits The virtual page number is actually virtual page num-
ber/2. The even entry maps the page VPN2|0 and the
odd entry VPN2|1, where | denotes concatenation of bits.

G 1 bit The global bit of the entry indicates if the entry is available
to all processes.



Chapter 6: Simulated Machine 18

ASID 8 bits The address space id field is used to distinguish between
entries of different processes. The ASID bit in the TLB
entry and in the EntrHi register must be the same for the
entry to be valid.

Both the even and the odd entry contain the following fields:

PFN 20 bits The physical page frame number.

C 3 bits The cache coherence bits. Since there is no cache in YAMS,
this field is not very useful and will be ignored by the
simulator.

D 1 bit Dirty bit. If this bit is zero, the page is write protected. If
the bit is one, page can be written can can thus get dirty.

V 1 bit Valid bit. This bit tells if the mapping is valid.

See Section 6.2.5 [EntLo0 and EntLo1], page 19.
See Section 6.2.11 [EntrHi], page 21.

6.2.3 Index

Register number: 0
Selection field: 0

The Index register contains the index of the TLB used by the TLBP, TLBWI and TLBR.
There are two fields in the Index register:

Field name Bits Description

P 31 Probe Failure. This field is written by hardware
during the TLBP instruction to indicate whether the
entry is found in TLB (1) or not (0). This field is
not writable by software.

Index 3..0 The index to the TLB. Written by software to give
the TLB index used by TLBW and TLBR instructions.
Written by hardware during the TLBP instruction if
a matching entry is found. This is a read-write field.

30...4 Must be written as zero, returns zero when reading.

6.2.4 Random

Register number: 1
Selection field: 0

The value of Random register is used to index the TLB by the TLBWR instruction. Random
register is a read-only register. The YAMS hardware updates the value of Random register



Chapter 6: Simulated Machine 19

after each TLBWR instruction. The value of Random register varies between 15 (number of
TLB entries minus one) and the lower bound set by the Wired register. See Section 6.2.8
[Wired], page 20. At start-up and, when the Wired register is written, Random register is
initialized to its upper bound, 15. There is only one field in the Random register:

Field name Bits Description

Random 3...0 The random index to the TLB. This is a read-only
field.

31...4 Must be written as zero, returns zero when reading.

6.2.5 EntLo0 and EntLo1

Register number: 2 and 3

Selection field: 0

The EntLo registers are used in the TLB instructions. The data is either moved from
TLB to these registers or vice versa. The fields of EntLo0 and EntLo1 registers are the
same.

Field name Bits Description

PFN 25...6 Page frame number. This is a read-write field.

C 5...3 Cache coherency bits. These are not very useful in
YAMS since there is no cache. This is a read-write
field. This field is ignored by YAMS

D 2 Dirty bit. The page is writable if this bit is set.
Otherwise the page is not writable. This is a read-
write field. Note that write protected pages can’t
get dirty.

V 1 Valid bit. Indicates whether the entry is valid.This
is a read-write field.

G 0 Global bit. Indicates whether this entry is usable
for all processes. When writing an entry to the
TLB the G bit has to set in both EntLo0 and
EntLo1 registers for the G bit to be set in the
TLB. This is a read-write field.

31..26 Ignored when writing, returns zero when reading.

6.2.6 Contxt

Register number: 4

Selection field: 0



Chapter 6: Simulated Machine 20

Contxt register can be used by the operating system to reference a page table entry
array, if the size of the entry is 16 bytes.

Field name Bits Description

PTEBase 31...23 The base address of the page table entry array.
This field should be written by software.

BadVPN2 22...4 This field contains the upper 19 bits of the virtual
address that caused a TLB exception. This field is
written by hardware when a TLB exception occurs
and from the software’s point of view it is read-
only.

3..0 Must be written as zero, returns zero when read-
ing.

6.2.7 PgMask

Register number: 5
Selection field: 0

The PgMask (PageMask) register is used in the MIPS32 architecture to allow variable
page sizes. Since YAMS only supports 4 kB pages the PgMask register is a read-only register
containing the value 0.

6.2.8 Wired

Register number: 6
Selection field: 0

The Wired register specifies the lower bound for Random register contents. Thus, TLB in-
dexes less than the Wired cannot be replaced with the TLBWR instruction. TLBWI instruction
can be used to replace the wired entries. The Wired register is initialized to zero.

There is only one field in the Wired register:

Field name Bits Description

Wired 3...0 The boundary of wired TLB entries.

31...4 Must be written as zero, returns zero when read-
ing.

6.2.9 BadVAd

Register number: 8
Selection field: 0

The read-only register BadVAd is written by YAMS when address error, TLB refill, TLB
invalid or TLB modified exception occur.



Chapter 6: Simulated Machine 21

The fields of the BadVAd are as follows:

Field name Bits Description

BadVAddr 31...0 Bad virtual address. This field is read-only.

6.2.10 Count

Register number: 9
Selection field: 0

The Count register is a timer, which is incremented by YAMS on every cycle. The Count
register is a read-write register.

Field name Bits Description

Count 31...0 Counter. This is a read-write field.

6.2.11 EntrHi

Register number: 10
Selection field: 0

The EntrHi register contains the data used for matching a TLB entry when writing to,
reading from or accessing the TLB.

Field name Bits Description

VPN2 31...13 The upper 19 bits of the virtual address.

ASID 7...0 Address space identifier.

12...8 Must be written as zero, returns zero when read-
ing.

6.2.12 Compar

Register number: 11
Selection field: 0

The Compar register implements a timer and timer interrupt together with the Count
register. An interrupt is raised when the values of Count and Compar registers are equal.
The timer interrupt uses interrupt line 5. The timer interrupt is cleared by writing a value
to the Compar register.

Field name Bits Description

Comapre 31...0 Counter compare value. This is a read-write field.



Chapter 6: Simulated Machine 22

6.2.13 Status

Register number: 12

Selection field: 0

The Status register contains various fields to indicate the current status of the processor.

Field name Bits Description

CU 28 Indicates whether access to the co-processor 0 is
enabled. This field is initialized to one, indicating
access to co-processor 0. This bit is a read-write
bit.

BEV 22 Controls the locations of the exception vectors.
The value of this field is zero when normal ex-
ception vectors are used and one when bootstrap
exception vectors are used. This bit is a read-write
bit.

IM 15...8 Interrupt mask. Controls the enabling of individ-
ual interrupt lines. This field is a read-write field.
If bit is set, the interrupt is enabled. The first
two bits correspond to the two software interrupts
and the rest are used for the 5 possible hardware
interrupts.

UM 4 Indicates the base operating mode of the proces-
sor. The encoding is zero for kernel mode and one
for user mode. This field is a read-write field.

ERL 2 The error level field. The value of this field is zero
when YAMS is operating in normal level and one
when YAMS is operating in error level. When this
bit is set the processor is running in kernel mode,
all interrupts are disabled and ERET instruction
will use the ErrEPC instead of the EPC register for
return address. This field is a read-write field.

EXL 1 The exception level field. The value of this field is
zero when YAMS is running in normal level and one
when in exception level. When the EXL bit is set,
the processor is running in kernel mode, all inter-
rupts are disabled, the TLB Refill exceptions use
the general exception vector instead of the TLB
Refill vector and the EPC register and the BD field
of the Cause register will not be updated. This
field is a read-write field.



Chapter 6: Simulated Machine 23

IE 0 Interrupt enable. When this bit is zero all inter-
rupts are disabled.

18 Must be written as zero, returns zero when read-
ing.

31..29,
27...23,
21...19,
17...16,
7...5, 3

Ignored when writing, returns zero when reading.

6.2.14 Cause

Register number: 13
Selection field: 0

The Cause register can be used to query the cause of the most recent exception. There
are also fields which control software interrupt requests and the entry vector for interrupts.

Field name Bits Description

BD 31 This bit is set if the last exception occurred in
branch delay slot. Otherwise this bit is zero. The
BD field is not updated if the EXL bit in Status
register is set. This field is read-only.

CE 29 This field contains the number of the faulting co-
processor when a coprocessor unusable exception
occurs. This field is read-only.

IV 23 This field can be used to control the entry vec-
tor for interrupt exceptions. When this bit is set,
interrupt exceptions are vectored to the special in-
terrupt vector (0x200). When this bit is not set,
the interrupt exceptions are vectored to the gen-
eral exception vector (0x180). This is a read-write
field.

HardIP 15...10 This field indicates which interrupts are pending.
Bit 15 is for hardware interrupt 5, bit 14 for hard-
ware interrupt 4 and so on. This field is read-only.

SoftIP 9...8 This field controls the requests for software inter-
rupts. Bit 9 is for software interrupt 1 and bit 8
for software interrupt 0. This is a read-write field.

ExcCode 6...2 This read-only field contains the exception code.
See Section 6.2.1 [Exceptions], page 16.

22 Ignored when writing, returns zero when reading.



Chapter 6: Simulated Machine 24

30,
27...24,
21...16,
7, 1...0

Must be written as zero, returns zero when read-
ing.

6.2.15 EPC

Register number: 14
Selection field: 0

The read-write register EPC (Exception Program Counter) contains the address at which
the execution of a program will continue after an exception is serviced. The EPC register
contains the virtual address of the instruction that caused the exception or, if that instruc-
tion is in branch delay slot, the virtual address of the branch or jump instruction preceding
that instruction. When the EXL bit in Status register is set, YAMS will not write to the
EPC register.

Field name Bits Description

EPC 31...0 Exception Program Counter. This is a read-write
field.

6.2.16 PRId

Register number: 15
Selection field: 0

The read-only register PRId (Processor id) contains information about the processor.

Field name Bits Description

Processor
number

31...24 The number of the processor in this installation.
The first processor is numbered zero, the second
one and so on. The last processor’s number is the
number of processors minus one.

Company
ID

23...16 The company ID number for YAMS is 255.

Processor
ID

15...8 The processor ID number for YAMS is 0.

Revision 7...0 The revision number for YAMS is 0.

6.2.17 Conf0

Register number: 16
Selection field: 0

The Conf0 register is a read-only register providing information about the processor. All
fields of the Conf0 register are constant.



Chapter 6: Simulated Machine 25

Field name Bits Description

M 31 Tells that Conf1 is implemented at a select field 1.
The value of this field is one.

BE 15 Denotes the endianess of the processor. The value
of this field is one for a big endian processor like
YAMS.

AT 14...13 Indicates that YAMS emulates the MIPS32 archi-
tecture. The value of this field is zero.

AR 12...10 Indicates that YAMS emulates the revision 1 of the
MIPS32 architecture. The value of this field is
zero.

MT 9...7 Indicates the MMU type used by YAMS. Since YAMS
emulates the standard TLB model of the MIPS32
architecture, the value of this field is one.

6.2.18 Conf1

Register number: 16

Selection field: 1

The read-only Conf1 register provides more information about the capabilities of the
processor.

Field name Bits Description

M 31 The value of this field is zero indicating that there
is no Conf2 register.

MMU size 30...25 Number of TLB entries minus one. Thus 15 for
YAMS.

IS 24...22 Icache setes per way. The value of this field is zero,
because YAMS does not support caches.

IL 21...19 Icache line size. The value of this field is zero,
because YAMS does not support caches.

IA 18...16 Icache associativity. The value of this field is zero,
because YAMS does not support caches.

DS 15...13 Dcache sets per way. The value of this field is zero,
because YAMS does not support caches.

DL 12...10 Dcache line size. The value of this field is zero,
because YAMS does not support caches.



Chapter 6: Simulated Machine 26

DA 9...7 Dcache associativity. The value of this field is
zero, because YAMS does not support caches.

C2 6 Indicates whether co-processor 2 is implemented.
The value of this field is zero, because YAMS does
not support co-processor 2.

PC 4 Indicates whether performance counter registers
are implemented. The value of this field is
zero, because YAMS does not support perforamnce
counter registers.

WR 3 Indicates whether watch registers are imple-
mented. The value of this field is zero, because
YAMS does not support watch registers.

CA 2 Indicates whether code compression is imple-
mented. The value of this field is zero, because
YAMS does not support code compression.

EP 1 Indicates whether EJTAG is implemented. The
value of this field is zero, because YAMS does not
support EJTAG.

FP 0 Indicates whether FPU is implemented. The value
of this field is zero, because YAMS does not support
FPU.

6.2.19 LLAddr

Register number: 17

Selection field: 0

The LLAddr register contains the physical address referenced by the most recent LL in-
struction. This register is not used by software in normal operation and should be considered
read-only.

6.2.20 ErrEPC

Register number: 30

Selection field: 0

The read-write register ErrEPC functions like the EPC register except that it is used on
error exceptions.

Field name Bits Description

ErrorEPC 31...0 Error exception program counter



Chapter 6: Simulated Machine 27

6.3 Memory

6.3.1 Architecture

YAMS provides 2^32 bytes (4 gigabytes) virtual address space. Virtual address space is
divided in five segments shown in table below.

Virtual Address Range Size Description

0xE0000000 - 0xFFFFFFFF 512 MB Kernel Mapped
0xC0000000 - 0xDFFFFFFF 512 MB Supervisor Mapped
0xA0000000 - 0xBFFFFFFF 512 MB Kernel Unmapped

Uncached
0x80000000 - 0x9FFFFFFF 512 MB Kernel Unmapped
0x00000000 - 0x7FFFFFFF 2 GB User Mapped

Addresses in mapped segments are translated through TLB. Unmapped kernel segments
generate physical addresses to lowest 512 MB of physical memory. Cache is not implemented
so there are no differences between the two kernel unmapped segments.

6.3.2 Kernel Unmapped Uncached Segment

Kernel unmapped segment is further divided into following memory areas:

Virtual Address Range Description
0xB0008000 - 0xBFFFFFFF Memory mapped device IO-area
0xB0001000 - 0xB0001FFF Kernel Boot parameters string
0xB0000000 - 0xB0000FFF Device descriptors
0xA0000000 - 0xAFFFFFFF Kernel binary and stack

6.3.3 Accessing segments

All segments are accessible while processor is in kernel mode. In user mode only User
mapped segment is accessible. Accessing other segments generates Address Error. Since
no supervisor mode is implemented Supervisor Mapped segment is accessible only in kernel
mode.

6.3.4 Address Translation

Unmapped Segments
Kernel Unmapped segments generate physical addresses in the following way:

Segment Virtual Address Physical Address

Kernel Unmapped Uncached 0xA0000000 - 0xAFFFFFFF 0x00000000 - 0x0FFFFFFF
Kernel Unmapped 0x80000000 - 0x9FFFFFFF 0x00000000 - 0x1FFFFFFF



Chapter 6: Simulated Machine 28

Addresses 0xB0000000-0xBFFFFFFF are used in memory mapped io-devices and are
not threated as normal physical memory.

TLB-address translation

See Section 6.2.11 [EntrHi], page 21.

See Section 6.2.5 [EntLo0 and EntLo1], page 19.

See Section 6.2.2 [TLB], page 17.

See Section 6.2.1 [Exceptions], page 16.

Memory is mapped in 4096-byte pages in YAMS. Bits 31-12 of the virtual address refer
to the page. Bits 11-0 are used indexing inside the page. Address translation is performed
in the following way:

1 Find TLB-entry, whose VPN2 field matches to the bits 31-13 of the virtual
address and G bit is set or ASID field matches the current process ASID (ob-
tainde from EntryHi register). If TLB-entry is not found and reference type
is load raise TLB exception 0x02. Otherwise, if TLB-entry is not found, raise
TLB exception 0x03.

2 Check bit 12 (EvenOddBit) in virtual address. If zero use mapping for even
page (TLB-entry fields PFN0, C0, D0, V0), otherwise use mapping for odd
page (TLB-entry fields PFN1, C1, D1, V1).

3 Check validity bit of page (V-field of even/odd page mapping in TLB-entry).
If one page is valid and access to the page is permitted. Otherwise raise TLB
exception 0x02 (load) or 0x03 (store).

4 Check dirty bit of page (D-field of even/odd page mapping in TLB-entry). If
zero and reference type is store, raise TLB modification exception 0x01. Note
that dirty bit is also write protection bit.

5 Generate physical address by concatenating bits 19-0 of PFN-field and bits 11-0
of virtual address.

6.4 Memory mapped I/O devices

All I/O operations in YAMS are memory-mapped. The I/O address space is the upper half
of the kernel unmapped uncached segment, ie. the first byte is at the address 0xb0000000
and the last byte at 0xbfffffff. Reads or writes to this area will not cause an exception
provided that the CPU is in kernel mode and the read/write is naturally aligned.

Reads from unused portions of the I/O area return 0. However, the operating system
should not rely this to be so and instead consider the result is undefined. Writes to unused
portions have no effect.

Reads from the I/O area function just as normal memory reads. However, writing
anything other than a word (e.g. a byte or a half word) to an I/O ’port’ of a device will
give unpredicted results. So writing to I/O ports should be restricted to whole words.

The I/O address space is partitioned as follows:



Chapter 6: Simulated Machine 29

0xb0000000 - 0xb0000fff
This area holds the 128 device descriptors which describe the hardware devices
that are available in the system. For details: See Section 6.4.1 [Device descrip-
tors], page 29. This area is read-only, meaning that writes have no effect.

0xb0001000 - 0xb0001fff
This area holds the kernel boot parameters as a 0-terminated (C-style) string.
This area is read-only, meaning that writes have no effect.

0xb0002000 - 0xb0007fff
This area is reserved for future use. This area is read-only, meaning that writes
have no effect.

0xb0008000 - 0xbfffffff
This area holds the actual I/O ports (memory areas) for the devices. Whether
writing to a certain address has any effect depends on the device and port in
question.

Each of the I/O devices is documented in the following sections:

6.4.1 Device descriptors

In the memory range from 0xb0000000 to 0xb0000fff are located 128 device descriptors
that describe the hardware devices. Each of the descriptors is 32 bytes long and has the
following structure:
OFFSET SIZE DESCRIPTION

0x00 1 word Device type code. Type code 0 is not used by any
devices, and it means that this descriptor is unused
and should be ignored. See Section 6.4.2 [Device type
codes], page 30.

0x04 1 word Device I/O address base. All I/O port offsets of a de-
vice are relative to this address.

0x08 1 word The length of the device’s I/O address area in bytes.
This will always be a multiple of 4, since all ports are
32 bits wide.

0x0C 1 word The number of the IRQ that the device generates. Pos-
sible values are from 0 to 5. A value of -1 (0xffffffff)
means the device will not generate any IRQs.

0x10 8 bytes Vendor string. These bytes are used to describe the
model of the device or some other information intended
to be read by humans. The operating system may
safely ignore the contents of these bytes. These bytes
may contain any values and need not be 0-terminated.

0x18 2 words Reserved. The contents of these word should be con-
sidered undefined.



Chapter 6: Simulated Machine 30

When starting, the operating system should read through all device descriptors, ignoring
those with device type code of 0. In practise there will be no more devices after the first
descriptor with type code 0, but the OS must not rely on this as it may very well change
in the future.

6.4.2 Device type codes

A device is identified by its type code. The type codes have the following meaning and
grouping:

0x100 The 0x100 series is for so-called meta-devices, such as those that are integrated
into the motherboard chipset.

0x101 System memory information. See Section 6.4.4 [Meminfo], page 30.

0x102 System real-time clock device (RTC). See Section 6.4.5 [RTC], page 31.

0x103 System software shutdown device. See Section 6.4.6 [Shutdown], page 31.

0x200 The 0x200 series is for TTYs and other character-buffered devices.

0x201 The basic TTY as described in this document. See Section 6.4.8 [Terminals],
page 32.

0x300 The 0x300 series is for disks and other block-buffered devices.

0x301 Hard disk as described in this document. See Section 6.4.9 [Disks], page 33.

0x400 The 0x400 series is for network devices.

0x401 NIC as described in this document. See Section 6.4.10 [NIC], page 35.

0xC00 CPU status "devices". The last two hexadecimal digits indicate the number of
the CPU, from 0 to 255. See Section 6.4.7 [CPU status], page 31.

6.4.3 Hardware interrupts

Interrupts (IRQs) caused by hardware devices are distributed evenly to all CPUs since
they are not CPU specific (unlike other exceptions).

If YAMS is configured with more than one CPU, the operating system must support
all processors and initialize them symmetrically or some device IRQs may be lost (more
correctly never noticed or handled rather than lost).

See Section 3.2 [Configuring the Simulator], page 3.

6.4.4 System memory information device

The system memory information device has device type code 0x101 and it has the fol-
lowing port:
OFFSET NAME R/W DESCRIPTION

0x00 PAGES R This port contains the number of phys-
ical memory pages in the system. Each
page is 4096 bytes (4kB) in size.



Chapter 6: Simulated Machine 31

6.4.5 System real-time clock device

The RTC device (device type code 0x102) contains information about the speed and
uptime of the system. It has the following ports:
OFFSET NAME R/W DESCRIPTION

0x00 MSEC R Milliseconds elapsed since the machine
started.

0x04 CLKSPD R Machine clock speed in Hz.

The milliseconds are calculated from elapsed clock cycles and the simulator’s virtual
clock speed, and have no relatioin whatsoever with real word time.

See Section 3.2 [Configuring the Simulator], page 3.

6.4.6 Software shutdown device

The software shutdown device (device type code 0x103) is used to exit from YAMS from
within the running program (OS). It has the following port:
OFFSET NAME R/W DESCRIPTION

0x00 SHUTDN W Writing the magic word to this port will
shut down the machine.

The magic word is 0x0badf00d. Writing the magic word to the port will immediately
(after the clock cycle is finished) cause the simulator to exit.

If magic word 0xdeadc0de is written to the same port, YAMS will not exit, but will drop
to command console. This feature is usefull for kernel panic routies, because after error
condition, the state of the system can be inspected.

6.4.7 CPU status devices

Each CPU in the system has a status metadevice associated with it. The device type
codes for CPU status devices range from 0xC00 to 0xC3F, the last two hexadecimal digits
indicating the number of the CPU. The device has the following two ports:
OFFSET NAME R/W DESCRIPTION

0x00 STATUS R CPU status word.

0x04 COMMAND W CPU command port for inter-cpu soft-
ware interrupts.

Presently the status word consists only of the lowest order bit (0-bit), which is set when
the CPU is running. Since all existing CPUs are always running, the status word is always
1.

The command port accepts the following commands:
COMMAND DESCRIPTION

0x00 Generate software interrupt 0



Chapter 6: Simulated Machine 32

0x01 Generate software interrupt 1

Caution: Since the maximum number of device descriptors is 128, configuring YAMS with
too many processors will cause undesirable effects.

See Section 3.2 [Configuring the Simulator], page 3.

6.4.8 Terminal devices

Only terminals with device type code 0x201 are covered in this section.

A terminal (TTY) is a character buffered I/O device from which data can be read when
it is available and to which data can be written in certain speed. Reads and writes are done
one byte (character) at a time (use the lowest 8 bits of a word). A terminal device has the
following ports:

OFFSET NAME R/W DESCRIPTION

0x00 STATUS R Status bits for the TTY device.

0x04 COMMAND W Port for giving commands to the TTY
device.

0x08 DATA RW Data port for reading from and writing
to the TTY. Only the 8 lowest bits are
used.

Operating the TTY is based mostly on interpreting the status bits, which are described
in the following table. Reading from or writing to DATA will update the status bits before
the next clock cycle.

BIT NAME DESCRIPTION

0 RAVAIL There is meaningful (read: real) data available in DATA. If
this bit is not set, reads from DATA will return 0.

1 WBUSY The TTY is writing out its internal buffer. When this bit is
set, all writes to DATA will be ignored.

2 RIRQ The TTY has pending IRQ because new data became avail-
able.

3 WIRQ The TTY has pending IRQ because WBUSY has been
cleared.

4 WIRQE Write interrupt generation is enabled if this is 1, disabled if
0.

29 ICOMM The last command issued to the COMMAND port was un-
recognized.

30 EBUSY The last command issued to the COMMAND port could not
be handled because the TTY was busy.



Chapter 6: Simulated Machine 33

31 ERROR Undefined error in the device. The TTY is to be considered
unusable if this bit is set.

The following commands are available to control a TTY device:

0x01 Reset RIRQ. Will zero the RIRQ bit, indicating that the IRQ generated has
been handled.

0x02 Reset WIRQ. Acts similarly to the RIRQ resetting.

0x03 Enables Write IRQs.

0x04 Disables Write IRQs.

Reading from a TTY device by the operating system would typically be done as follows.

When there is input data available, the TTY will raise an IRQ. The handler should check
just in case that RAVAIL is really set (should always be if RIRQ is set) before reading. It
will then read one byte from DATA into its own buffer. After reading the byte, it should
check if more data is available by checking the RAVAIL bit. Data can be read as long
as RAVAIL is set, and all of it should be read too or the IRQ will be raised again after
exiting the handler. When all available data is read, the handler should reset the RIRQ
bit (command 0x01) and check once more that no data arrived before RIRQ reset. Every
incoming byte raises RIRQ only once.

Writing to a TTY device would typically be implemented by the OS as follows.

First check WBUSY. If WBUSY is set, the thread should go to sleep. When WBUSY
is cleared an interrupt is raised. The handler should wake up the writing thread and reset
WIRQ (command 0x02). The writing thread should write the output one byte at a time
as long as WBUSY is not set. When WBUSY becomes set, the thread should go to sleep
again. This cycle is repeated until all output is written. If multiple bytes is written in
interrupt hanlder, write IRQs must be disabled while writing so that other CPUs won’t end
up in the interrupt handler when clearly not needing to do so.

See Section 3.4 [Configuring the Terminal], page 4.

6.4.9 Hard disk devices

Only disks with device type code 0x301 are covered in this section.

A disk device transfers data between disk and memory using DMA. It generates inter-
rupts when it has completed a DMA transfer. The data is stored on an image file in the
directory from where YAMS is run.

A disk device has the following I/O ports:

OFFSET NAME R/W DESCRIPTION

0x00 STATUS R Status bits for the disk device.

0x04 COMMAND W Port for issuing commands to the disk.



Chapter 6: Simulated Machine 34

0x08 DATA R Return value port for query commands.
The data will be available before the
next clock cycle after the query com-
mand is written to the COMMAND
port.

0x0C TSECTOR RW Number of the disk sector which should
be read/written.

0x10 DMAADDR RW Start address of the memory buffer
which will be used for sector reads and
writes. The size of the buffer is the same
as the size of the disk sector and address-
ing is 0x00000000-based unmapped.

The following table describes the status bits of a disk device:
BIT NAME DESCRIPTION

0 RBUSY The disk is busy reading from disk to memory.

1 WBUSY The disk is busy writing from memory to disk.

2 RIRQ The disk has finished a read operation and generated an IRQ.
The IRQ line is held raised by the disk while this bit is set.

3 WIRQ The disk has finished a write operation and generated an
IRQ. The IRQ line is held raised by the disk while this bit is
set.

27 ISECT The sector number given to a read/write request is invalid.

28 IADDR The address given to a read/write request did not reside en-
tirely in physical memory.

29 ICOMM The last command issued to the COMMAND port was un-
recognized.

30 EBUSY The last command issued to the COMMAND port could not
be handled because the disk was busy.

31 ERROR Undefined error in the device. The disk is to be considered
unusable if this bit is set.

The commands that can be issued to a disk device through the COMMAND port are
listed in the following table. Status changes caused by the command will be visible in
the status register before the next clock cycle (like in normal memory writes on MIPS32
architecture).

0x01 Begin read operation. Will begin a transfer from the sector TSECTOR to the
buffer addresses by DMAADDR. An IRQ is generated on completion.

0x02 Begin write operation. Will begin a transfer from the buffer addressed by
DMAADDR to the sector TSECTOR. An IRQ is generated on completion.



Chapter 6: Simulated Machine 35

0x03 Reset RIRQ. Will clear the RIRQ bit, indicating that the IRQ generated has
been handled. This will cause the disk to not raise the IRQ line any further
unless there is another IRQ pending (should never happen).

0x04 Reset WIRQ. Acts similarly to the RIRQ resetting.

0x05 Get number of sectors in the disk, returned in DATA.

0x06 Get sector size in bytes, returned in DATA.

0x07 Get sectors per cylinder, returned in DATA.

0x08 Get disk rotation period in simulated milliseconds, returned in DATA.

0x09 Get disk full seek time in simulated milliseconds, returned in DATA.

Using a disk in the OS is very simple. A thread wanting to write to a disk will first reserve
the disk for itself. Then it will write the disk sector and the DMA transfer buffer address
to TSECTOR and DMAADDR and issue a request for write operation to COMMAND. It
should then check if there were any errors. If no errors occured, the thread will go to sleep.

When the operation is finished, the disk will raise an interrupt. The interrupt handler
should then wake up the thread that has reserved the disk and reset the WIRQ bit. The
thread will then release the disk reservation and go about its business.

Reading from the disk is done similarly.
See Section 3.3 [Configuring the Disk], page 4.

6.4.10 Network interface cards

Only network cards with device type code 0x401 are covered in this section.
A network interface card functions very much like the disk, except of course it will make

IRQs on its own when packets arrive.
A NIC is "fully full duplex", meaning it has both a receive and a send buffer which can

be used simultaneously ie. a frame can be received while sending is in progress. When a
frame is received in the receive buffer it must be then DMA transferred to main memory
before the next frame can be received.

A network interface card has the following I/O ports:
OFFSET NAME R/W DESCRIPTION

0x00 STATUS R Status bits for the network device.

0x04 COMMAND W Port for issuing commands to the NIC.

0x08 HWADDR R Link level address of the NIC.

0x0C MTU R Maximum transfer unit of the NIC in
bytes.

0x10 DMAADDR RW Start address of the memory buffer
which will be used for frame sends and
receives. The size of the buffer is
the size of the MTU and addressing is
0x00000000-based unmapped.



Chapter 6: Simulated Machine 36

The frames (or packets, since there is no trailer, but the term frame is used in this
document) send to the network have the structure defined in the following table. Note that
the addresses are in network byte order, which is big-endian (since YAMS is also big-endian,
this is no problem).

OFFSET SIZE NAME DESCRIPTION

0x00 1 word DSTADDR Link level address of the destination in
network byte order.

0x04 1 word SRCADDR Link level address of the sender in net-
work byte order.

0x08 MTU-8 PAYLOAD Link level payload, can be up to MTU
- 8 bytes. The payload length is not
defined here, it can be defined in the
headers of the higher level protocol.
The full MTU is always transfered by
the hardware.

Network device status bits are described in the following table

BIT NAME DESCRIPTION

0 RXBUSY The receive buffer is either receiving a frame or one
has been received but not yet transferred to memory.
If this bit is set new frames cannot be received. This
bit must be cleared manually with the ready to receive
command.

1 RBUSY The NIC is transferring a frame from the receive buffer
to memory.

2 SBUSY The NIC is transferring a frame from memory to the
send buffer.

3 RXIRQ The NIC has received a frame and generated an IRQ.
The frame is ready to be transferred from the receive
buffer.

4 RIRQ A DMA transfer from the receive buffer to memory
has completed and an IRQ was generated.

5 SIRQ A DMA transfer from memory to the send buffer was
completed and an IRQ was generated.

6 PROMISC The NIC is in promiscuous mode, receiving all frames
instead of just those addressed to it.

27 NOFRAME There is no frame available in the receive buffer but a
read transfer was requested.



Chapter 6: Simulated Machine 37

28 IADDR The DMA address given did not reside entirely in
physical memory.

29 ICOMM The last command issued to the COMMAND port
was unrecognized.

30 EBUSY The last command issued to the COMMAND port
could not be handled because the NIC was busy.

31 ERROR Undefined error in the device. The NIC is to be con-
sidered unusable if this bit is set.

When a DMA transfer from memory to the send buffer is requested, the NIC will wait
for the send buffer to be available (the previous transmit completed) before doing the actual
transfer and then begin transmitting the transferred frame. That is why there is no IRQ
after the frame has actually been transmitted into the network.

Available commands for a NIC are listed in the following table

0x01 Start a DMA transfer from the receive buffer to the memory buffer addressed
by DMAADDR.

0x02 Start a DMA transfer from the memory buffer addressed by DMAADDR into
the send buffer.

0x03 Clear the RXIRQ bit, indicating that the interrupt has been handled and the
NIC need not generate it any more for this frame.

0x04 Clear the RIRQ bit.

0x05 Clear the SIRQ bit.

0x06 Clear the RXBUSY bit. This tells the NIC that it can now receive a new frame
into the receive buffer.

0x07 Enter promiscuous mode.

0x08 Exit promiscuous mode.

A typical interrupt handler for a NIC works as follows. When a frame is received
(RXIRQ) the handler will request a DMA transfer from the NIC into the memory buffer
allocated for incoming frames. It will then clear the RXIRQ bit. When the DMA transfer
is completed and the NIC generates an IRQ (RIRQ), the handler will do with the received
frame whatever it needs to and then clear both RXBUSY and RIRQ bits.

When a frame needs to be sent, the sending thread will reserve the NIC and check if
SBUSY bit is set. If set, the thread will go to sleep. When SBUSY is cleared (frame send
complete), the interrupt handler will wake up the waiting thread. The thread will then
request a send operation and check for errors. It can then exit, there is no need for the
sending thread to wait for anything after this.

See Section 3.5 [Configuring the Network], page 5.



Chapter 7: How to build cross-compiling GCC 38

7 How to build cross-compiling GCC

Building a cross compiler has really nothing to do with YAMS. Since one is needed to
generate code for YAMS unless a native MIPS32 compiler is used, here are short instructions
for building GCC 2.95.3 as a cross-compiler for MIPS32 (actually MIPS ISA 2).

The included patches are needed to build libgcc.

7.1 How to build a GCC cross-compiler

To build binaries for the YAMS simulator, a C compiler and assembler is needed. These
are provided by the GNU binutils and GCC packages. Binutils is needed mainly for the
GNU assembler and linker, but the others can be quite useful too.

You do not necessarily need a cross compiler to create code for YAMS, any native
compiler generating 32-bit big-endian MIPS code should do the job.

These instructions are tested on binutils 2.13 and gcc 2.95.3. GCC version 3.x has a
bug when building a MIPS cross-compiler (Internal compiler error when building libgcc),
so use it only if you do not need libgcc. 2.95.3 needs a little patching so it won’t require
target OS (does not exist!) header files. The patches are provided, they are the same ones
as mentioned in this discussion: http://gcc.gnu.org/ml/gcc/1999-11n/msg00450.html

Download the tarballs to a suitable empty directory and do the following:
#!/bin/sh

# Extract the packages
gunzip -c binutils-2.13.tar.gz | tar xf -
gunzip -c gcc-2.95.3.tar.gz | tar xf -

# Apply the patches to the files
# gcc-2.95.3/gcc/frame.c and gcc-2.95.3/gcc/libgcc2.c
patch < frame.c-patch
patch < libgcc2.c-patch

TARGET=mips-ecoff
PREFIX=/u/projects/buenos/util/sparc

# Build in a separate directory
mkdir build-binutils
cd build-binutils
../binutils-2.13/configure --target=$TARGET --prefix=$PREFIX -v
make all

make install

cd ..
mkdir build-gcc



Chapter 7: How to build cross-compiling GCC 39

cd build-gcc
../gcc-2.95.3/configure --with-gnu-ld --with-gnu-as --without-nls
--enable-languages=c --disable-multilib --target=$TARGET --prefix=$PREFIX -v

make all

make install

As can be seen, the format chosen for the object files is COFF, it being simpler than
ELF. You may also want to consider using AOUT, as it is even more simpler.

PREFIX is naturally the directory under which the software should be installed. When
installed, the cross-compiler binaries are found as "$PREFIX/$TARGET/bin/*" and
"$PREFIX/bin/$TARGET-*". TARGET is the architecture/platform to cross-compile
to. Specifying mips-ecoff will produce MIPS big-endian code in COFF format, mipsel-ecoff
would produce MIPS little-endian code in COFF.

7.2 Patch for gcc-2.95.3/gcc/frame.c

*** gcc-2.95.3/gcc/frame.c Thu Jan 25 16:03:15 2001
--- frame.c Thu Nov 7 02:21:03 2002
***************
*** 37,42 ****
--- 37,47 ----

needing header files first. */
/* ??? This is not a good solution, since prototypes may be required in

some cases for correct code. See also libgcc2.c. */
+
+ #if defined(CROSS_COMPILE) && !defined(inhibit_libc)
+ #define inhibit_libc
+ #endif
+

#ifndef inhibit_libc
/* fixproto guarantees these system headers exist. */
#include <stdlib.h>

7.3 Patch for gcc-2.95.3/gcc/libgcc2.c

*** gcc-2.95.3/gcc/libgcc2.c Fri Jun 11 06:11:43 1999
--- libgcc2.c Thu Nov 7 02:24:42 2002
***************
*** 36,41 ****
--- 36,49 ----

needing header files first. */
/* ??? This is not a good solution, since prototypes may be required in

some cases for correct code. See also frame.c. */
+
+ /* In a cross-compilation situation, default to inhibiting compilation
+ of routines that use libc. */
+
+ #if defined(CROSS_COMPILE) && !defined(inhibit_libc)



Chapter 7: How to build cross-compiling GCC 40

+ #define inhibit_libc
+ #endif
+
#ifndef inhibit_libc
/* fixproto guarantees these system headers exist. */
#include <stdlib.h>

***************
*** 57,69 ****
#define WEAK_ALIAS
#endif

- /* In a cross-compilation situation, default to inhibiting compilation
- of routines that use libc. */
-
- #if defined(CROSS_COMPILE) && !defined(inhibit_libc)
- #define inhibit_libc
- #endif
-
/* Permit the tm.h file to select the endianness to use just for this

file. This is used when the endianness is determined when the
compiler is run. */

--- 65,70 ----



Chapter 8: Copying 41

8 Copying



GNU GENERAL PUBLIC LICENSE 42

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.



GNU GENERAL PUBLIC LICENSE 43

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program,” below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification.”) Each licensee is
addressed as “you.”
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.



GNU GENERAL PUBLIC LICENSE 44

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.



GNU GENERAL PUBLIC LICENSE 45

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version,” you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software



GNU GENERAL PUBLIC LICENSE 46

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS



GNU GENERAL PUBLIC LICENSE 47

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 20yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice



GNU GENERAL PUBLIC LICENSE 48

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.



Concept Index 49

Concept Index

B
booting kernel image . . . . . . . . . . . . . . . . . . . . . . . . . 12

C
Co-processor 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
co-processor registers . . . . . . . . . . . . . . . . . . . . . . . . . 11
command prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
config, file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
console commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 14

D
device descriptors . . . . . . . . . . . . . . . . . . . . . . . . 28, 29
device generated interrupts . . . . . . . . . . . . . . . . 28, 30
device type codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DMA transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
droptting to command console from the OS . . . . 31
dumping memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
dumping memory to file . . . . . . . . . . . . . . . . . . . . . . 10

E
exiting simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

G
getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

H
hard disk programming . . . . . . . . . . . . . . . . . . . . . . 33
hardware breakpoints . . . . . . . . . . . . . . . . . . . . . . . . 10
help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I
I/O address space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
identifying system hardware . . . . . . . . . . . . . . . . . . 29
interactive console . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
interrupts in simulated machine . . . . . . . . . . . . . . . 16
IRQ distribution among processors . . . . . . . . . . . . 30

K
kernel argument string . . . . . . . . . . . . . . . . . . . . 26, 27
kernel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

L
loading binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

M
memory architecture . . . . . . . . . . . . . . . . . . . . . . 26, 27
memory mapped devices . . . . . . . . . . . . . . . . . . . . . 28
memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . 26, 27
memory protection . . . . . . . . . . . . . . . . . . . . . . . 26, 27
memory segments . . . . . . . . . . . . . . . . . . . . . . . . 26, 27

N
network programming . . . . . . . . . . . . . . . . . . . . . . . . 35
numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
numeric constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

O
online help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

P
powering off the simulator from the OS . . . . . . . . 31
programming instructions . . . . . . . . . . . . . . . . . . . . 14

R
registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
running one instruction at a time . . . . . . . . . . . . . 10

S
simulated hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 14
simulation environment . . . . . . . . . . . . . . . . . . . . . . 14
starting simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
supported devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

T
TLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
TLB handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
TTY programming . . . . . . . . . . . . . . . . . . . . . . . . . . 32

U
usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
user mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

V
version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
virtual clockspeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

W
writing memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
writing registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



i

Table of Contents

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Install. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1 Configuration Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Configuring the Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Configuring the Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Configuring the Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.5 Configuring the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.6 Config Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Invoking YAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Command Console . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1 help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 quit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 memwrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4 memread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.5 start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.6 tlbdump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.7 step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.8 break. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.9 unbreak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.10 regdump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.11 regwrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.12 interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.13 dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.14 poke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.15 boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.16 Entering numbers in the hardware console . . . . . . . . . . . . . . 13

6 Simulated Machine . . . . . . . . . . . . . . . . . . . . . . . 14
6.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.1.1 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 CP0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.2.1 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2.2 TLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2.3 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2.4 Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2.5 EntLo0 and EntLo1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



ii

6.2.6 Contxt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.7 PgMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.8 Wired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.9 BadVAd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.10 Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.11 EntrHi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.12 Compar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.13 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.14 Cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.15 EPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.16 PRId . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.17 Conf0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.18 Conf1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.19 LLAddr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2.20 ErrEPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3.2 Kernel Unmapped Uncached Segment . . . . . . . . . . . 27
6.3.3 Accessing segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3.4 Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4 Memory mapped I/O devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4.1 Device descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.2 Device type codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4.3 Hardware interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4.4 System memory information device . . . . . . . . . . . . . 30
6.4.5 System real-time clock device . . . . . . . . . . . . . . . . . . . 31
6.4.6 Software shutdown device . . . . . . . . . . . . . . . . . . . . . . 31
6.4.7 CPU status devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4.8 Terminal devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4.9 Hard disk devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4.10 Network interface cards . . . . . . . . . . . . . . . . . . . . . . . 35

7 How to build cross-compiling GCC . . . . . . . . 38
7.1 How to build a GCC cross-compiler . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Patch for gcc-2.95.3/gcc/frame.c . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Patch for gcc-2.95.3/gcc/libgcc2.c . . . . . . . . . . . . . . . . . . . . . . . 39

8 Copying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

GNU GENERAL PUBLIC LICENSE . . . . . . . . . 42
Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
How to Apply These Terms to Your New Programs . . . . . . . . . . . . 47

Concept Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49


	Overview
	Install
	Configuration
	Configuration Overview
	Configuring the Simulator
	Configuring the Disk
	Configuring the Terminal
	Configuring the Network
	Config Example

	Invoking YAMS
	Command Console
	help
	quit
	memwrite
	memread
	start
	tlbdump
	step
	break
	unbreak
	regdump
	regwrite
	interrupt
	dump
	poke
	boot
	Entering numbers in the hardware console

	Simulated Machine
	CPU
	CPU registers

	CP0
	Exceptions
	TLB
	Index
	Random
	EntLo0 and EntLo1
	Contxt
	PgMask
	Wired
	BadVAd
	Count
	EntrHi
	Compar
	Status
	Cause
	EPC
	PRId
	Conf0
	Conf1
	LLAddr
	ErrEPC

	Memory
	Architecture
	Kernel Unmapped Uncached Segment
	Accessing segments
	Address Translation

	Memory mapped I/O devices
	Device descriptors
	Device type codes
	Hardware interrupts
	System memory information device
	System real-time clock device
	Software shutdown device
	CPU status devices
	Terminal devices
	Hard disk devices
	Network interface cards


	How to build cross-compiling GCC
	How to build a GCC cross-compiler
	Patch for gcc-2.95.3/gcc/frame.c
	Patch for gcc-2.95.3/gcc/libgcc2.c

	Copying
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

	How to Apply These Terms to Your New Programs
	Concept Index

