
BUENOS
is a

University Educational Nutshell Operating System

Roadmap to the BUENOS system

Version 1.1.1

October 5, 2007

Juha Aatrokoski, Timo Lilja, Leena Salmela,

Teemu J. Takanen and Aleksi Virtanen

BUENOS is licenced under the following ”modified BSD license” (i.e., the BSD license
without the advertising clause).

Copyright © 2003–2007 Juha Aatrokoski, Timo Lilja, Leena Salmela,
Teemu J. Takanen and Aleksi Virtanen

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents

1 Introduction 1
1.1 Expected Background Knowledge . 1
1.2 How to Use This Document . 2
1.3 BUENOS for teachers . 2

1.3.1 Preparing for BUENOS Course 2
1.4 Exercises . 3
1.5 Contact Information . 3

2 Using Buenos 4
2.1 Installation and Requirements . 4
2.2 Compilation . 4
2.3 Booting the System . 4
2.4 Compiling Userland Programs . 5
2.5 Using the Makefiles . 5

2.5.1 System Makefile . 5
2.5.2 Userland Makefile . 6

2.6 Using Trivial Filesystem . 6
2.7 Starting Processes . 7

3 Kernel Overview 8
3.1 Directory Structure . 8
3.2 Kernel Architecture . 9

3.2.1 Threading . 10
3.2.2 Virtual Memory . 11
3.2.3 Support for Multiple Processors 11

3.3 Kernel Programming . 13
3.3.1 Memory Usage . 13
3.3.2 Stacks and Contexts . 13
3.3.3 Library Functions . 14
3.3.4 Using a Console . 14
3.3.5 Busy Waiting . 14
3.3.6 Floating Point Numbers . 14
3.3.7 Naming Conventions . 14
3.3.8 Debug Printing . 14
3.3.9 C Calling Conventions . 15
3.3.10 Kernel Boot Arguments . 15

Exercises . 15

4 Threading and Scheduling 16
4.1 Threads . 16

4.1.1 Thread Table . 17
4.1.2 Thread Library . 17

4.2 Scheduler . 20
4.2.1 Idle thread . 21

4.3 Context Switch . 21
4.3.1 Interrupt Vectors . 22
4.3.2 Context Switching Code . 23
4.3.3 Thread Contexts . 24

4.4 Exception Processing in Kernel Mode 25
Exercises . 25

5 Synchronization Mechanisms 27
5.1 Spinlocks . 27

5.1.1 LL and SC Instructions . 27
5.1.2 Spinlock Implementation . 28

5.2 Sleep Queue . 28
5.2.1 Using the Sleep Queue . 28
5.2.2 How the Sleep Queue is Implemented 30

5.3 Semaphores . 31
5.3.1 Semaphore Implementation 32

Exercises . 33

6 Userland Processes 37
6.1 Process Startup . 37
6.2 Userland Binary Format . 38
6.3 Exception Handling . 41
6.4 System Calls . 41

6.4.1 How System Calls Work . 42
6.4.2 System Calls in BUENOS . 42

Exercises . 45

7 Virtual Memory 48
7.1 Hardware Support for Virtual Memory 48
7.2 Virtual memory initialization . 49
7.3 Page Pool . 49
7.4 Pagetables and Memory Mapping . 50
7.5 TLB . 52

7.5.1 TLB dual entries and ASID in MIPS32 architectures 53
7.5.2 TLB miss exception, Load reference 53
7.5.3 TLB miss exception, Store reference 53
7.5.4 TLB modified exception . 53
7.5.5 TLB wrapper functions in BUENOS 53

Exercises . 57

8 Filesystem 59
8.1 Filesystem Conventions . 59
8.2 Filesystem Layers . 59
8.3 Virtual Filesystem . 60

8.3.1 Return Values . 60
8.3.2 Limits . 61
8.3.3 Internal Data Structures . 62
8.3.4 VFS Operations . 62
8.3.5 File Operations . 64
8.3.6 Filesystem Operations . 67
8.3.7 Filesystem Driver Interface 69

8.4 Trivial Filesystem . 72

8.4.1 TFS Driver Module . 73
Exercises . 77

9 Networking 79
9.1 Network Services . 79
9.2 Packet Oriented Transport Protocol 83

9.2.1 Sockets . 84
9.2.2 POP-Specific Structures and Functions 85

9.3 Stream Oriented Protocol API . 89
Exercises . 90

10 Device Drivers 91
10.1 Interrupt Handlers . 92
10.2 Device Abstraction Layers . 93

10.2.1 Device Driver Implementor’s Checklist 93
10.2.2 Device Driver Interface . 94
10.2.3 Generic Character Device . 96
10.2.4 Generic Block Device . 96
10.2.5 Generic Network Device . 99

10.3 Drivers . 99
10.3.1 Polling TTY driver . 99
10.3.2 Interrupt driven TTY driver 101
10.3.3 Network driver . 103
10.3.4 Disk driver . 103
10.3.5 Timer driver . 107
10.3.6 Metadevice Drivers . 108

Exercises . 109

11 Booting and Initializing Hardware 111
11.1 In the Beginning There was boot.S 111
11.2 Hardware and Kernel Initialization 111
11.3 System Start-up . 112

A Kernel Boot Arguments 113

B Kernel Configuration Settings 114

C Example YAMS Configurations 117
C.1 Disk . 117

Bibliography 118

Index 119

Chapter 1

Introduction

BUENOS is a skeleton operating system running on a virtual machine called YAMS.
The operating system is meant as an exercise base for operating system project
courses. BUENOS is a realistic system, running on an almost real machine.

The BUENOS system supports multiple CPUs, provides threading and a wide va-
riety of synchronization primitives. It also includes a skeleton code for userland
program support, partial support for a virtual memory subsystem, a trivial filesys-
tem and some networking functionality. Many device drivers are also provided (the
network card is not supported, because NIC driver implementation is an exercise).

Many simplifications have been made to the hardware where the need for clar-
ity has been greater than the need for realism. The YAMS virtual machine does
not simulate caches, for example, but provides an otherwise fully realistic memory
model.

The main idea of the system is to give you a real, working multiprocessor oper-
ating system kernel which is as small and simple as possible. BUENOS could be quite
easily ported to a real MIPS32 hardware, only device drivers and boot code need
to be modified. Virtual machine environment is used because of easier develop-
ment, static hardware settings and device driver simplicity, not because unrealistic
assumptions are needed by the kernel.

If you are a student participating on an operating systems project course, the
course staff has probably already set up a development environment for you. If they
have not, you must acquire YAMS (see below for details) and compile it. You also
need a MIPS32 ELF cross compiler to compile BUENOS.

1.1 Expected Background Knowledge

Since the BUENOS system is written using the C programming language, you should
be able to program in C. For an introduction on C programming, see the classical
reference [K&R]. You also need to know quite much about programming in general,
particularly about procedural programming.

We also expect that you have taken a lecture course on operating systems or
otherwise know the basics about operating systems. You can still find OS textbooks
very handy when doing the exercises. We recommend that you acquire a book by
Stallings [Stallings] or Tanenbaum [Tanenbaum].

Since you are going to interact directly with the hardware quite a lot, you should
know something about hardware. A good introduction on this can be found in the
book [Patterson].

Since kernel programming generally involves a lot of synchronization issues a
course on concurrent programming is recommended. One good book on this field

2 CHAPTER 1. INTRODUCTION

is the book by Andrews [Andrews]. These issues are also handled in the operating
systems books by Stallings and Tanenbaum, but the approach is different.

1.2 How to Use This Document

This roadmap document is designed to be used both as read-through introduction
and as a reference guide. To get most out of this document you should probably:

1. Read chapter 2 (usage) and chapter 3 (system overview) carefully.

2. Skim through the whole document to get a good overview.

3. Before designing and implementing your assignments, read carefully all chap-
ters on the subject matter.

4. Use the document as reference when designing and implementing your im-
provements.

1.3 BUENOS for teachers

As stated above, the BUENOS system is meant as an assignment backbone for oper-
ating systems project courses. This document, while primarily acting as reference
guide to the system, is also designed to support project courses. The document is
ordered so that various kernel programming issues are introduced in sensible order
and exercises (see also section 1.4) are provided for each subject area.

While the system as such can be used as a base for a large variety of assignments,
this document works best if assignments are divided into five different parts as
follows:

1. Synchronization and Multiprogramming. Various multiprogramming
issues relevant on both multiprocessor and uniprocessor machines are covered
in chapter 4 and chapter 5.

2. Userland. Userland processes, interactions between kernel and userland as
well as system calls are covered in chapter 6.

3. Virtual Memory. The current virtual memory support mechanisms in
BUENOS are explained in chapter 7, which also gives exercises on the subject
area.

4. Filesystem. Filesystem issues are covered in chapter 8.

5. Networking. Networking in BUENOS is explained in chapter 9, but note that
the base system doesn’t include a driver for the network interface. Thus it is
recommended to provide one as a binary module for students or use chapter 10
as a part of this round and let students implement one.

1.3.1 Preparing for BUENOS Course

To implement an operating systems project course with BUENOS, at least the follow-
ing steps are necessary:

• Provide students with a development environment with precompiled YAMS and
a MIPS32 ELF cross compiler. See YAMS usage guide for instructions on setup
of YAMS and the cross compiler environment.

1.4. EXERCISES 3

• Decide which exercises are used on the course, how many points they are
worth and what are the deadlines.

• Decide any other practical issues (are design reviews compulsory for students,
how many students there are per group, etc.)

• Familiarize the staff with BUENOS and YAMS.

• Introduce BUENOS to the students.

1.4 Exercises

Each chapter in this document contains a set of exercises. Some of these are meant
as simple thought challenges and some as much more demanding and larger pro-
gramming exercises.

The thought exercises are meant for self study and they can be used to check
that the contents of the chapter were understood. The programming exercises are
meant to be possible assignments on operating system project courses.

The exercises look like this:

1.1. This is a self study exercise.

Ï 1.2. This is a programming assignment. They are indicated with a bold exercise
number and a keyboard symbol.

1.5 Contact Information

Latest versions of BUENOS and YAMS can be downloaded from the project home-page
at:

http://www.niksula.hut.fi/u/buenos/

Authors can be contacted (mainly for improvement suggestions and bug reports
please) through the mailing list buenos@cs.hut.fi. Currently there is no publicly
available mailing list to subscribe, but one may be created if needed.

http://www.niksula.hut.fi/u/buenos/

Chapter 2

Using Buenos

2.1 Installation and Requirements

The BUENOS system requires the following software to run:

• YAMS machine simulator, version 1.3.0 or above1

• GNU Binutils for mips-elf target

• GNU GCC cross-compiler for mips-elf target

• GNU Make

First you have to set up the YAMS machine simulator. From YAMS documentation
you can find instructions on how to set up Binutils and GCC cross-compiler.

After the required software is installed installing BUENOS is straightforward: you
simply extract the BUENOS distribution tar-file to some directory.

2.2 Compilation

You can compile the skeleton system by invoking gmake in the main directory of
the BUENOS.

After compiling the system, you should have a binary named buenos in the main
directory.

2.3 Booting the System

After the system has been properly built, you can start YAMS with BUENOS binary
by invoking

yams buenos

at the command prompt. If you want to give boot arguments to the system, see
Appendix A.

If you are using the default YAMS configuration that is shipped with BUENOS,
you have to start the yamst terminal tool before invoking yams. The terminal tool
provides the other end-point of the yams terminal simulation. To start yamst:

yamst -lu tty0.socket

in another terminal (e.g. in another XTerm window).

1A previous version of YAMS can also be used if the output format is set to “binary” in the
linker script ld.script

2.4. COMPILING USERLAND PROGRAMS 5

2.4 Compiling Userland Programs

Userland programs are compiled using the same cross-compiler that is used for
compiling BUENOS. To run compiled programs they need to be copied to a YAMS disk,
where BUENOS can find them. TFS-filesystem (see section 8.4) is implemented and
a tool (see section 2.6) is provided to copy binaries from host filesystem to BUENOS

filesystem. To compile userland binaries go to the userland directory tests/ and
invoke gmake.

2.5 Using the Makefiles

BUENOS has two makefiles that are used to build the binaries needed by BUENOS.
The system makefile builds the BUENOS binary and the submission archive needed
to submit the exercises for reviewing. This makefile is in the BUENOS main directory
and is called Makefile. The other makefile is the makefile responsible for building
the userland binaries. This makefile is in the tests/ directory.

2.5.1 System Makefile

BUENOS uses somewhat unorthodox monolithic makefile. The system is based on
Peter Miller’s paper [Miller]. BUENOS is divided to modules that correspond to the
directory structure of the source code tree (see section 3.1).

The files in the module directories are built to BUENOS binary. These module
directories have a file called module.mk that contains the name of the module and
list of the files included from this module. So, for example, the module.mk in the
lib directory:

Makefile for the lib module

Set the module name

MODULE := lib

FILES := libc.c xprintf.c rand.S bitmap.c debug.c

SRC += $(patsubst %, $(MODULE)/%, $(FILES))

If you add files to your system, you have to modify only the FILES variable.
There should be no need to change anything else.

The main makefile is in the main directory and named Makefile. There are few
features in the Makefile that you have to be aware of. In the unlikely event that you
wish to add a new module (directory) to the system, you have to modify the MODULES
variable by extending it with the module name. Remember that this name must be
same as the directory where the module is. When you do your exercises, you have
to wrap them with CHANGED n C-Preprocessor variables. You can define these
variables by modifying the CHANGEDFLAGS variable. The variable IGNOREDREGEX is
used when you build your submission archive on returning your assignment. The
variable contains a regular expression pattern with which the matching files are
filtered out from the actual submission archive.

The following targets can be built by the system makefile:

all

The default, builds the BUENOS binary and the tfstool.

util/tfstool

Build the tfstool utility.

6 CHAPTER 2. USING BUENOS

clean

Clean the compilation files.

real-clean

Clean also the depedency files.

submit-archive PHASE=n

Builds submit-n.tar.gz in the parent directory of the main buenos directory.
The variable n indicates the submission round number (default is 1).

2.5.2 Userland Makefile

To build userland binaries go to the tests/ subdirectory and invoke gmake. There
are no special targets and the makefile is organised so that every binary is built.
If you wish to add your own binaries to the makefile, add your source files to the
SOURCES variable at the beginning of the makefile.

2.6 Using Trivial Filesystem

For easy testing of BUENOS, some method is needed to transfer files to the filesystem
in BUENOS. The Unix based utility program, tfstool, which is shipped with BUENOS,
achieves this goal. tfstool can be used to create a Trivial Filesystem (TFS, see
section 8.4 for more information about TFS) to a given file, to examine the contents
of a file containing TFS and to transfer files to the TFS. BUENOS implementation
of TFS does not include a way to initialize the filesystem so using tfstool is the
only way to create a new TFS. tfstool is also used to move userland binaries to
TFS. When you write your own filesystem to BUENOS, you might find it helpful to
leave TFS intact. This way you can still use tfstool to transfer files to the BUENOS
system without writing another utility for your own filesystem.

The implementation of the tfstool is provided in the util/ directory. The
BUENOS makefile can be used to compile it. Note that tfstool is compiled with the
native compiler, not the cross-compiler used to compile BUENOS. The implementation
takes care of byte-order conversion if needed.

To get a summary of the arguments that tfstool accepts you may run it without
arguments. The accepted commands are also explained below:

create filename size volume-name

Create a new TFS to file filename. The total size of the file system will
be size 512-byte blocks. Note that the three first blocks are needed for the
TFS header, the master directory and the block allocation table and therefore
the minimum size for the disk is 3. The created volume will have the name
volume-name.

Note that the number of blocks must be the same as the setting in yams.conf

list filename

List the files found in the TFS residing in filename.

write filename local-filename [TFS-filename]

Write a file from the local system (local-filename) to the TFS residing in the
file filename. The optional fourth argument specifies the filename in TFS. If
not given, local-filename will be used.

2.7. STARTING PROCESSES 7

Note that you probably want to give a TFS filename, since otherwise you end
up with a TFS volume with files named like tests/foobar, which can cause
confusion since TFS does not support directories.

read filename TFS-filename [local-filename]

Read a file (TFS-filename) from TFS residing in the file filename to the lo-
cal system. The optional fourth argument specifies the filename in the local
system. If not given, the TFS-filename will be used.

delete filename TFS-filename

Delete the file with name TFS-filename from the TFS residing in the file
filename.

2.7 Starting Processes

To start a userland process in BUENOS you have to

1. have buenos kernel binary (compile if it doesn’t already exist).

2. have the userland binary (compile if it doesn’t exist).

3. have a filesystem disk image (use tfstool to create this).

4. copy the userland binary with tfstool to the file system image.

5. boot the system with proper boot parameters (see Appendix A).

BUENOS is shipped with simple userland binary halt which invokes the only
already implemented system call halt. Here is an example of how to compile
BUENOS, install the userland binary and boot the system.

cd buenos

gmake

gmake -C tests/

util/tfstool create store.file 2048 disk1

util/tfstool write store.file tests/halt halt

yamst -lu tty0.socket # (in another window, socket is in the main dir)

yams buenos ’initprog=[disk1]halt’

After running the above commands the BUENOS output should go to the win-
dow where you started yamst. The halt program merely shutdowns the sys-
tem, thus YAMS should exit with the message "YAMS running...Shutting down

by software request".

Chapter 3

Kernel Overview

An operating system kernel is the core of any OS. The kernel acts as a glue between
userland processes and system hardware providing an illusion of exclusive access to
system resources. Each userland program is run in a private sandbox and processes
should be able to interact only through well defined means (system calls).

The BUENOS kernel is threaded and can use multiple CPUs. The kernel provides
threading and synchronization primitives. Several device drivers for the simulated
devices of YAMS are also provided. Memory handling in the kernel is quite primitive
as most virtual memory features are left as exercises. The system has a simple
filesystem and support for multiple filesystems. Packet delivery networking is also
supported, but no driver for the network interface is provided.

Userland programs are somewhat supported, but proper system call handling as
well as process bookkeeping are left as exercises.

For an introduction on concepts of this chapter, read either [Tanenbaum] p.
20–48 or [Stallings] p. 10–31, 48–51 and 54–76.

3.1 Directory Structure

The BUENOS source code files that make up one module are located in the same
directory. The directories and their contents are as follows:

init/

Kernel initialization and entry point. This directory contains the func-
tions that BUENOS will execute first when it is booted. (See chapter 11 and
Appendix A.)

kernel/

Thread handling, context switching, scheduling and synchronization. Also
various core functions used in the BUENOS kernel reside here (i.e. kernel panic,
kmalloc). (See chapter 4 and chapter 5.)

proc/

Userland processes. Starting of new userland processes, loading userland bina-
ries and handling exceptions and system calls from userland. (See chapter 6.)

vm/

Virtual memory subsystem. Managing the available physical memory and
page tables. (See chapter 7.)

3.2. KERNEL ARCHITECTURE 9

fs/

Filesystem(s). (See chapter 8.)

net/

Networking subsystem. (See chapter 9.)

drivers/

Low level device drivers and their interfaces. (See chapter 10.)

lib/

Miscellaneous library code (i.e. string handling, random number generation).

tests/

Userland test programs. These are not part of the kernel. They can be used
to test the userland implementation of BUENOS. (See chapter 6.)

util/

UNIX utilities for BUENOS usage. tfstool resides here. (See section 2.6.)

doc/

This document.

3.2 Kernel Architecture

While aiming for simplicity, the BUENOS kernel is still a quite complicated piece
of software. The kernel is divided into many separate modules, each stored in a
different directory as was seen above.

To understand how the kernel is built, we must first see what it actually does.
The kernel works between userland processes and machine hardware to provide
services for processes. It is also responsible for providing the userland processes
a private sandbox in which to run. Further, the kernel also provides various high
level services such as filesystems and networking which act on top of the raw device
drivers.

A simplified view of the BUENOS kernel can be seen in Figure 3.1. At the top
of the picture lies the userland and at the bottom is the machine hardware. Nei-
ther of these are part of the kernel, they just provide the context in which the
kernel operates. The userland/kernel boundary as well as the hardware/software
(hardware/kernel) interface are also marked in the picture.

On the kernel side of these boundaries lies the important interface code. At
the top, we can see the system call interface, which among other userland related
functionality is documented in chapter 6. The system call interface is a set of
functions which can be called from userland programs1. These functions can then
call almost any function inside the kernel to implement the required functionality.
Kernel functions cannot be called directly from userland programs to protect kernel
integrity and make sure that the userland sandbox doesn’t leak.

On the bottom boundary are the device drivers. Device drivers are pieces of code
which know how to use a particular piece of hardware. Device drivers are usually
divided into two parts: the top and bottom halves. The bottom half of a device
driver is an independent piece of code which is run outside the kernel threading
system whenever the hardware generates an interrupt (this piece of code is called

1System calls are important part of any OS. Try reading manual pages of fork(2), wait(2),
exec(2), read(2), write(2), open(2) and close(2) in any Unix system for an example of the real
thing.

10 CHAPTER 3. KERNEL OVERVIEW

Packet Oriented ProtocolVirtual File System

Trivial File System

V
ir

tu
al

 m
em

or
y

Device drivers (top half)

Device drivers (bottom half)

Hardware

Network

Kernel services (threading, scheduling...)

System call interface

Userland
Userland/kernel boundary

BUENOS kernel

Hardware/software interface

Figure 3.1: BUENOS kernel overall architecture

an interrupt handler). The top half of the device driver is a set of functions which
can be called from within the kernel. The details of this, and description on how the
device driver halves communicate with each other are documented in chapter 10.

On top of the device drivers are various services which use device drivers. Two
examples can be seen in the picture: the filesystem and the networking. The
filesystem (see chapter 8) is actually accessed through a module called the virtual
filesystem (see section 8.3), which abstracts differences between different filesys-
tems. The filesystem itself uses a disk device driver to access its permanent storage
(the disk). Similarly the networking layer (see chapter 9), which uses network in-
terface driver(s), provides tools for sending and receiving network packets. The
packet oriented protocol module (POP, see section 9.2) uses the networking module
to provide socket and packet port (similar to UDP ports in the Internet Protocol)
functionality.

3.2.1 Threading

Now we have seen an overview of various kernel services, but we still don’t have
anything which can call these service functions. The core of any kernel, including
BUENOS, is its threading and context switching functionality. This functionality is
sometimes called a kernel by itself. Threading is provided by a threading library (see
chapter 4) in BUENOS. The threading system makes it possible to execute threads,
separate instances of program execution. Each thread runs independently of each
other, alternating their turns on the CPU(s). The context switching system is used
to switch one thread out of a CPU and to put a new one on it. Threads themselves
are unaware of these switches, unless they intentionally force themselves out of
execution (go to sleep).

Threads can be started by using the thread library. When starting a thread it
is given a function which it executes. When the function ends, the thread dies. The
thread can also commit suicide by explicitly killing itself. Threads cannot kill each
other, murders are not allowed in the kernel (see exercises below). Each userland

3.2. KERNEL ARCHITECTURE 11

program runs inside one thread. When the actual userland code is being run, the
thread cannot see the kernel memory, it can only access the system call layer.

Threads can be pre-empted at any point, both in kernel and in userland. Pre-
empting means that the thread is taken out of execution in favor of some other
thread. The only way to prevent pre-empting is to disable interrupts (which also
disables timer interrupts used to measure thread time-slices).

Since the kernel includes many data structures and many threads are run simul-
taneously (we can have multiple CPUs), all data has to be protected from other
threads. The protection can be done with exclusive access, achieved with various
synchronization mechanisms documented in chapter 5.

3.2.2 Virtual Memory

In the much referenced Figure 3.1, there was one more subsystem which hasn’t been
explained: the virtual memory (VM) subsystem. As the figure implies, it affects
the whole kernel, interacts with hardware and also with the userland.

The VM subsystem is responsible for all memory handling operations in the
kernel. Its main function is to provide an illusion of private memory spaces for
userland processes, but its services are also used in the kernel. Since memory can
be accessed from any part of the system, VM interacts directly with all system
components.

The physical memory usage in BUENOS can be seen in Figure 3.2. At the left
side of the figure, memory addresses can be seen. At the bottom is the beginning
of the system main memory (address zero) and at the top the end of the physical
memory.

The kernel uses part of this physical memory for its code (kernel image), inter-
rupt handling routines and data structures, including thread stacks. The rest of the
memory is at the mercy of the VM.

As in any modern hardware, memory pages (4096 byte regions in our case)
can be mapped in YAMS. The mapped addresses are also called virtual addresses.
Mapping means that certain memory addresses do not actually refer to physical
memory. Instead, they are references to a structure which maps these addresses to
the actual addresses. This makes it possible to provide the illusion of exclusive access
to userland processes. Every userland process has code at address 0x00001008, for
example. In reality this address is in the mapped address range and thus the code
is actually on a private physical memory page for each process.

For more information on the virtual memory system and particularly on the
various address ranges, see chapter 7.

3.2.3 Support for Multiple Processors

BUENOS is a multiprocessor operating system, with pre-emptive kernel threading.
All kernel functions are thread-safe (re-entrant) except for those that are used only
during the bootup process.

Most code explicitly concerning SMP support is found in the bootstrap code
(see chapter 11). Unlike in real systems, where usually only one processor starts at
boot and it is up to it to start the other processors, in YAMS all processors will start
executing code simultaneously and at the same address (0x80010000). To handle
this, the procedure described in chapter 11 is used.

Another place where the SMP support is directly evident is in the context switch
code, and in the code initializing data structures used by the context switching
code. Each processor must have its own stack when handling interrupts, and each
processor has its own current thread. To account for these, the context switching
code must know the processor on which it runs.

12 CHAPTER 3. KERNEL OVERVIEW

0x00010000

KERNEL_ENDS_HERE

static memory end

0x00000000

end of physical memory

Dynamic memory allocated using pagepool

Interrupt vectors

Stack for OS initialization code

BUENOS kernel image

Memory allocated by kmalloc

Figure 3.2: BUENOS memory usage. Addresses are physical addresses. Note that the
picture is not in scale.

3.3. KERNEL PROGRAMMING 13

Finally, a warning: implementing all virtual memory exercises on a multipro-
cessor machine can be hard. It is suggested that for VM exercises, only one CPU
is used2.

Otherwise, the SMP support should be completely transparent. Of course it
means that synchronization issues must be handled more carefully, but mostly ev-
erything works as it would on a single CPU system.

3.3 Kernel Programming

Kernel programming differs somewhat from programming user programs. This sec-
tion explains these differences and also introduces some conventions that have been
used with BUENOS.

3.3.1 Memory Usage

The most significant difference between kernel programming and programming of
user programs is memory usage. In the MIPS32 architecture, which YAMS emulates,
the memory is divided into segments . Kernel code can access all these segments
while user programs can only access the first segment called the user mapped seg-
ment. In this segment the first bit of the address is 0. If the first bit is 1, the
address belongs to one of the kernel segments and is not usable in userland. The
most important kernel segment in BUENOS is the kernel unmapped segment, where
addresses start with the bit sequence 100. These addresses point to physical mem-
ory locations. In kernel, most addresses are like this. More information about the
memory segments can be found in section 7.1.

When initializing the system, a function (kmalloc) is provided to allocate mem-
ory in arbitrary-size chunks. This memory is permanently allocated and cannot
be freed. Before initializing the virtual memory system kmalloc is used to allo-
cate memory. After the initialization of the virtual memory system kmalloc can no
longer be used. Instead, memory is allocated page by page from the virtual memory
system. These pages can be freed later.

3.3.2 Stacks and Contexts

A stack is needed always when running code that is written in C. The kernel provides
a valid stack for user programs so the programmer does not need to think about
this. In kernel, however, nobody else provides you with a valid stack. Every kernel
thread must have its own stack. In addition, every CPU must have an interrupt
stack because thread stacks cannot be easily used for interrupt processing. If a
kernel thread is associated with a user process, the user process must also have its
own stack. BUENOS already sets up kernel stacks and interrupt stacks appropriately.

Because the kernel and interrupt stacks are statically allocated, their size is
limited. This means that large structures and tables cannot be allocated from
stack. (The variables declared inside a function are stack-allocated.) Note also that
recursive functions allocate space from the stack for each recursion level. Deeply
recursive functions should thus not be used.

Code can be run in several different contexts. A context consists of a stack and
CPU register values. In the kernel there are two different contexts. Kernel threads
are run in a normal kernel context with the thread’s stack. Interrupt handling code
is run in an interrupt context with the CPU’s interrupt stack. These two contexts

2The reasons become evident when the inner details of the VM subsystem are covered later.
For the curious: the problem arises from the fact of having multiple TLBs, one for each CPU.
(The TLB is a piece of hardware used to map memory pages.)

14 CHAPTER 3. KERNEL OVERVIEW

differ in a fundamental way. In the kernel context the current context can be saved
and resumed later. Thus interrupts can be enabled and blocking operations can be
called. In the interrupt context this is not possible so interrupts must be disabled
and no blocking operations can be called. In addition, if a kernel thread is associated
with a userland process, it must also have a userland context.

3.3.3 Library Functions

BUENOS provides several library functions in the directory lib/. These include
functions for string processing and random number generation. These functions are
needed because standard C library cannot be linked with BUENOS. The prototypes
of these functions can be found in lib/libc.h.

3.3.4 Using a Console

In the kernel, reading from and writing to the console is done by using the polling
TTY driver. The kprintf and kwrite functions can be used to print informa-
tional messages to the user. Debug printing should be handled with the DEBUG

function. This way debug messages can be easily disabled later when they are no
longer needed. Userland console access should not be handled with these func-
tions. The interrupt driven TTY driver should be used instead. See the example
in init/main.c.

3.3.5 Busy Waiting

In the kernel, special attention has to be given to synchronization issues. Busy
waiting must be avoided whenever possible. The only place where busy waiting is
acceptable is the spinlock implementation, which is already done for you. Because
spinlocks use busy waiting, they should never be held for a long time.

3.3.6 Floating Point Numbers

YAMS does not support floating point numbers so they cannot be used in BUENOS

either. If an attempt to execute a floating point instruction is made, a co-processor
unusable exception will occur. (The floating point unit is co-processor 1 in MIPS32
architecture.)

3.3.7 Naming Conventions

Some special naming conventions have been used when programming BUENOS. These
might help you find a function or a variable when you need it. Functions are
generally named as filename function where filename is the name of the file
where the function resides and function tells what the function does. Variables
are named similarly filename variable.

3.3.8 Debug Printing

Sometimes it is usefull to be able to print debugging information from the kernel. A
function which uses the polling TTY driver is provided for such printing. Because
polling TTY driver is used, printing is possible from all parts of the kernel. Note
that printing with the polling driver slows the system down considerably and also
changes system timings which may cause trouble when debugging a SMP system.

EXERCISES 15

void DEBUG (char *debuglevelname, char *format, ...)

• If debuglevelname has been given to the kernel as a boot argument, prints
debug information. If not, ignores the debug printing.

• format and other arguments are given as for printf().

3.3.9 C Calling Conventions

Normally C compiler handles function calling conventions (mostly argument pass-
ing) transparently. Sometimes in kernel code the calling convention issues need to
be handled manually. Manual calling convention handling is needed when calling C
routines from a assembly program or when manipulating thread contexts in order
to pass arguments to starting functions.

Arguments are passed to all functions in MIPS argument registers A0, A1, A2
and A3. When more than 4 arguments are needed, the rest are passed in the stack.
The arguments are put into the stack so that the 1st argument is in the lowest
memory address.

There is one thing to note: the stack frame for arguments must always be
reserved, even when all arguments are passed in the argument registers. The frame
must have space for all arguments. Arguments which are passed in registers need
not to be copied into this reserved space.

3.3.10 Kernel Boot Arguments

YAMS virtual machine provides a way to pass boot arguments from the host oper-
ating system to the booted kernel. BUENOS supports these arguments. Please see
Appendix A for details.

Exercises

3.1. In BUENOS, a thread that is ready to be run will be run on whichever processor
first removes it from the scheduler’s ready list. This can cause the thread to
bounce from processor to processor on every timeslice. This behavior is also
present in real operating systems, e.g. Solaris. Why might this behavior not
be a good idea?

3.2. In BUENOS threads cannot kill each other. There are many reasons for this,
try to figure out as many as you can.

Chapter 4

Threading and Scheduling

This chapter describes the threading system implemented in BUENOS. The kernel
can run multiple threads and schedule them across any number of CPUs the system
happens to have.

The threading system contains three major parts: thread library, scheduler and
context switching code. Each of these components is thoroughly explained below
in their own sections.

The thread library contains functions for thread creation, running and finishing
(dying). It also implements the system wide table of threads.

Scheduler handles the allocation of CPU time for runnable threads.

Context switch code is executed when an exception (trap or interrupt) occurs.
Its purpose is to save and restore execution contexts (CPU register states, memory
mappings etc.) of threads.

The context switching part is the most complicated and most hardware depen-
dent part of the threading system. It is not necessary to understand it fully to be
able to understand the whole threading system. However, it is essential to see the
purpose of all these three parts.

For an introduction to these concepts, read either [Stallings] p. 108–123, 154–
161, 394–407 and 438–449 or [Tanenbaum] p. 81–100 and 132–145.

4.1 Threads

BUENOS kernel supports multiple simultaneously running threads. One thread can
be run on each available CPU at a given moment. Information on existing threads
is stored in a fixed size table thread table. The structure of the table is described
in detail in section 4.1.1.

Threads and thread table are handled through a collection of library functions,
that will do all necessary manipulation of the data structures. They will also take
care of concurrency. Thread handling functions are described in section 4.1.2.

State diagram of BUENOS threads is presented in Figure 4.1. States in detail are
described below:

• FREE indicates that this row in thread table is currently unused.

• RUNNING threads are currently on CPU. In case of multiple CPUs, several
threads may have this state.

• READY threads are on the scheduler’s ready list and can be switched to
RUNNING state.

4.1. THREADS 17

DYING RUNNING

READYNONREADYFREE

SLEEPING

Figure 4.1: BUENOS thread states and possible transitions

• SLEEPING threads are not on CPU and are in sleep queue. Sleeping threads
are waiting for some resource to be freed. When access to the resource is
granted, the thread is waken up and switched to READY state.

• NONREADY threads have been created, but are not yet marked to be
runnable. The state is switched to READY when the function thread run()

is called.

• DYING threads have cleaned themselves up, but are still on CPU. The sched-
uler should mark them FREE when encountered.

4.1.1 Thread Table

Thread table contains all necessary information about threads. This information
consists of:

• context of the thread, when it was running.

• state of the thread. The state is used mostly by the scheduler, when deciding
which thread will be run next.

• pagetable of the thread. Each thread will have its own virtual memory map-
pings, so also own pagetables are needed.

All records and datatypes of thread table are described in Table 4.1.
Thread table is a fixed size (compile time option) structure, which has one line

for each thread. Threads are referenced by thread IDs (TID t), which corresponds
to index to the thread table. The size of the table is defined in kernel/config.h

by definition CONFIG MAX THREADS.
The thread table is protected by a single spinlock (thread table slock). The

lock must be a spinlock, because it is used in contexts where threads cannot be
switched for waiting (eg. in scheduler).

The thread table is initialized by calling thread table init() function, which
will set all thread states to FREE.

4.1.2 Thread Library

Thread library provides functions for thread handling.

Thread Creation Functions

Threads can be manipulated by following functions implemented in kernel/thread.c:

18 CHAPTER 4. THREADING AND SCHEDULING

Type Name Explanation
context t * context Space for saving thread

context. Context consists of
all CPU registers, including
the program counter (PC)
and the stack pointer (SP).
This pointer always refers to
the thread’s stack area.

context t * user context Pointer to this thread’s
context in userland. Field is
NULL for kernel only
threads.

thread state t state The current state of the
thread. Valid values are:
FREE, RUNNING, READY,
SLEEPING, NONREADY and
DYING.

uint32 t sleeps on If nonzero, tells which
resource the thread is
sleeping on (waiting for).
Nonzero value also indicates
that the thread is in some list
in sleep queue. Note that the
thread might still be running
and in middle of the process
to go sleeping (in which case
its state is RUNNING.)

pagetable t * pagetable Pointer to the virtual
memory mapping for this
thread. This entry is NULL if
the thread does not have a
page table.

process id t process id Index to the process entry.
This field is currently unused,
but thread creation sets this
to a negative value.

TID t next Pointer to next thread in this
list. Used for forming lists of
threads (ready to run list,
sleep queue). If this is the
last thread of a list, the value
is negative.

uint32 t dummy alignment fill[9] This is needed because
thread table entries are
expected to be 64 bytes long
(by context switch code). If
new fields are added or old
ones are removed this
alignment should also be
corrected in a proper way.

Table 4.1: Fields in thread table record

4.1. THREADS 19

TID t thread create (void (*func)(uint32 t), uint32 t arg)

• Creates a new thread by allocating a slot from thread table. PC in this
thread’s context is set to the beginning of the func and parameters are saved
to the proper registers in context. The context is saved in the stack area of the
newly created thread. When the scheduler decides to run this thread, context
is restored and it looks like function func would have been called. The return
address of the context is set to beginning of the function thread finish.

• Returns the thread ID of the created thread. If the return value is negative,
thread could not be created. The possible reasons for failure are: full thread
table and virtual memory shortage.

• The argument arg is passed to the func which is called when the new thread
starts after a call to thread run().

void thread run (TID t t)

• Calls scheduler add ready(t), which sets the thread state to READY and
adds the thread to the ready-to-run list.

Self Manipulation Functions

The following functions can be used by a thread to manipulate itself:

void thread switch (void)

• Perform voluntary context switch. Scheduler will later add the thread to
ready to run list if the thread is not sleeping on something (sleeps on is
zero). Context switch is performed by causing the software interrupt 0 which
is handled the same way as the context switch. Interrupts are enabled before
raising the software interrupt, since otherwise the switch might not happen.
The interrupt state is restored before returning from this function.

• Note that there is also a macro called thread yield which points to this
function. Since yielding is mechanically equivalent to switching, the imple-
mentation is the same. The name yielding is used when the yield has no
actual effect, switching is used when something actually happens (thread goes
to sleep).

void thread finish (void)

• Commit suicide. The thread calling this function will terminate itself and free
its resources (stack and thread table entry). The thread marks its state to be
DYING. The row in thread table is later freed in the scheduler.

• If a pagetable has been reserved for this thread it must be freed before calling
thread finish.

TID t thread get current thread (void)

• Returns the TID of the calling thread.

kernel/thread.c,

kernel/thread.h

Thread library

kernel/ interrupt.s,

kernel/interrupt.h

Interrupt mask setting functions

20 CHAPTER 4. THREADING AND SCHEDULING

4.2 Scheduler

Scheduler is a piece of code that allocates CPU time for threads. The basic BUENOS

scheduler is pre-emptive and allocates CPU time in a round robin manner. Threads
do not have priorities. Even threads currently in kernel can be interrupted when
their time slice has been spent. This can be prevented by disabling interrupts.

The timeslice allocated for a thread is defined in kernel/config.h and the name
of the configuration variable is CONFIG SCHEDULER TIMESLICE. The value defines
how many CPU cycles a thread can use before it will be interrupted and next
thread will be selected for running. Timeslice includes the time spent in context
restoring, so it must be at least 250 cycles to guarantee that the thread will get at
least some real processing done. The actual timeslice length is determined randomly
and is at least the configured number of ticks, see Appendix A.

Scheduler works by maintaining a global scheduler current thread table of
current threads (one per CPU). It also has a list of ready threads, maintained in
the local list variable scheduler ready to run. The actual implementation of the
ready list is two indexes. One points to the beginning of the list in thread table and
the other to the end. A negative value in both head and tail indicates an empty
list.

The whole scheduler is locked by one spinlock to prevent multiple CPUs entering
the scheduler at the same time. Interrupts are always disabled when scheduler
is running, because it is called only from interrupt and exception handlers. The
spinlock used is thread table slock and it also controls the access to the thread
table.

Time ticks are handled by the CPU co-processor 0 counter mechanism. A timer
interrupt is generated when the counter meets the compare value (time slice is
over). The master interrupt handler will call the scheduler when a timer interrupt
has occured. Scheduler will also be called if software interrupt 0 occured (thread
gave up its timeslice) or when any interrupt occurs and idle thread is currently
running on the current CPU. A new timer interrupt is scheduled after the scheduler
has selected a new running thread.

When the scheduler is entered, the current thread is checked. If the current
thread’s state is marked as DYING or RUNNING and sleeping on something (sleeps on

is nonzero, see section 5.2) the current thread is not placed on the ready-to-run list,
but its state is updated. For DYING threads the state is changed to FREE and for
RUNNING (and sleeping) threads to SLEEPING. In all other cases the thread is placed
at the end of the ready-to-run list and its state is updated to READY.

void scheduler schedule (void)

• Selects the next thread to run. Updates scheduler current thread for cur-
rent CPU. This must not be called from any thread, only from the interrupt
handler.

• Implementation:

1. Lock the thread table by thread table slock spinlock (interrupts must
be off when calling this function, so they are not explicitly disabled).

2. If the current thread state is DYING, mark it FREE. This releases the
thread table entry for reuse.

3. Else, if the thread is sleeping on something, just mark the state as Sleep-
ing. The thread has placed itself on sleep queue before explicitly switch-
ing to scheduler.

4.3. CONTEXT SWITCH 21

4. Else, add the current thread to the end of scheduler ready to run and
mark it READY. Idle thread (thread 0) is never added to this list.

5. Remove the first thread from scheduler ready to run. This might be
the same thread placed on the list in the previous step. The function that
will return the removed thread will return 0 (idle thread) if the ready to
run list was empty.

6. Mark the removed thread as RUNNING.

7. Release the thread table spinlock.

8. Set the removed thread as the current thread for this CPU.

9. Set the hardware timer to generate an interrupt after configured number
of ticks.

Threads can be added to the scheduler’s ready list by calling the following func-
tion. This function is called only from the thread library function thread run and
from the synchronization library.

void scheduler add ready (TID t t)

• Adds the thread t to the end of the ready-to-run list.

• Implementation:

1. Lock the thread table (interrupts off, take thread table spinlock).

2. Add t to the end of the list scheduler ready to run.

3. Release the thread table spinlock, restore interrupt status.

4.2.1 Idle thread

The idle thread, TID 0 (or IDLE THREAD TID), is a special case of a thread. Its
context is not saved (and must not be saved on a SMP machine) and it can be
running simultaneously on many CPUs. When restoring its context, only PC needs
to be restored. The idle thread will enter a neverending waiting loop whenever run.
Note that since the thread is used simultaneously on all CPUs, the code cannot do
anything useful!

kernel/scheduler.c,

kernel/scheduler.h

Scheduler

4.3 Context Switch

Context switching is traditionally the most bizarre piece of code in most operating
system implementations. There are many reasons for this. One of them is that
the context switch code must be written in assembler and not in any high level
language. Another reason is the fact that it might be hard to follow the execution
when the context of execution changes. Unfortunately context switching is also the
hardest to understand of all parts of BUENOS. Luckily, it is not necessary to fully
comprehend it to be able to understand the whole system.

Before going into details we must define what is actually meant by a context
or context switching. In the scope of the threading system, a context means some
particular computation process (note that this is not the same thing as userland
process). This piece of code is mostly unaware that any other code is being run on

22 CHAPTER 4. THREADING AND SCHEDULING

the same CPU. It is the responsibility of the threading system to provide an illusion
for other pieces of code that they run in an isolated environment.

Thus when the need arises to give CPU time to some other part of the system
the currently running code (thread) is interrupted. This might happen for three
distinct reasons. An exception might have occured in kernel mode and the cause of
the exception needs to be examined. An exception can also have occured in user
mode in which case the thread wishes to switch from its user context to kernel
context. An interrupt might have occured and CPU time needs to be given to the
interrupt handler. This case covers also the special case of a timer interrupt. The
timer interrupt is served in an interrupt handler and after the handler returns a new
piece of code (thread) is running and the old is waiting for its turn to get the CPU.
To be able to do all this transparently, the system needs to save state information
on the interrupted thread. This state information is the context of that thread and
in BUENOS this information is saved in the kernel stack area of the thread.

The exact details of the contents of thread contexts are described later, but the
most important part of the data is the contents of the CPU registers. The values of
the registers are saved and those of the new thread are put into the CPU registers.
Since the registers contain the program counter and the stack pointer, both threads
can be unaware of each other. The process of saving the state of one thread and
restoring the state of some other thread is called context switching.

It should be noted that threads are not the only entities having execution con-
texts. Interrupt handler(s) needs to have its own private context which can be used
at any time when an interrupt occurs. All context switching and interrupt han-
dling are done in the context of interrupt handling, by using a separate stack area
reserved for serving interrupts. The high level interrupt handlers are described in
detail in section 10.1.

4.3.1 Interrupt Vectors

First thing to do in order to have proper interrupt/exception handling is to set up
the MIPS interrupt/exception handler vectors. This is done during the boot up.
Also, in boot, interrupt handler stack kernel interrupt stacks must be allocated
for each CPU present in the YAMS simulator.

A few words on the difference of interrupts and exceptions; interrupt is a co-
ordinated interruption of execution caused by raise of either hardware or software
interrupt line. Interrupts can be blocked by setting an appropriate interrupt mask.
Exceptions and traps are caused by CPU instructions either on purpose (traps to
syscalls), as a side effect (TLB miss) or by accident (divide by zero). Exceptions
cannot be blocked.

All interrupts and exceptions transfer control to three special Interrupt Vector
Areas. These areas are located in memory addresses 0x80000000, 0x80000180 and
0x80000200. The maximum size of these areas is 32 bytes, so each of them can fit
only 8 instructions.

It is obvious that the real interrupt handling code cannot be written to area of
size of 8 instructions. Therefore, these interrupt vector areas contain only a jump
to an assembler routine labeled cswitch switch and a delay slot instruction. This
code is labeled as cswitch vector code. The label is needed so that the code can
be injected into the interrupt handler vector area. The size of this code is 8 words
(instructions) or 32 bytes1.

1The size of interrupt vector area is mandated by the location of the next interrupt vector. The
vector size is cleverly chosen by hardware designers to be long enough to contain TLB refilling
code. We avoid that (good, efficient and realistic) solution to make it possible to handle TLB
misses in C.

4.3. CONTEXT SWITCH 23

The assembly code in the interrupt vector is just a jump to cswitch switch-
function.

Now, the problem is, how to inject the above assembly code to its proper place
in the interrupt handler vector. This is done by finding the interrupt handler code
address from label cswitch vector code and copying two words from there to the
memory areas 0x80000000, 0x80000180 and 0x80000200. This code is written in C
and is a part of interrupt init() function in kernel/interrupt.c.

4.3.2 Context Switching Code

Actual context switch related functions are performed in the cswitch switch code.
This code is written in assembly language because the interrupt handler stack is
not yet usable and therefore we cannot use C-functions. We also must be careful
that we don’t use any registers which are not saved.

The general processing of a context switch is the same for all three causes (kernel
mode exception, user mode exception and interrupt) for entering the context switch
code. It consists of the following actions (in this order):

Save current context. Data is saved from processor to the context t data struc-
ture in the kernel stack area of the currently running thread. The structure
of the current thread is pointed by global variable scheduler current thread

(see section 4.2). The current thread is found from scheduler current thread-
table, indexed by CPU number. The following things are saved:

• Co-processor 0 EPC register contains Program Counter value before
jump to interrupt handler.

• All CPU registers including hi and lo except k0 and k1.

• Status register (Co-processor 0) fields UM (bit 4), IM0–IM7 (bits 8–15),
IE (bit 0). This saves the interrupt mask of the current thread and
remembers whether we came from userland (UM bit enabled) or from
kernel (UM bit is zero).

• Link to the context t saved to the thread structure. Thus when nested
exceptions or interrupts occur, we can unfold this list one reference per
context switch and finally come back to the actual running context of
the thread.

Initialize stack. A stack is needed to be able to call C functions. If we are going to
handle interrupts and/or reschedule threads, we set up stack in the interrupt
stack area. In other cases we use thread’s kernel stack.

Call the appropriate function to handle the exception/interrupt This is
a C function which will take care of the interrupt/exception processing.

Restore new context. After the interrupt/exception is handled, context is re-
stored from scheduler current thread. Note that in interrupt handle

the scheduler might have changed the currently running thread to something
else than the one we just saved. Therefore we might start running a new
thread at this point.

Return with ERET PC is restored from EPC by this special machine instruc-
tion. The EXL bit preventing interrupts is also cleared by the CPU.

In the case of an interrupt, the stack that is initialized is the interrupt context
stack. Interrupt stack pointers are defined in the table kernel interrupt stacks.
Table is indexed by CPU number. The stack pointer is set to point to the interrupt

24 CHAPTER 4. THREADING AND SCHEDULING

stack reserved for this CPU. Since we don’t have nested interrupts, only one stack
area per CPU is sufficient. Then the function interrupt handle is called. This
C-function will call all registered interrupt handlers and the scheduler, when appro-
priate. The function is implemented in kernel/interrupt.c. Last the context is
restored from current thread’s context.

We use interrupt stacks also for scheduler running, because we cannot continue
to run in a stack of some other thread after the context has been switched. If
we used the kernel stacks of threads, some other CPU might have picked up our
previous thread and run it and thus mess up our stack.

If an exception has occured in kernel mode, it is handled mostly the same way
as an interrupt except that instead of calling the function interrupt handle, the
function kernel exception handle is called. The only other difference is that we
use the kernel stack area of the current thread instead of the interrupt stack area.
The handling function is implemented in kernel/exception.c.

When an exception occurs in user mode, the thread wishes to switch from its
user context to kernel context. The stack is initialized to the current position of
the kernel stack of this thread. The stack information is dug from previous context
information, usually from the initial context of the thread.

Because the thread is switching from user mode to kernel mode the base pro-
cessing mode of the processor (indicated by the UM bit in Status register) is
changed to kernel mode. The user mode exceptions are handled by the function
user exception handle, which is implemented in proc/exception.c. This func-
tion will enable interrupts by setting the EXL bit in the Status register and handle
the user mode exception. After returning from this function the context is restored
normally from saved context information.

The basic structure of the cswitch switch is thus the following2:

.set noreorder

.set nomacro

cswitch_switch:

<figure out the appropriate context_t structure>

j cswitch_context_save

nop

<init stack> # After this we can call C-functions

<change base mode if appropriate>

<set up arguments to *_hanlde>

<call *_handle>

<figure out the appropriate context_t structure>

j cswitch_context_restore

nop

eret

.set reorder

.set macro

Note that before the context is saved, we can only use the registers k0 and k1,
which are reserved for the kernel by MIPS calling convention.

4.3.3 Thread Contexts

The context of a thread is saved in the context t structure, which is usually ref-
erenced by a pointer in thread t in thread table (see section 4.1.1). Contexts are

2We need to disable GNU Assembler instruction reordering and macro instruction usage because
their interpretation needs some special registers that are not yet saved.

4.4. EXCEPTION PROCESSING IN KERNEL MODE 25

always stored in the stack of the corresponding thread. It has the following fields:

Type Name Explanation
uint32 t[29] cpu regs CPU registers except zero, k0 and k1.

That makes 29 registers.
uint32 t hi The hi register.
uint32 t lo The lo register.
uint32 t pc PC register which can be obtained from

the CP0 register EPC.
uint32 t status The saved bits of the CP0 status register.
void * prev context Link to previous saved context. This field

links saved contexts up to the point when
the thread was initially started.

kernel/cswitch.S cswitch vector code, cswitch switch,
cswitch context save,
cswitch context restore

kernel/interrupt.c interrupt handle

kernel/cswitch.h context t

4.4 Exception Processing in Kernel Mode

When an exception occurs in kernel mode, the function kernel exception handle

is called. The cause of an exception in kernel might be a TLB miss or there might
be a bug in the kernel code.

void kernel exception handle (int exception)

• This function is called when an exception has occured in kernel mode. Handles
the given exception.

• If kernel uses mapped addresses, this function should handle TLB exceptions.
Other exceptions indicate that there is some kind of bug in the kernel code.

• Implementation:

1. Panic with a message telling which exception has occured.

kernel/exception.h,

kernel/exception.c

kernel exception handle

Exercises

4.1. The context switching code is written wholly in assembler. Why can it not
be implemented in C? The code uses CPU registers k0 and k1, but it doesn’t
touch other registers before the thread context has been saved. Why k0 and
k1 can be used in the code?

26 CHAPTER 4. THREADING AND SCHEDULING

4.2. The current exception system in BUENOS doesn’t allow interrupts to occur
when an interrupt handler is running. What modifications to the system are
needed to implement a hierarchical interrupt scheme where higher priority
interrupts can occur while lower priority ones are being served?

Ï 4.3. The current BUENOS scheduler doesn’t have any priority handling for threads.
Implement a priority scheduler in which all threads can be given a priority
value. Higher priority threads will get more processor time than lower priority
threads. Your solution should guarantee that no thread will starve (get no
processor time at all).

4.4. After you have implemented your priority scheduler, you might have noticed
an effect known as Priority inversion. This effect is caused by a situation
where a high priority thread will block and wait for a resource currently held
by a low priority thread. Since there might also be other threads in the system
which have higher priority than the thread holding the resource, it may not
get any CPU time. Therefore also the high priority thread is hindered as if it
had a low priority. How can this problem be prevented?

Chapter 5

Synchronization Mechanisms

The BUENOS kernel has many synchronization primitives which can be used to pro-
tect data integrity. These mechanisms are interrupt disabling, spinlocks, the sleep
queue and semaphores. Locks and condition variables are left as an exercise.

For an introduction on synchronization concepts, read either [Tanenbaum] p.
100–132 and 159–164 or [Stallings] p. 198–253 and 266–274.

5.1 Spinlocks

A spinlock is the most basic, low-level synchronization primitive for multiprocessor
systems. For a uniprocessor system, it is sufficient to disable interrupts to achieve
low-level sychronization (a nonpre-emptible code region). When there are multi-
ple processors, this is obviously not enough, since the other processors may still
interfere. To achieve low-level interprocessor synchronization, interrupts must be
disabled and a spinlock must be acquired.

Spinlock acquisition process is very simple: it will repeatedly check the lock value
until it is free (“spin”), then set the value to taken. This will of course completely
tie up the processor (since interrupts are disabled), so code regions protected by a
spinlock should be as short as possible.

Disabling interrupts and spinlock acquiring can (and must) be used in interrupt
handlers since they must never cause a sleeping block.

In BUENOS, the spinlock data type is a signed integer containing the value of the
lock. Zero indicates that the lock is currently free. Positive values mean that the
lock is reserved. The exact value can be anything, as long as it is positive. The
value must never be negative (reserved for future extensions).

Due to the nature of the spinlock implementation, spinlocks should never be
moved around in memory. In practice this means that they must reside on the kernel
unmapped segment which is not part of the virtual memory page pool. This should
not be a problem, since spinlocks are purely a kernel synchronization primitive.

5.1.1 LL and SC Instructions

To achieve safe synchronization for spinlock implementation in a multiprocessor
system, a version of a test-and-set machine instruction is needed. On a MIPS archi-
tecture, this is the LL/SC instruction pair. The LL (load linked word) instruction
loads a word from the specified memory address. This marks the beginning of
a RMW (read-modify-write) sequence for that processor. The RMW sequence is
“broken” if a memory write to the LL address is performed by any processor. If the
RMW sequence was not broken, the SC (store conditional word) instruction will

28 CHAPTER 5. SYNCHRONIZATION MECHANISMS

store a register value to the address given to it (the LL address) and set the register
to 1. If the RMW sequence was broken, SC will not write to memory and sets the
register to 0.

5.1.2 Spinlock Implementation

The following functions are available to utilize spinlocks. Note that interrupts must
always be disabled when a spinlock is held, otherwise Bad Things will happen (see
exercises below).

void spinlock acquire (spinlock t *slock)

• Acquire given spinlock. While waiting for lock to be free, spin.

1. LL the address slock.

2. Test if the value is zero. If not, jump to case 1.

3. SC the address to one. If fails, jump to case 1.

void spinlock release (spinlock t *slock)

• Free the given spinlock.

1. Write zero to the address slock.

void spinlock reset (spinlock t *slock)

• Initializes the given spinlock to be free.

• Implementation:

1. Set spinlock value to zero. This is actually an alias to spinlock release.

5.2 Sleep Queue

Thread level synchronization in kernel requires some way for threads to sleep and
wait for a resource, like a semaphore, to be available. To avoid the need to imple-
ment the sleeping mechanism separately for each such resource, a general sleeping
mechanism called sleep queue is implemented in BUENOS.

5.2.1 Using the Sleep Queue

The sleep queue enables a thread to wait for a specific resource and to be later
woken up by some other thread which has released the resource. The resource, on
which the thread is sleeping, is identified by an address. This address must be from
the kernel unmapped segment so that the different threads agree on it.

There are three functions which threads can call to manipulate the sleep queue
structure. The function sleepq add is called by a thread that wishes to wait for a
resource. The functions sleepq wake and sleepq wake all are called by a thread
that wishes to wake up another thread. When using these functions, careful thought
has to be given to the synchronization issues involved. The resource on which
threads wish to sleep is usually protected by a spinlock. Before calling the sleep
queue functions interrupts must be disabled and the resource spinlock must be
acquired. This ensures that the thread wishing to go to sleep will indeed be in the
sleep queue before another thread attempts to wake it up.

5.2. SLEEP QUEUE 29

1 Disable interrupts

2 Acquire the resource spinlock

3 While we want to sleep:

4 sleepq_add(resource)

5 Release the resource spinlock

6 thread_switch()

7 Acquire the resource spinlock

8 EndWhile

9 Do your duty with the resource

10 Release the resource spinlock

11 Restore the interrupt mask

Figure 5.1: Code executed by a thread wishing to go to sleep.

1 Disable interrupts

2 Acquire the resource spinlock

3 Do your duty with the resource

4 If wishing to wake up something

5 sleepq_wake(resource) or sleepq_wake_all(resource)

6 EndIf

7 Release the resource spinlock

8 Restore the interrupt mask

Figure 5.2: Code executed by a thread wishing to wake up another thread.

If the resource spinlock is not held while calling the sleep queue functions, the
following scenario can happen. One thread concludes that it wishes to go to sleep
and calls sleepq add. Before this call is serviced, another thread ends its business
with the resource and calls sleepq wake. No threads are found in the sleep queue
so no thread is woken up. Now the call to sleepq add by the first thread is serviced
and the first thread goes to sleep. Thus in the end the resource is free, but the first
thread is still waiting for it.

The function sleepq add does not cause the thread to actually go to sleep.
It merely inserts the thread into the sleep queue. The thread needs to call
thread switch to release the CPU. The scheduler will then notice that the thread
is waiting for something and change the state of the thread to SLEEPING. This
mechanism is needed because the thread needs to release the resource spinlock
before actually going to sleep. Because the thread calling sleepq add holds a
spinlock, it has also disabled interrupts. Interrupts also need to be disabled to
make sure that the thread is not switch out and put to sleep before it is ready to
do so. Thus the sleepq add function checks that interrupts are disabled.

The following is an example of the correct usage of the sleep queue. The thread
wishing to go to sleep executes the code shown in the Figure 5.1. Lines 1 and 2
ensure protection from other threads using this same resource. The while-loop on
line 3 is necessary if it is possible that some other thread can also get the resource.
Because we need to release the resource spinlock in the while loop body, another
thread might acquire the resource first. The resource spinlock is released on line
5 because the thread cannot hold it while it is not on CPU. Line 6 will make the
scheduler choose another thread to run.

The thread, or interrupt handler, wishing to wake up a thread executes the code
shown in the Figure 5.2.

30 CHAPTER 5. SYNCHRONIZATION MECHANISMS

30 1 2 4 126

next:sleeps_on: 128 next:sleeps_on: 1 next:sleeps_on: 128

next:sleeps_on: 257 next:sleeps_on: 257

Figure 5.3: Linked lists in sleep queue.

5.2.2 How the Sleep Queue is Implemented

Sleep queue is a structure which contains linked lists of threads waiting for a
specific resource. The actual structure is implemented as a static size hashtable
sleepq hashtable with separate chaining. The chains are implemented using the
thread table t’s next field, which is also used for the linked lists (all lists with
same hash value are linked in the same list, see the Figure 5.3). New threads are
always added to the end of the list and threads are released from the beginning of
the chain. This makes the wakeup operation run in shorter time and it is desirable
to have it this way, because it is often run in device driver code. Also the first
thread in the chain is not necessary the thread we want to wake up.

To protect the hashtable from concurrent access, it is protected by a spinlock
sleepq slock . This lock must be held and interrupts must be disabled in all sleep
queue operations.

Threads are referenced in the sleep queue system by the resource they are waiting
for (sleeping on). The information is stored in thread table t structure’s field
sleeps on . Zero in this field indicates that the thread is not waiting for anything.
The resource waiting is in practice done by waiting for the address of a resource (a
semaphore struct, for example).

Sleep queue functions:

void sleepq add (void *resource)

• Adds the currently running thread into the sleep queue. The thread is added
to the sleep queue hashtable. The thread does not go to sleep when calling
this function. An explicit call to thread switch is needed. The thread will
sleep on the given resource, which is identified by its address.

• Implementation:

1. Assert that interrupts are disabled. Interrupts need to be disabled be-
cause the thread holds a spinlock and because otherwise the thread can
be put to sleep by the scheduler before it is actually ready to do so.

2. Set the current thread’s sleeps on field to the resource.

3. Lock the sleep queue structure.

4. Add the thread to the queue’s end by hashing the address of given re-
source.

5. Unlock the sleep queue structure.

void sleepq wake (void *resource)

5.3. SEMAPHORES 31

• Wakes the first thread waiting for the given resource from the queue. If no
threads are waiting for the given resource, do nothing.

• Implementation:

1. Disable interrupts.

2. Lock the sleep queue structure.

3. Find the first thread waiting for the given resource by hashing the re-
source address and walking through the chain.

4. Remove the found thread from the sleep queue hashtable.

5. Lock the thread table.

6. Set sleeps on to zero on the found thread.

7. If the thread is sleeping, add it to the scheduler’s ready list by calling
scheduler add to ready list.

8. Unlock the thread table.

9. Unlock the sleep queue structure.

10. Restore the interrupt mask.

void sleepq wake all (void *resource)

• Exactly like sleepq wake, but wakes up all threads which are waiting for the
given resource.

The sleep queue system is initialized in the boot sequence by calling the following
function:

void sleepq init (void)

• Sets all hashtable values to -1 (free).

kernel/sleepq.h,

kernel/sleepq.c

Sleep queue operations

5.3 Semaphores

Interrupt disabling, spinlocks and sleep queue provide the low level syncronization
mechanisms in BUENOS. However, these methods have their limitations; they are
cumbersome to use and thus error prone and they require uninterrupted operations
when doing processing on a locked resource. Semaphores are higher level synchro-
nization mechanisms which solve these issues.

A semaphore can be seen as a variable with an integer value. Three different
operations are defined on a conceptual semaphore:

1. A semaphore may be initialized to any non-negative value.

2. The P-operation1 decrements the value of the semaphore. If the value becomes
negative, the calling thread will block (sleep) and wait until awakened by some
other thread in V-operation. (semaphore P())

1The traditional names V and P for operations are the initials of Dutch words for test (proberen)
and increment (verhogen).

32 CHAPTER 5. SYNCHRONIZATION MECHANISMS

3. The V-operation increments the value of the semaphore. If the resulting
value is not positive, one thread blocking in P-operation will be unblocked.
(semaphore V())

In addition to these operations, we must be able to create and destroy
semaphores. Creation can be done by calling semaphore create() and a no
longer used semaphore can be freed by calling semaphore destroy().

5.3.1 Semaphore Implementation

Semaphores are implemented as a static array of semaphore structures with the
name semaphore table. When semaphores are ”created”, they are actually allo-
cated from this table. Spinlock semaphore table slock is used to SMP-lock the
structure. A semaphore is defined by semaphore t, which is a structure of three
fields:

Type Name Description
spinlock t slock Spinlock which must be held when accessing

the semaphore data.
int value The current value of the semaphore. If the

value is negative, it indicates that thread(s) are
waiting for the semaphore to be incremented.
Conceptually the value of a semaphore is never
below zero since calls from semaphore P() do
not return while the value is negative.

TID t creator The thread ID of the thread that created this
semaphore. Negative value indicates that the
semaphore is unallocated (not yet created).
The creator information is useful for debugging
purposes.

The following functions are defined for semaphores:

semaphore t * semaphore create (int value)

• Creates a new semaphore and initializes its value to value.

• Implementation:

1. Assert that the initial value is non-negative.

2. Disable interrupts.

3. Acquire spinlock semaphore table slock.

4. Find free (creator == -1) semaphore from semaphore table and set
its creator to the current thread. If no free semaphores are available
NULL is later returned.

5. Release the spinlock.

6. Restore the interrupt status.

7. Return with NULL if no semaphores were available.

8. Set the initial value of the semaphore to value.

9. Reset the semaphore spinlock.

10. Return the allocated semaphore.

EXERCISES 33

void semaphore destroy (semaphore t *sem)

• Destroys the given semaphore sem.

• Implementation:

1. Set the creator field in sem to -1 (free).

void semaphore V (semaphore t *sem)

• Increments the value of sem by one. If the value was originally negative (there
are waiters), wakes up one waiter.

• Implementation:

1. Disable interrupts.

2. Acquire sem’s spinlock.

3. Increment the value of sem by one.

4. If the value was originally negative, wake up one thread sleeping on this
semaphore.

5. Release the spinlock.

6. Restore the interrupt status.

void semaphore P (semaphore t *sem)

• Decreases the value of sem by one. If the value becomes negative, block
(sleep). Conceptually the value of the semaphore is never below zero, since
this call returns only after the value is non-negative.

• Implementation:

1. Disable interrupts.

2. Acquire sem’s spinlock.

3. Decrement sem’s value by one.

4. If the value becomes negative, start sleeping on this semaphore and si-
multaneously release the spinlock.

5. Else, release the spinlock.

6. Restore the interrupt status.

kernel/semaphore.h,

kernel/semaphore.c

Semaphores

Exercises

5.1. Why must interrupts be disabled when acquiring and holding a spinlock?
Consider the requirement that spinlocks should be held only for a very short
time. Is the problem purely efficiency or will something actually break if a
spinlock is held with interrupts enabled?

5.2. How could the spinlock acquiring and releasing be improved in efficiency when
the kernel is compiled for a uniprocessor system? (Hint: read the spinlock
introduction carefully.)

34 CHAPTER 5. SYNCHRONIZATION MECHANISMS

5.3. When waking up a thread in sleepq wake the thread in sleep queue is either
Running or Sleeping. Why can the thread still be Running? Consider the
usage example of the sleep queue shown in Figure 5.1 and Figure 5.2. What
happens if the thread is woken up by some other thread (running on another
CPU) between lines 5 and 6 in the code in Figure 5.1?

5.4. Suppose you need to implement periodic wake-ups for threads. For ex-
ample threads can go to sleep and then they are waked up every time a
timer interrupt occurs. In this case a resource spinlock is not needed to
use the sleep queue. Why can the functions sleepq add, sleepq wake and
sleepq wake all be called without holding a resource spinlock in this case?

5.5. Some synchronization mechanisms may be used in both threads and interrupt
handlers, some cannot. Which of the following functions can be called from a
interrupt handler (why or why not?):

(a) interrupt disable()

(b) interrupt enable()

(c) spinlock acquire()

(d) spinlock release()

(e) sleepq add()

(f) sleepq wake()

(g) sleepq wake all()

(h) semaphore V()

(i) semaphore P()

Ï 5.6. Locks and condition variables provide an alternative synchronization method
to semaphores. Implement locks and Lampson–Redell (Mesa) style condition
variables without the timeout rule. (The structure with a lock and several
condition variables is also known as a monitor.)

You have to implement procedures for handling lock acquiring, releasing and
condition variable waiting, signaling and broadcasting. You may not use
semaphores (see section 5.3) to build the locks and condition variables. Use the
primitive thread handling routines (defined in chapter 4) and synchronization
mechanisms (spinlocks, interrupt disabling and sleep queue) instead. You
must use the following interface:

For locks:

• lock t *lock create(void)

• void lock destroy(lock t *lock)

• void lock acquire(lock t *lock)

• void lock release(lock t *lock)

For condition variables:

• cond t *condition create(void)

• void condition destroy(cond t *cond)

• void condition wait(cond t *cond, lock t *condition lock)

• void condition signal(cond t *cond, lock t *condition lock)

• void condition broadcast(cond t *cond, lock t *condition lock)

EXERCISES 35

It is up to you to define the lock t and cond t types and provide exact
semantics for each of the functions above. Write your lock and condition
variable implementation in kernel/lock cond.c and kernel/lock cond.h.

In Lampson–Redell style monitors signaling and broadcasting will move the
thread(s) to the ready list but it is not guaranteed that the thread is the
next to run. Thus, the woken thread must recheck the condition before it can
continue. What is the other style to define condition variables? What is it
called and how the semantics differ from Lampson–Redell? (Remember that,
in this exercise, you have to implement Lampson–Redell semantics.)

Ï 5.7. Implement a synchronized bounded buffer. The buffer has some preset
size. You have to implement two synchronized operations on this buffer:
buffer put and buffer get. buffer put puts one byte into the buffer and
buffer get gets one byte from the buffer. buffer put must block until it has
put the byte into the buffer, and buffer get must block until it can return
a byte (there is something to return). Use your implementation of locks and
condition variables as synchronization primitives (No interrupt disabling, no
spinlocks, no sleep queue usage, no semaphores).

Test your code by running multiple threads calling buffer put (producers)
and multiple threads calling buffer get (consumers).

Ï 5.8. Implement a solution for the following toy problem: You have to synchronize
chemical reactions needed to form water out of hydrogen and oxygen atoms.
Mother nature doesn’t seem to get it right because of the synchronization
problems involved.

Atoms are represented by threads calling either hydrogen or oxygen functions.
The function calls do not return until the atom is part of a formed water
molecule. You must implement these functions as well as makewater function
which is called by one of the atoms in the just formed new water molecule.
The makewater function prints a text to the console when the new water
molecule has been formed.

Use semaphores as synchronization primitives in your implementation (no
busy waiting, no sleep queue, no interrupt disabling, no spinlocks).

Ï 5.9. Implement a solution for the following toy problem: Mother nature is in
trouble again. The whale population in oceans does not seem to grow. The
problem seems to be in the complex mating procedure followed by the whales.

Three (!) whales are needed to be present in order to make a successful
mating: one male, one female and one matchmaker. The matchmaker will
literally push the male and female together.

The whales are represented by threads. The threads call either male, female
or matchmaker functions. Both genders and the matchmakers must wait until
all three are present and then initiate the mating. After a successful mating,
all three functions return.

Use locks and condition variables as synchronization primitives in your im-
plementation (no busy waiting, no sleep queue, no interrupt disabling, no
spinlocks).

Hint: Matchmaker should be treated as a third gender.

Ï 5.10. Implement a solution for the following toy problem: The guild of computer
science students uses one room at the university building as a living room for
their members. This room has many sofas, but only one rather small table.

36 CHAPTER 5. SYNCHRONIZATION MECHANISMS

Many members like to play a card game called Bridge, which requires exactly
four players. The table is so small, that only one card game can be played at
a time. The students queuing for their turn to play like to sleep while waiting.

The students wanting to play Bridge are represented by threads. (Those
students who do not want to play are ignored.) You have to synchronize the
access to the game table. Threads call student arrives function when they
enter the room and want to play. This function returns when four players are
present at the game table. The return value of the function is the thread ID of
the person (thread) on the opposite side of the table (who is called a pair, for
Bridge is a team game). When the function has returned, the thread will call
play bridge function which should print the ID of the thread, as well as the
ID of the thread’s partner. After the printing, the function calls thread sleep

(if one is available) to simulate the time spent on playing the game. When
the play bridge function returns, the thread will call leave table function,
which will free the place at the game table for someone else.

Use semaphores as synchronization primitives in your implementation (no
busy waiting, no sleep queue, no interrupt disabling, no spinlocks).

Note that the requirement which states that the students want to sleep while
waiting their turns is implicitly fulfilled when calling semaphore P, since that
function forces the thread into sleep while waiting the semaphore value to
raise.

Ï 5.11. Implement a mechanism which allows threads to sleep for a specified time.
Create a function thread sleep, which takes a number of milliseconds as an
argument. When a thread calls this function, it will go to sleep. The thread
will wake up when at least the given number of milliseconds has passed.

The thread may not wake up before the specified time has elapsed, even to
just go back to sleep again. It may however wake up some (short) time later
than the specified time (this is not a real time operating system).

Hints: You may find it helpful to use the real time clock driver (see
10.3.6) and modify the way in which timer interrupts are scheduled in
scheduler schedule.

Chapter 6

Userland Processes

BUENOS has currently implemented a very simple support for processes run in user-
land. Basically processes differ from threads in that they have an individual virtual
memory address space. Userland processes won’t of course have an access to kernel
code except via system calls (see section 6.4). There is currently no separate process
table.

Processes are started as regular threads. During process startup in the func-
tion process start(), function thread go to userland() is called. This function
will switch the thread to usermode by setting the usermode bit in the CP0 status
register. After this, a context switch is done. Next time the thread is switched to
running mode it will run in usermode.

Processes have their own virtual memory address space. In the case of user
processes this space is limited to user mapped segment of the virtual memory address
space. Individual virtual memory space is provided by creating a pagetable for
the process. This is done by calling vm create pagetable() . Because of the
limitations of the current virtual memory system, the whole pagetable must fit to
the TLB at once. This limits the memory space to 16 pages (16∗4096 bytes). Both
the userland binary and the memory allocated for the data must fit in this limited
space. More details about virtual memory is found in chapter 7.

Because processes are run in threads, the thread t structure has a few fields
for (userland) processes (see section 4.1 and Table 4.1). In context switches
user context is set to point to the saved user context of the process. The context
follows the regular context t data structure. The pagetable field is provided for
the pagetable created during process startup. The process id field is currently
not used. It could be used for example as an index to a separate process table.

For an introduction to userland and process issues, read either [Stallings] p.
108–142, 154–168, 302–308 and 325–326 or [Tanenbaum] p. 71–80 and 202–207.

6.1 Process Startup

New processes can currently be started by calling the function process start. The
function needs to be modified before used to implement the Exec system call, but
it can be used to fire up test processes.

void process start (char *executable)

• Starts one userland process. The code and data for the process is loaded from
file executable.

38 CHAPTER 6. USERLAND PROCESSES

• The thread calling this function will be used to run the process. A call to this
function will never return.

• Implementation:

1. Allocate one context t from the stack for the new userland process.
(Stack allocation is done simply by declaring the variable inside the func-
tion). Since the context switching code expects the context to be in the
stack, this is the most convenient way to do that.

2. Create a new page table for this thread by calling vm create pagetable().

3. Disable interrupts. (Interrupts must be disabled when manipulating
thread information so that partial writes into thread entries are never
used in case of an interrupt occuring during page table setup.)

4. Set the new page table as the page table of this thread.

5. Restore the interrupt status.

6. Open the executable file.

7. Calculate the total size of both the read-only and the read-write program
segments in pages (4096 byte chunks).

8. Allocate and map the stack for the new process.

9. Allocate and map pages for both program segments.

10. Put the mapped pages into the TLB. This must be done manually here
before we have a proper virtual memory subsystem. Note that the TLB
is filled automatically after threads are switched by the scheduler, so we
could replace this force filling by calling thread yield(). Interrupts are
disabled during this operation to prevent scheduler’s TLB filling code
interference.

11. Fill all allocated pages (including the stack) with zero.

12. Copy segments from the executable into memory by using information
provided by the elf-library (see below for details on elf library). We
can use userland virtual addresses as target addresses, because we know
for sure that the pages are mapped and are not swapped out (we have
no swapping).

13. Zero all registers in the userland context.

14. Set the stack pointer into SP-register of the userland context.

15. Set the program counter (PC) in the userland context.

16. Call thread goto userland() , which will never return.

6.2 Userland Binary Format

When a new userland process is created, the code run in this process needs to be
loaded from a file. This file needs to be understood by the kernel code which loads
the userland binary into the memory. The userland binary format used in BUENOS

is ELF.
The ELF binary format has sections used for linking, relocation and debugging

purposes in addition to storing data and program code, as well as program segments
which are the ones relevant to program loading. Each program segment includes
one or more of the sections.

The MIPS32 architecture only supports two kinds of memory pages, read-only
and read-write. This means that in effect there will be only two program segments

6.2. USERLAND BINARY FORMAT 39

in the binary file, the read-only and read-write segments. The ELF code in BUENOS

requires that there are indeed at most one of each kind of segments. The segments
are as follows:

• ro segment: contains the actual code run in the process (.text) as well as
read-only data needed by the program (.rodata).

• rw segment: contains initialized data needed by the program (.data) as well
as uninitialized data (.bss). The uninitialized data is not stored in the binary
and the file only contains the size and addressing information about it.

An ELF executable file is organized in the following way from the program
loading viewpoint. The ELF header is in the beginning of the file. It includes a
magic string to identify it as an ELF file, as well as the number of program segment
headers and their location in the file. These program headers are the ones used when
loading the executable into memory. The ELF header also contains the program
entry point and information to determine if the file is of the right format (MIPS
big-endian), as well as other information which is not relevant to the BUENOS ELF
loader.

For each program segment there is a header in the ELF file containing (among
others) the following relevant information:

• The type of the segment. The ones loaded into memory have a type of
PT LOAD.

• The flags for the segment, mainly readable, writable and executable. Only
the writable flag is checked by BUENOS.

• The virtual address of the beginning of the segment. This is the address that
the code uses to reference this segment and the address where the segment
should be loaded at.

• The size of the segment stored in the file.

• The size of the segment in memory. Since uninitialized data is not stored in
the file, this size may be different from the size that is stored in the file.

• The location of the initialized data (if any) or code in the file.

The current implementation of BUENOS contains the function elf parse header

to parse the headers of an ELF file. This function reads the headers from a given
file and returns the result in structure elf info t, which is described in Table 6.1.

int elf parse header (elf info t *elf, openfile t file)

• Reads the ELF headers from file and returns the information about program
segments in elf.

• Returns 0 on failure (ie. file was not a valid ELF file or no program segments
were found). Other values indicate success.

• Implementation:

1. Read the ELF header. If the read fails return 0.

2. Check that the ELF magic, file format, version and type are correct in
the ELF header. If not, return 0.

3. Zero the elf structure.

40 CHAPTER 6. USERLAND PROCESSES

Type Name Explanation
uint32 t entry point The entry point for this

program.
uint32 t ro location The location of the

read-only segment in the
ELF file.

uint32 t ro size The size of the read-only
segment stored in the ELF
file.

uint32 t ro pages The number of memory
pages needed by the
read-only segment.

uint32 t ro vaddr The virtual address of the
start of the read-only
segment.

uint32 t rw location The location of the
read-write segment in the
ELF file.

uint32 t rw size The size of the read-write
segment stored in the ELF
file.

uint32 t rw pages The number of memory
pages needed by the
read-write segment.

uint32 t rw vaddr The virtual address of the
start of the read-write
segment.

Table 6.1: The structure elf info t returned by function elf parse header.

6.3. EXCEPTION HANDLING 41

4. For each program segment do the following:

(a) Read the program header from file. If the read fails return 0.

(b) If the program header type is PT NULL, PT NOTE or PT PHDR, continue
from the next program header (these types can safely be ignored).

(c) If the segment type is PT LOAD, check the flags for whether this is
the read-only or read-write segment and fill the appropriate fields in
elf.

(d) If the segment type is none of the above, this is an unsupported file
(not a statically linked executable). Return 0.

5. Return the boolean: # of loadable segments > 0

6.3 Exception Handling

When an exception occurs in user mode the context switch code switches the current
thread from user context to kernel context. The thread will resume its execution
in kernel mode in function user exception handle. This function will handle the
TLB misses and system calls caused by the userland process.

void user exception handle (int exception)

• This function is called when an exception has occured in user mode. Handles
the given exception.

• Implementation:

1. Dispatch system calls to the syscall handler, PANIC on other exceptions.

proc/exception.c user exception handle

proc/elf.h,

proc/elf.c

elf parse header()

proc/syscall.c System call handling

proc/process.h,

proc/process.c

Process management

6.4 System Calls

System calls are an interface through which userland programs can call kernel func-
tions, mainly those that are I/O-related, and thus require kernel mode privileges.
Userland code cannot of course call kernel functions directly, since this would imply
access to kernel memory, which would break the userland sandbox and userland
programs could corrupt the kernel at their whim. This means that the system call
handlers in the kernel should be written very carefully. A userland program should
not be able to affect normal kernel functionality no matter what arguments it passes
to the system call (this is called bullet proofing the system calls).

42 CHAPTER 6. USERLAND PROCESSES

6.4.1 How System Calls Work

A system call is made by first placing the arguments for the system call and the
system call function number in predefined registers. In BUENOS, the standard MIPS
argument registers a0--a3 are used for this purpose. The system call number is
placed in a0, and its three arguments in a1, a2 and a3. If there is a need to pass
more arguments for a system call, this can be easily achieved by making one of
the arguments a memory pointer which points to a structure containing rest of the
arguments.

After the arguments are in place, the special machine instruction syscall is ex-
ecuted. It generates a system call exception and thus transfers control to the kernel
exception handler. The return value of the system call is placed in a predefined
register by the system call handler. In BUENOS the standard return value register
v0 is used.

The system call exception is handled then as follows (note that not all details
are mentioned here):

1. The context is saved as with any exception or interrupt.

2. As we notice that the cause of the exception was a system call, interrupts are
enabled and the system call handler is called. Enabling interrupts (and also
clearing the EXL bit) results in the thread running as a normal thread rather
than an exception handler.

3. The system call handler gets a pointer to the user context as its argument.
The system call number and arguments are read from the registers saved in
the user context, and an appropriate handler function is called for each system
call number. The return value is then written to the V0 register saved in the
user context.

4. The program counter in the saved user context is incremented by one instruc-
tion, since it points to the syscall instruction which generated this exception.

5. Interrupts are disabled (and EXL bit set), and the thread is again running as
an exception handler.

6. The context is restored, which also restores the thread to user mode.

Note: You cannot directly change thread/process (ie. call scheduler) when in
syscall or other exception handlers, since it will mess up the stack. All thread
changes should be done through (software) interrupts (e.g. calling thread switch

).

6.4.2 System Calls in BUENOS

BUENOS has a wrapper function for the syscall instruction, so there is no need to
write code in assembler. In addition, some syscall function numbers are specified
(in proc/syscall.h) and wrapper functions with proper argumets for these are
implemented in tests/lib.c. These wrappers, or rather library functions, are
described below.

When implementing the system calls, the interface must remain binary compat-
ible with the unaltered BUENOS. This means that the already existing system call
function numbers must not be changed and that return value and argument seman-
tics are exactly as described below. When adding system calls not mentioned below
the arguments and return value semantics can of course be defined as desired.

6.4. SYSTEM CALLS 43

Halting the Operating System

void syscall halt (void)

• This is the only system call already implemented in BUENOS. It will unmount
all mounted filesystems and then power off the machine (YAMS will termi-
nate). This system call is the only method for userland processes to cause the
machine to halt.

File System Related

int syscall open (const char *filename)

• Open the file identified by filename for reading and writing.

• Returns the file handle of the opened file (non-negative), or a negative value
on error.

• Never returns values 0, 1 or 2, because they are reserved for stdin, stdout
and stderr.

int syscall close (int filehandle)

• Close the open file identified by filehandle.

• filehandle is no longer a valid file handle after this call.

• Returns zero on success, other numbers indicate failure (e.g. filehandle is not
open so it can’t be closed).

int syscall create (const char *filename, int size)

• Create a file with the name filename and initial size of size.

• The initial size means that at least size bytes, starting from the beginning of
the file, can be written to the file at any point in the future (as long as it is
not deleted), ie. the file is initially allocated size bytes of disk space.

• Returns 0 on success, or a negative value on error.

int syscall delete (const char *filename)

• Remove the file identified by filename from the filesystem it resides on.

• Returns 0 on success, or a negative value on error.

• Note that it is impossible to implement a clean solution for the delete inter-
action with open files at the system call level. You are not expected to do
that at this time (filesystem chapter has a separate exercise for this particular
issue).

int syscall seek (int filehandle, int offset)

• Set the file position of the open file identified by filehandle to offset.

• Returns 0 on success, or a negative value on error.

44 CHAPTER 6. USERLAND PROCESSES

int syscall read (int filehandle, void *buffer, int length)

• Read at most length bytes from the file identified by filehandle into buffer.

• The read starts at the current file position, and the file position is advanced
by the number of bytes actually read.

• Returns the number of bytes actually read (e.g. 0 if the file position is at the
end of file), or a negative value on error.

• If the filehandle is zero, the read is done from stdin (the console), which
is always considered to be an open file.

• Filehandles 1 and 2 cannot be read from and attempt to do so will always
return an error code.

int syscall write (int filehandle, const void *buffer, int length)

• Write length bytes from buffer to the open file identified by filehandle.

• Writing starts at the current file position, and the file position is advanced by
the number of bytes actually written.

• Returns the number of bytes actually written, or a negative value on error. (If
the return value is less than length but ≥ 0, it means that some error occured
but that the file was still partially written).

• If the filehandle is 1, the write is done to stdout (the console), which is
always considered to be an open file.

• If the filehandle is 2, the write is done to stderr (typically also console),
which is always considered to be an open file.

• Filehandle 0 cannot be written to and attempt to do so will always return an
error code.

Process Related

void syscall exit (int retval)

• Terminate the current process with the exit code retval.

• Note that retval must be non-negative since negative return values for
syscall join are interpreted as errors in the join call itself.

• This function never returns.

int syscall exec (const char *filename)

• Create a new process (child process), load the file identified by filename and
execute it as the created process.

• Returns the process ID (PID) of the created process, or a negative value on
error.

6.4. SYSTEM CALLS 45

int syscall join (int pid)

• Wait until the execution of the child process identified by pid is finished.

• Returns the exit code of the joined process, or a negative value on error.

• This call should work correctly and return the exit code of a once started
process, even if the process to be joined has already finished execution before
or during this call. (These processes are usually called zombies.)

Extra System Calls

These are actually also process related, but since their implementation is beyond
the scope of the basic system call exercise, they are listed in their own section.

int syscall fork (void (*func)(int), int arg)

• Create a new thread running in the same address space as the caller.

• The new thread will start at function func and the thread will end when func
returns. arg is passed as an argument to func.

• Returns 0 on success and a negative value on error.

This system call is implemented in one virtual memory exercise in chapter 7.

void * syscall memlimit (void *heap end)

• Allocate or free memory by trying to set the heap to end at the address
heap end.

• Returns the new end address of the heap (the last addressable byte), or NULL
on error.

• If heap end is NULL, the current heap end is returned.

If you implement argument passing between parent and child processes, use this
version of exec instead of the standard one (see exercises below).

int syscall execp (const char *filename, int argc, const char **argv)

• Creates a new process (child process), loads the file identified by filename and
executes it as the created process.

• Passes argc arguments to the child process.

• The arguments are in a table of string pointers (char *), and there are thus
argc rows in the table argv which holds the argument strings.

• Returns the process ID (PID) of the created process, or a negative value on
error.

46 CHAPTER 6. USERLAND PROCESSES

Exercises

6.1. The userland binary is divided into different segments: text segment, rdata
segment, data segment and bss segment. In addition to these, the userland
program has a stack, but this is not defined in the binary. What is the purpose
of each of these segments?

The binary could be loaded into memory in one big chunk if these segments
were not defined. Which of these could be set read only in memory and what
benefits would that gain? What are the other advantages of this segmented
approach?

Ï 6.2. Implement a way to transfer data safely between kernel and userland. When
implementing system calls, various data blocks need to be transferred between
userland process memory and kernel memory regions. It must not be possible
for the userland process to fool the kernel into giving it access rights to the
memory space of other processes or kernel memory areas (even one written or
read byte in the wrong place is extra access).

You need to provide two types of functionality: One to move blocks of prede-
fined size between kernel and userland and the other to safely transfer strings
(C strings, the length is not known in advance but can have a reasonably big
upper limit, ends when a 0 byte is encountered).

Ï 6.3. Implement process entries. You need to provide a synchronized data structure
to store information on running userland processes. The entry for a process
must contain at least the name of the process (the binary file name is ok, useful
for debugging) and the thread(s) which belong to it. All threads associated
with userland processes must also know which process they belong to.

You also need to add fields in this data structure for all process-related infor-
mation needed to implement system calls properly (see next exercise).

Ï 6.4. Implement system calls. Implement all predefined system calls except fork,
execp and memlimit. The system calls must be bulletproof so that the only
way userland processes can stop the system is the halt system call and there
is no way for any userland process to interfere with other processes.

You don’t need to fix the filesystem to provide proper synchronized access to
the same files, but you need to make sure that processes don’t interfere with
the open file handles of other processes (no filesystem or VFS modifications
should be needed, but are allowed).

Note that you can add other system calls if you wish, but the predefined set
must work as documented so that your operating system can run precompiled
binaries built against the system call definitions.

Note also that this exercise implies that you must handle exception conditions
caused by userland processes in some other sensible manner than the current
PANIC, since the current approach gives userland processes an easy way to
shut the system down without calling halt.

Ï 6.5. Implement a shell. A shell is a userland program which interacts with the
user through the console and enables the user to start programs by typing
names of programs. The shell must make it possible to start programs into
the background (shell use continues) and into the foreground (the shell is not
usable until the started process ends). It must be possible to exit from the
shell.

EXERCISES 47

The shell must print the return value of a started (foreground) process when
the process finishes. Can you find a good way to inform the user when a
background process has finished and print its return value?

Ï 6.6. Implement a set of userland programs to test your system call implementa-
tion. Make sure that you test all implemented system calls. The programs
should do something at least remotely useful (like copy files). If you do not
implement arguments for programs (see exercise below), you can hard-code
the parameters into the test programs.

Remember also to test that your system calls do not do more than they are
supposed to do! Note also that the shell can be used as a test program for
some syscalls.

Ï 6.7. Implement the system call fork. Fork enables you to run multiple threads in
the context of one process and thus bring the SMP threading capabilities of
the BUENOS kernel into userland.

Remember to plan how the exit system call behaves when a process has
multiple threads. When does the process actually end? (First to exit?, Last
to exit? Original thread exits?).

Ï 6.8. Add a way to pass arguments from one userland process calling execp to
the started child process. You must use the version of execp presented in
the 6.4.2. Note that the system call ids for for both exec and execp are the
same, so that exec should be backward binary compatible with your new exec

implementation..

Arguments are defined as an arbitrary (0 to N) number of strings. You can of
course set some configurable upper limit on the number of arguments and/or
their size.

The newly created process should receive its arguments as arguments to the C
function main(). Study the calling convention (section 3.3.9) before starting
this assignment.

Chapter 7

Virtual Memory

By definition, virtual memory provides an illusion of unlimited sequential memory
regions to threads and processes. Also the VM subsystem should isolate processes
so that they cannot see or manipulate memory allocated by other processes. The
current BUENOS implementation does not achieve these goals. Instead, it provides
tools and utility functions which are useful when implementing a real and working
virtual memory subsystem.

Currently the VM subsystem has primitive page tables for threads and processes,
utilities to manipulate hardware TLB and a simple mechanism for allocating and
freeing physical pages. There is no swapping, the pagetables are inefficient to use
and hardware TLB is used in a very limited way. Kernel threads must also manipu-
late allocated memory directly by pages. Suggested improvements are documented
as exercises at the end of this chapter.

As result of this simple approach, the system can support only 16 pages of
mappings (64 kB) for each (userland) process. These 16 mappings can be fit into
the TLB and are currently done so by calling tlb fill after changing threads by
the scheduler. The system does not handle TLB exceptions.

The current kernel implementation does not use mapped memory. It also does
all its memory reservations through pagepool, which is described in section 7.3.
Since kernel needs both virtual addresses for actual usage and physical address for
hardware, simple mapping macros are available for easy conversion. These macros
are ADDR PHYS TO KERNEL() and ADDR KERNEL TO PHYS() and they are defined in
vm/pagepool.h. Note that the macros can support only kernel region addresses
which are within the first 512MB of physical memory. See below for description on
address regions.

7.1 Hardware Support for Virtual Memory

The hardware in YAMS supports virtual memory with two main mechanisms: mem-
ory segmentation and translation lookaside buffer (TLB). The system doesn’t sup-
port hardware page tables. All page table operations and data structures are defined
by the operating system. The page size of the hardware is 4 kB (4096 bytes). All
mappings are done in page sized chunks.

Memory segmentation means that addresses of different regions of address space
behave differently. The system has 32-bit address space.

If the topmost bit of an address is 0 (the first 2GB of address space), the address
is valid to use even if the CPU is in user mode (not in kernel mode). This region of
addresses is called user mapped region and it is used in userland programs and
in kernel when userland memory is manipulated. This region is mapped. Mapping

7.2. VIRTUAL MEMORY INITIALIZATION 49

means that the addresses do not refer to real memory addresses, but the real memory
page is looked up from TLB when an address in this region is used. The TLB is
described in more detail in its own section (see section 7.5).

The rest of the address space is reserved for the operating system kernel and
will generate an exception if used when the CPU is in user (non-privileged) mode.
This space is divided into four segments: kernel unmapped uncached, kernel

unmapped, supervisor mapped and kernel mapped. Each segment is 512MB in
size. The supervisor mapped region is not used in BUENOS. The kernel unmapped
uncached region is also not used in BUENOS except for memory mapped I/O-devices
(YAMS doesn’t have caches).

The kernel mapped region behaves just like the user mapped region, except that
it is usable only in kernel mode. This region can be used for mapping memory areas
for kernel threads. The area is currently unused, but its usage might be needed in
proper VM implementation.

The kernel unmapped region is used for static data structures in the kernel and
also for the kernel binary itself. The region maps directly to the first 512MB of
system memory (just strip the topmost bit in an address).

In some parts of the system a term physical memory address is used. Physical
addresses are addresses starting from 0 and extending to the top of the machine’s
real memory. These are used for example in TLB to point to actual pages of memory
and in device drivers when doing DMA data transfers.

7.2 Virtual memory initialization

During virtual memory initialization (function vm init) page pool data structure is
initialized (see section 7.3) and the ability to do arbitrary length permanent memory
reservation (i.e. kmalloc) is disabled. kmalloc is disabled so that it will not mess
up with dynamically reserved pages.

7.3 Page Pool

Page pool is a data structure containing the status of all physical pages. The status
of a physical page is either free or reserved. This status information (of the nth
page) is kept in (the nth bit of) a bitmap field pagepool free pages, zero meaning
a free and one a reserved page.

A spinlock is provided to secure synchronous access to the bitmap field. It is
needed to prevent two (or more) threads from reserving the same physical page.
Note that when you modify the virtual memory system to support swapping, these
pagepool functions must still work because they are used in device drivers, network-
ing and filesystem code. You can reserve a certain amount of physical memory for
the kernel (pagepool) and rest for userland processes (mapped access) if you wish.

void pagepool init ()

• Initializes the pagepool. After this it is known which pages may be used by
virtual memory system for dynamic memory reservation. Statically reserved
pages are marked as reserved.

• Implementation:

1. Find out total number of physical pages from kmalloc.

2. Reserve space for pagepool free pages bitmap field. Note that this is
still a permanent memory reservation.

50 CHAPTER 7. VIRTUAL MEMORY

Type Name Explanation
uint32 t ASID Address space identifier.

The entries placed in TLB
will be set with this ASID.
Only entries in TLB with
ASID matching with ASID
of the currently running
thread will be valid. In
BUENOS we use ASID ==
Thread ID.

uint32 t valid count Number of valid mapping
entries in this pagetable.

tlb entry t

[PAGETABLE ENTRIES]

entries The actual page mapping
entries in the form accepted
by hardware TLB. See also
section 7.5.1 for description
of TLB entries.

Table 7.1: Pagetable (pagetable t) structure fields

3. Find out the number of reserved pages from kmalloc. This is the total
amount of reserved memory divided by page size, rounded up.

4. Mark all reserved pages as ones in bitmap field.

Following pagepool handling functions are provided to handle page pool data
structure.

uint32 t pagepool get phys page ()

• Returns the physical address of a free page. If no free pages are available,
returns zero.

• Function finds first zero bit from pagepool free pages and marks it to one.
The address is calculated by multiplying the bit number with page size.

void pagepool free phys page (uint32 t phys addr)

• Frees a physical page by setting the corresponding bit to zero.

• Asserts that the freed page is a) reserved and b) is not statically reserved.

7.4 Pagetables and Memory Mapping

BUENOS uses very primitive pagetables to store memory mappings for userland pro-
grams. Each thread entry in the system has private pagetable field in its information
structure. If the entry is NULL, thread is a kernel-only thread. If the entry is avail-
able, thread is used in userland.

The pagetable stores virtual address physical address mapping pairs for the
process. Virtual addresses are private for the process, but physical addresses are
global and refer to actual physical memory locations. The pagetable is stored in
pagetable t structure described in Table 7.1. The internal representation is the
same as used by hardware TLB. See section 7.5.1 for details on TLB entries.

7.4. PAGETABLES AND MEMORY MAPPING 51

To use memory mapping, thread must create a pagetable by calling the func-
tion vm create pagetable() giving its thread ID as an argument. This pagetable
is then stored in thread’s information structure. For an example on usage, see
process start() in proc/process.c. Note that the current VM implemen-
tation cannot handle TLB dynamically, which means that TLB must be filled
with proper mappings manually before running thread (userland process) which
needs them. This can be achieved by calling tlb fill() (see proc/process.c:

process start() and kernel/interrupt.c: interrupt handle() for current
usage).

When the thread no longer needs its memory mappings, it must destroy its
pagetable by calling vm destroy pagetable(). Note that this only clears the map-
pings, but does not invalidate the pagetable entry in thread information structure,
free the physical pages used in mappings or clear the TLB. These things must be
handled by the thread wishing to free memory (eg. a dying userland process).

pagetable t * vm create pagetable (uint32 t asid)

• Creates a new pagetable. Returns pointer to the table created.

• Argument asid defines the address space identifier associated with this page
table. In BUENOS we use asids which equal to thread IDs.

• Pagetable occupies one hardware page (4096 bytes).

• Implementation:

1. Reserve one physical memory page from pagepool. This page will contain
one pagetable t structure.

2. Set the ASID field in the created structure.

3. Set the number of valid mappings to 0.

4. Return the created pagetable.

void vm destroy pagetable (pagetable t *pagetable)

• Frees the given pagetable.

• Pagetable must not be used after it is freed. The freeing is done when thread
is finished or userland program terminates.

• Note that this function does not invalidate any entries present on TLB on any
CPU.

• Implementation:

1. Free the page used for the pagetable by calling pagepool’s freeing func-
tion.

Memory mappings can be added to pagetables by calling vm map(). Note that
with the current implementation threads should manipulate only their own map-
pings, not mappings of other threads. The current TLB implementation cannot
handle more than 16 pagetable mappings correctly, a better system is left as an
exercise.

Mappings can be removed one by one with vm unmap(), but implementation
is left as an exercise. The dirty bit of a mapping can be changed by calling
vm set dirty().

52 CHAPTER 7. VIRTUAL MEMORY

void vm map (pagetable t *pagetable, uint32 t physaddr,

uint32 t vaddr, int dirty)

• Maps the given virtual address (vaddr) to point to the given physical address
(physaddr) in the context of given pagetable. The addresses must be page
aligned (4096 bytes).

• If dirty is true, the mapping is marked dirty (read/write mapping). If false,
the mapping will be clean (read-only).

• Implementation:

1. If the pagetable already contains the pair entry for the given virtual
address (page), the pair entry is filled. Pagetables use hardware TLB’s
mapping definitions where even and odd pages are mapped to the same
entry but can point to different physical pages.

2. Else creates new mapping entry, fills the appropriate fields and invali-
dates the pairing (not yet mapped) entry.

void vm unmap (pagetable t *pagetable, uint32 t vaddr)

• Unmaps the given virtual address (vaddr) from given pagetable. The address
must be page aligned and mapped in this pagetable.

• Implementation:

1. This function is not implemented, the implementation is left as an exer-
cise.

void vm set dirty (pagetable t *pagetable, uint32 t vaddr, int dirty)

• Sets the dirty bit to dirty of a given virtual address (vaddr) in the context
of the given pagetable. The address must be page aligned (4096 bytes).

• If dirty is true (1), the mapping is marked dirty (read/write mapping). If
false (0), the mapping will be clean (read-only).

• Implementation:

1. Find the mapping of the given virtual address.

2. Set the dirty bit if a mapping was found.

3. If the mapping was not found, panic.

7.5 TLB

Most modern processors access virtual memory through a Translation Lookaside
Buffer (TLB). It is an associative table inside the memory management unit (MMU,
CP0 in MIPS32) which consists of a small number of entries similar to page table
entries mapping virtual memory pages to physical pages.

When the address of a memory reference falls into a mapped memory range
(0x00000000-0x7fffffff or 0xc0000000-0xffffffff in MIPS) the virtual page
of the address is translated into a physical page by the MMU hardware by looking
it up in the TLB and the resulting physical address is used for the reference. If the
virtual page has no entry in the TLB, a TLB exception occurs.

7.5. TLB 53

7.5.1 TLB dual entries and ASID in MIPS32 architectures

In MIPS32 architecture, one TLB entry always maps two consecutive pages, even
and odd. This needs to be taken into account when implementing the TLB handling
routines, as a new mapping may need to be added to an already existing TLB entry.
One might think that the consecutive pages could be mapped in separate entries,
leaving the other page in the entry as invalid, but this would result in duplicate
TLB matches and thus cause undefined behavior.

A MIPS32 TLB entry also has an Address Space ID (ASID) field. When the
CP0 is checking for a TLB match, also the ASID of the entry must match the
current ASID for the processor, specified in the EntryHi register (or the global bit
is on, see YAMS and MIPS32 documentation for details). Thus, when using different
ASID for each thread, the TLB need not necessarily be invalidated when switching
between threads.

BUENOS uses tlb entry t structure to store page mappings. The entries in
this structure are compatible with the hardware TLB. The fields are described in
Table 7.2.

The exception handler in kernel/exception.c should dispatch TLB exceptions
to the following functions, implemented in vm/tlb.c (note that the current imple-
mentation does not dispatch TLB exceptions):

void tlb load exception (void)

• Called in case of a TLB miss exception caused by a load reference.

void tlb store exception (void)

• Called in case of a TLB miss exception caused by a store reference.

void tlb modified exception (void)

• Called in case of a TLB modified exception.

7.5.2 TLB miss exception, Load reference

The cause of this exception is a memory load operation for which either no entry
was found in the TLB (TLB refill) or the entry found was invalid (TLB invalid).
These cases can be distinguished by probing the TLB for the failing page number.
The exception code is EXCEPTION TLBL.

7.5.3 TLB miss exception, Store reference

This exception is the same as the previous except that the operation which caused
it was a memory store. The exception code is EXCEPTION TLBS .

7.5.4 TLB modified exception

This exception occurs if an entry was found for a memory store reference but the
entry’s D bit is zero, indicating the page is not writable. The D bit can be used both
for write protection and pagetable coherence when swapping is enabled (dirty/not
dirty). The exception code is EXCEPTION TLBM .

7.5.5 TLB wrapper functions in BUENOS

The following wrapper functions to CP0 TLB operations, implemented in vm/ tlb.S,
are provided so that writing assembler code is not required.

54 CHAPTER 7. VIRTUAL MEMORY

Type Name Explanation
unsigned int:19 VPN2 Virtual page pair number.

These are the upper 19 bits
of a virtual address. VPN2
describes which consecutive
2 page (8192 bytes) region of
virtual address space this
entry maps.

unsigned int:5 dummy1 Unused
unsigned int:8 ASID Address space identifier.

When ASID matches CP0
setted ASID this entry is
valid. In BUENOS, we use
mapping ASID = Thread ID.

unsigned int:6 dummy2 Unused
unsigned int:20 PFN0 Physical page number for

even page mapping (VPN2
+ 0 bit).

unsigned int:3 C0 Cache settings. Not used.
unsigned int:1 D0 Dirty bit for even page. If

this is 0, page is write
protected. If 1 page can be
written.

unsigned int:1 V0 Valid bit for even page. If
this bit is 1, this entry is
valid.

unsigned int:1 G0 Global bit for even page.
Cannot be used without the
global bit of odd page.

unsigned int:6 dummy3 Unused
unsigned int:20 PFN1 Physical page number for

odd page mapping (VPN2 +
1 bit).

unsigned int:3 C1 Cache settings. Not used.
unsigned int:1 D1 Dirty bit for odd page. If

this is 0, page is write
protected. If 1 page can be
written.

unsigned int:1 V1 Valid bit for odd page. If
this bit is 1, this entry is
valid.

unsigned int:1 G1 Global bit for odd page.
Cannot be used without the
global bit of even page. If
both bits are 1, the mapping
is global (ignores ASID),
otherwise mapping is local
(checks ASID).

Table 7.2: TLB entry (tlb entry t structure fields)

7.5. TLB 55

void tlb get exception state (tlb exception state t *state)

• Get the state parameters for a TLB exception and place them in state.

• This is usually the first function called by all TLB exception handlers.

• Implementation:

1. Copy the BadVaddr register to state->badvaddr.

2. Copy the VPN2 field of the EntryHi register to state->badvpn2.

3. Copy the ASID field of the EntryHi register to state->asid.

The structure tlb exception state t has the following fields:

Type Name Explanation
uint32 t badvaddr Contains the failing virtual

address.
uint32 t badvpn2 Contains the VPN2 (bits

31..13) of the failing virtual
address.

uint32 t asid Contains the ASID of the
reference that caused the
failure. Only the lowest 8
bits are used.

void tlb set asid (uint32 t asid)

• Sets the current ASID for the CP0 (in EntryHi register).

• Used to set the current address space ID after operations that modified the
EntryHi register.

• Implementation:

1. Copy asid to the EntryHi register.

uint32 t tlb get maxindex (void)

• Returns the index of the last entry in the TLB. This is one less than the
number of entries in the TLB.

• Implementation:

1. Return the MMU size field of the Conf1 register.

int tlb probe (tlb entry t *entry)

• Probes the TLB for an entry defined by the VPN2, dummy1 and ASID fields
of entry.

• Returns an index to the TLB, or a negative value if a matching entry was not
found.

• Implementation:

1. Load the EntryHi register with VPN2 and ASID.

2. Execute the TLBP instruction.

3. Return the value in the Index register.

56 CHAPTER 7. VIRTUAL MEMORY

int tlb read (tlb entry t *entries, uint32 t index, uint32 t num)

• Reads num entries from the TLB, starting from the entry indexed by index.
The entries are placed in the table addressed by entries.

• Only MIN(TLBSIZE-index, num) entries will be read.

• Returns the number of entries actually read, or a negative value on error.

• Implementation:

1. Load the Index register with index.

2. Execute the TLBR instruction.

3. Move the contents of the EntryHi, EntryLo0 and EntryLo1 registers to
corresponding fields in entries.

4. Advance index and entries, and continue from step 1 until enough
entries are read.

5. Return the number of entries read.

int tlb write (tlb entry t *entries, uint32 t index, uint32 t num)

• Writes num entries to the TLB, starting from the entry indexed by index. The
entries are read from the table addressed by entries.

• Only MIN(TLBSIZE-index, num) entries will be written.

• Returns the number of entries actually written, or a negative value on error.

• Implementation:

1. Load the Index register with index.

2. Fill the EntryHi, EntryLo0 and EntryLo1 registers from entries.

3. Execute the TLBWI instruction.

4. Advance index and entries, and continue from step 1 until enough
entries are written.

5. Return the number of entries written.

void tlb write random (tlb entry t *entry)

• Writes the entry to a “random” entry in the TLB. The entry is read from
entry.

• Note that if this function is called more than once, it is not guaranteed that
the newest write will not overwrite the previous, although this is usually the
case. This function should only be called to write a single entry.

• Implementation:

1. Fill the EntryHi, EntryLo0 and EntryLo1 registers from entry.

2. Execute the TLBWR instruction.

The following function should be used only until a proper VM implementation
is done:

EXERCISES 57

void tlb fill (pagetable t *pagetable)

• Fills the TLB of the current CPU with entries from given pagetable. Sup-
ports only 16 mappings and cannot be used if pagetable might contain more
mappings.

• If the pagetable is NULL, the TLB is not touched.

• Implementation:

1. Return if pagetable is NULL.

2. Assert that there are no more mappings than TLB can handle.

3. Write entries to TLB.

4. Set ASID in CP0 to match ASID of the pagetable (equals to thread ID
in BUENOS).

vm/vm.h, vm/vm.c Virtual Memory core, pagetable handling,
memory mapping

vm/pagepool.h,

vm/pagepool.c

Pagepool implementation, address mapping
macros

vm/pagetable.h Pagetable definitions

vm/tlb.h, vm/tlb.c,

vm tlb.S

TLB manipulation

Exercises

Ï 7.1. Implement software management for the TLB. The current implementation
in BUENOS simply fills the TLB with page mappings after each scheduler run.
This is not sufficient, because only 16 pages can be mapped this way. The
approach is also slow, because many unneeded pages are also mapped. Write
handlers for TLB exceptions and make it possible to use any page mapped
for this purpose even if there are more than 16 mappings.

Note that you need handlers for both userland and kernel exceptions.

Ï 7.2. Implement better page tables. The current BUENOS page tables are limited to
340 page mappings. Implement a solution which makes it possible to efficiently
map any number of available pages in a pagetable. Your solution must:

• Make it possible to map any sensible number of pages in a pagetable.

• Implement an efficient way to find a mapping for a given virtual page
from a page table (linear search is not efficient).

• Support page unmapping (write the implementation for vm unmap func-
tion).

Ï 7.3. Implement paging. Write a solution which allows the system to extend phys-
ical memory to disk and run larger programs than the system memory can
hold. It is sufficient to make paging possible only for memory used by userland
processes.

Hints: You can add a new disk to the system to represent a “swap partition”
if you wish. Keep the pagepool (see section 7.3) functional, it is used in many

58 CHAPTER 7. VIRTUAL MEMORY

places in the kernel code (including disk handling). You can reserve a part
of the system memory for the pagepool and the rest for user programs if you
want to. You can decrease the amount of available memory in YAMS for easier
testing.

Ï 7.4. Refine your paging implemented in the previous assignment. Implement on-
demand loading for userland programs. In on-demand loading, pages are filled
only when they are used the first time. Text segments (code) and initialized
data will be read from the binary and un-initialized data will be filled with
zeroes when used for the first time. Avoid writing any such page to swap
which could be read from the binary when needed.

Ï 7.5. Make it possible for kernel threads to allocate mapped memory. Implement
new memory allocation routines, which allocate memory from the page pool
and map it to kernel thread’s pagetable. Threads should be able to reserve
and free a memory chunk of any size (within the limits of available memory
and possible swap). Remember to make it possible for threads to free the
allocated memory properly without causing too much memory fragmentation.

Ï 7.6. Evaluate the performance of your virtual memory system. Cache misses (in
our case TLB misses and page faults) can be divided into three different
categories:

(a) Compulsory misses happen when a page is referenced for the first time.
There is no way to avoid a compulsory miss.

(b) Capacity misses occur when the cache size is too small and a page must
be replaced by another page. However, a miss is only counted as a
capacity miss if the replacement could not be avoided with an optimal
replacement policy.

(c) Conflict misses occur when the replacement policy has performed sub-
optimally and the miss could have been avoided if correct choices would
have been made in the replacement algorithm.

Instrument the kernel to count the number of different misses for both TLB
misses and page faults (swap ins). Print all six numbers when the kernel shuts
down with the halt system call.

Write a set of userland programs which stress the virtual memory system in
different ways (produce large amounts of different kind of misses).

Hint: decrease the available memory in YAMS to introduce more swapping.

Ï 7.7. Implement a memory allocation library for the userland. Extend the userland
libc to contain malloc and free functions, which behave as normally in C.
The interfaces for the functions must be the following:

• void *malloc(int size)

• void free(void *ptr)

To be able to implement these functions, you must also implement the system
call memlimit, defined in the section 6.4.2.

Chapter 8

Filesystem

Filesystem is a collection of files which can be read and usually also written. BUENOS
can support multiple filesystems at the same time, thus you can attach (mount)
several different filesystems on different mount-points at any time.

BUENOS has one implemented filesystem, which is called Trivial Filesystem (see
section 8.4). Filesystems are managed and accessed through a layer called Virtual
Filesystem which represents a union of all available filesystems (see section 8.3).

Trivial Filesystem supports only the most primitive filesystem operations and
does not enable concurrent access to the filesystem. Only one request (read, write,
create, open, close, etc.) is allowed to be in action at any given time. TFS enforces
this restriction internally.

For an introduction on filesystem concepts, read either [Stallings] p. 483–493,
515–518 and 526–550 or [Tanenbaum] p. 300–302, 315–322 and 379–428.

8.1 Filesystem Conventions

Files on filesystems are referenced with filenames. In BUENOS filenames can have
at most 15 alphanumeric characters. The full path to a file is called an absolute
pathname and it must contain the volume (mount-point or filesystem) on which the
file is as well as possible directory and the name of the file.

An example of a valid filename is shell. A full absolute path to a shell might
be [root]shell or [root]bins/shell. Here shell is the name of a file, root is a
volumename (you could also call it disk, filesystem or mount-point). If directories
are used bins is a name of a directory. Directories have the same restrictions on
filenames as files do1. Directories are separated by slashes.

8.2 Filesystem Layers

Typically a filesystem is located on a disk (but it can also be a network filesystem or
even totally virtual2). Disks are accessed through Generic Block Devices (gbd, see
section 10.2.4). At boot time, the system will try to mount all available filesystem
drivers on all available disks through their GBDs. The mounting is done into a
virtual filesystem.

1This should be logical, especially when we consider that usually directories are implemented
as files.

2Totally virtual filesystems do not have any real files. The contents are created on the fly by
the kernel. An example of this is the /proc-filesystem in Unix which has one virtual directory for
each process in the system and these directories contain virtual files which tell the process name,
memory footprint size, etc.

60 CHAPTER 8. FILESYSTEM

Virtual filesystem is a super-filesystem which contains all attached (mounted)
filesystems. The same access functions are used to access local, networked and fully
virtual filesystems. The actual filesystem driver is recognized from the volume name
part of a full absolute pathname provided to the access functions.

8.3 Virtual Filesystem

Virtual Filesystem (VFS) is a subsystem which unifies all available filesystems into
one big virtual filesystem. All filesystem operations are done through it. Different
attached filesystems are referenced with names, which are called mount-points or
volumes.

VFS provides a set of file access functions (see section 8.3.5) and a set of filesys-
tem access functions (see section 8.3.6). The file access functions can be used to
open files on any filesystem, close open files, read and write open files, create new
files and delete existing files.

The filesystem manipulation functions are used to attach (mount) filesystems
into VFS, detach filesystems and get information on mounted filesystems (free space
on volume). A mechanism for forceful unmounting of all filesystems is also provided.
This mechanism is needed when the system performs shutdown and to prevent
filesystem corruption.

To be able to provide these services, VFS keeps track of attached (mounted)
filesystems and open files. VFS is thread safe and synchronizes all its own operations
and data structures. However TFS, which is accessed through VFS does not provide
proper concurrent access, it simply allows only one operation at a time (but see
exercises below).

8.3.1 Return Values

All VFS operations return non-negative values as an indication of successful oper-
ation and negative values as failures. The return value VFS OK is defined to be zero
and indicates success. The rest of defined return values are negative. The full list
of values is:

VFS OK The operation succeeded.

VFS NOT SUPPORTED The requested operation is not supported and thus
failed.

VFS INVALID PARAMS The parameters given to the called function were
invalid and the operation failed.

VFS NOT OPEN The operation was attempted on a file which was not open
and thus failed.

VFS NOT FOUND The requested file or directory does not exist.

VFS NO SUCH FS The referenced filesystem or mount-point does not exist.

VFS LIMIT The operation failed because some internal limit was hit. Typically
this limit is the maximum number of open files or the maximum number of
mounted filesystems.

VFS IN USE The operation couldn’t be performed because the resource was
busy. (Filesystem unmounting was attempted when filesystem has open files,
for example.)

8.3. VIRTUAL FILESYSTEM 61

Type Name Explanation
fs t * filesystem The filesystem driver for this

mount-point. If NULL, this
entry is unused.

char

[VFS NAME LENGTH]

mountpoint The name of this
mount-point.

Table 8.1: Mounted filesystem information structure (vfs entry t)

Type Name Explanation
semaphore t * sem A binary semaphore used to

lock access to this table.
vfs entry t

[CONFIG MAX

FILESYSTEMS]

filesystems Table of mounted
filesystems.

Table 8.2: Table of mounted filesystems (vfs table)

VFS ERROR Generic error, might be hardware related.

VFS UNUSABLE The VFS is not in use, probably because a forceful unmount
has been requested by the system shutdown code.

8.3.2 Limits

VFS limits the length of strings in filesystem operations. Filesystem implementa-
tions and VFS file and filesystem access users must make sure to use these limits
when interacting with VFS.

The maximum length of a filename is defined to be 15 characters plus one char-
acter for the end of string marker (VFS NAME LENGTH == 16).

The maximum path length, including the volume name (mount-point), possible
absolute directory path and filename is defined to be 255 plus one character for the
end of string marker (VFS PATH LENGTH == 256).

Type Name Explanation
fs t * filesystem The filesystem in which this

open file is located. If NULL,
this is a free entry.

int fileid A filesystem defined id for
this open file. Every file in a
filesystem must have a
unique id. Ids do not need
to be globally unique.

int seek position The current seek position in
the file.

Table 8.3: VFS information on open file (openfile entry t)

62 CHAPTER 8. FILESYSTEM

Type Name Explanation
semaphore t * sem A binary semaphore used to

lock access to this table.
openfile entry t

[CONFIG MAX

OPEN FILES]

files Table of open files.

Table 8.4: Table of open files in VFS (openfile table)

8.3.3 Internal Data Structures

VFS has two primary data structures: the table of all attached filesystems and the
table of open files.

The table of all filesystems, vfs table, is described in Table 8.1 and Table 8.2.
The table is initialized to contain only NULL filesystems. All access to this table must
be protected by acquiring the semaphore used to lock the table (vfs table.sem).
New filesystems can be added to this table whenever there are free rows, but only
filesystems with no open files can be removed from the table.

The table of open files (openfile table) is described in Table 8.3 and Table 8.4.
This table is also protected by a semaphore (openfile table.sem). Whenever the
table is altered, this semaphore must be held.

If access to both tables is needed, the semaphore for vfs table must be held
before the openfile table semaphore can be lowered. This convention is used to
prevent deadlocks.

In addition to these, VFS uses two semaphores and two integer variables to track
active filesystem operations. The first semaphore is vfs op sem, which is used as
a lock to synchronize access to the three other variables. The second semaphore,
vfs unmount sem, is used to signal pending unmount operations when the VFS
becomes idle. The initial value of vfs op sem is one and vfs unmount sem is initially
zero. Integer vfs ops is a zero initialized counter which indicates the number of
active filesystem operations on any given moment. Finally, the boolean vfs usable

indicates whether VFS subsystem is in use. VFS is out of use before it has been
initialized and it is turned out of use when a forceful unmount is started by the
shutdown process.

8.3.4 VFS Operations

The virtual filesystem is initialized at the system bootup by calling the following
function:

void vfs init (void)

• Initializes the virtual filesystem. This function is called before virtual memory
is initialized.

• Implementation:

1. Create the semaphore vfs table.sem (initial value 1) and the semaphore
openfile table.sem (initial value 1).

2. Set all entries in both vfs table and openfile table to free.

3. Create the semaphore vfs op sem (initial value 1) and the semaphore
vfs unmount sem (initial value 0).

4. Set the number of active operations (vfs ops) to zero.

8.3. VIRTUAL FILESYSTEM 63

5. Set the VFS usable flag (vfs usable).

When the system is being shut down, the following function is called to unmount
all filesystems :

void vfs deinit (void)

• Force unmounts on all filesystems. This function must be used only at system
shutdown.

• Sets VFS into unusable state and waits until all active filesystem operations
have been completed. After that, unmounts all filesystems.

• Implementation:

1. Call semaphore P on vfs op sem.

2. Set VFS unusable.

3. If there are active operations (vfs ops > 0): call semaphore V on
vfs op sem, wait for operations to complete by calling semaphore P on
vfs unmount sem, re-acquire the vfs op sem with a call to semaphore P.

4. Lock both data tables by calling semaphore P on both vfs table.sem

and openfile table.sem.

5. Loop through all filesystems and unmount them.

6. Release semaphores by calling semaphore V on openfile table.sem,
vfs table.sem and vfs op sem.

To maintain count on active filesystem operations and to wake up pending force-
ful unmount, the following two internal functions are used. The first one is always
called before any filesystem operation is started and the latter when the operation
has finished.

static int vfs start op (void)

• Start a new operation on VFS. Operation is any such action which touches a
filesystem.

• Returns VFS OK if the operations can continue, error (negative value) if the op-
eration cannot be started (VFS is unusable). If the operation cannot continue,
it should not later call vfs end op.

• Implementation:

1. Call semaphore P on vfs op sem.

2. If VFS is usable, increment vfs ops by one.

3. Call semaphore V on vfs op sem.

4. If VFS was usable, return VFS OK, else return VFS UNUSABLE.

static void vfs end op (void)

• End a started VFS operation.

• Implementation:

1. Call semaphore P on vfs op sem.

2. Decrement vfs ops by one.

3. If VFS is not usable and the number of active operations is zero, wake up
pending forceful unmount by calling semaphore V on vfs unmount sem.

4. Call semaphore V on vfs op sem.

64 CHAPTER 8. FILESYSTEM

8.3.5 File Operations

The primary function of the virtual filesystem is to provide unified access to all
mounted filesystems. The filesystems are accessed through file operation functions.

Before a file can be read or written it must be opened by calling vfs open:

openfile t vfs open (char *pathname)

• Opens the file described by pathname. The name must include both the full
pathname and the filename. (e.g. [root]shell)

• Returns an openfile identifier. Openfile identifiers are non-negative integers.
On error, negative value is returned.

• Implementation:

1. Call vfs start op. If an error is returned by it, return immediately with
the error code VFS UNUSABLE.

2. Parse pathname into volume name and filename parts.

3. If filename is not valid (too long, no mountpoint, etc.), call vfs end op

and return with error code VFS ERROR.

4. Acquire locks to the filesystem table and the openfile table by calling
semaphore P on vfs table.sem and openfile table.sem.

5. Find a free entry in the openfile table. If no free entry is found (the ta-
ble is full), free locks by calling semaphore V on openfile table.sem

and vfs table.sem, call vfs end op and return with the error code
VFS LIMIT.

6. Find the filesystem specified by the volume name part of the pathname

from the filesystem table. If the volume is not found, return with the
same procedure as for full openfile table except that the error code is
VFS NO SUCH FS.

7. Allocate the found free openfile entry by setting its filesystem field.

8. Free the locks by calling semaphore V on openfile table.sem and
vfs table.sem.

9. Call filesystem’s open function. If the return value indicates error, lock
the openfile table by calling semaphore P on openfile table.sem, mark
the entry free and free the lock with semaphore V. Call vfs end op and
return the error given by the filesystem.

10. Save the fileid returned by the filesystem in the openfile table.

11. Set file’s seek position to zero (beginning of the file).

12. Call vfs end op.

13. Return the row number in the openfile table as the openfile identifier.

Open files must be properly closed. If a filesystem has open files, the filesystem
cannot be unmounted except on shutdown where unmount is forced. The closing is
done by calling vfs close:

int vfs close (openfile t file)

• Closes an open file file.

• Returns VFS OK (zero) on success, negative on error.

8.3. VIRTUAL FILESYSTEM 65

• Implementation:

1. Call vfs start op. If an error is returned by it, return immediately with
the error code VFS UNUSABLE.

2. Lock the openfile table by calling semaphore P on openfile table.sem.

3. Verify that the given file is really open (kernel panics if it is not).

4. Call close on the actual filesystem for the file.

5. Mark the entry in the openfile table free.

6. Free the openfile table by calling semaphore V on openfile table.sem.

7. Call vfs end op.

8. Return the return value given by the filesystem when close was called.

The seek position within the file can be changed by calling:

int vfs seek (openfile t file, int seek position)

• Seek the given open file to the given seek position.

• The position is not verified to be within the file’s size and behaviour on ex-
ceeding the current size of the file is filesystem dependent.

• Returns VFS OK on success, negative on error.

• Implementation:

1. Call vfs start op. If error is returned by it, return immediately with
error code VFS UNUSABLE.

2. Locks the openfile table by calling semaphore P on openfile table.sem.

3. Verify that the file is really open (panic if not).

4. Set the new seek position in openfile table.

5. Free the openfile table by calling semaphore V on openfile table.sem.

6. Call vfs end op.

7. Return VFS OK.

Files are read and written by the following two functions:

int vfs read (openfile t file, void *buffer, int bufsize)

• Reads at most bufsize bytes from the given file into the buffer. The read
is started from the current seek position and the seek position is updated to
match the new position in the file after the read.

• Returns the number of bytes actually read. On most filesystems, the requested
number of bytes is always read when available, but this behaviour is not
guaranteed. At least one byte is always read, unless the end of file or error is
encountered. Zero indicates the end of file and negative values are errors.

• Implementation:

1. Call vfs start op. If an error is returned by it, return immediately with
the error code VFS UNUSABLE.

2. Verify that the file is really open (panic if not).

3. Call the read function of the filesystem.

66 CHAPTER 8. FILESYSTEM

4. Lock the openfile table by calling semaphore P on openfile table.sem.

5. Update the seek position in the openfile table.

6. Free the openfile table by calling semaphore V on openfile table.sem

7. Call vfs end op.

8. Return the value returned by filesystem’s read.

int vfs write (openfile t file, void *buffer, int datasize)

• Writes at most datasize bytes from the given buffer into the open file.

• The write is started from the current seek position and the seek position is
updated to match the new place in the file.

• Returns the number of bytes written. All bytes are always written unless an
unrecoverable error occurs (filesystem full, for example). Negative values are
error conditions on which nothing was written.

• Implementation:

1. Call vfs start op. If an error is returned by it, return immediately with
the error code VFS UNUSABLE.

2. Verify that the file is really open (panic if not).

3. Call the write function of the filesystem.

4. Lock the openfile table by calling semaphore P on openfile table.sem.

5. Update the seek position in the openfile table.

6. Free the openfile table by calling semaphore V on openfile table.sem

7. Call vfs end op.

8. Return the value returned by filesystem’s write.

Files can be created and removed by the following two functions:

int vfs create (char *pathname, int size)

• Creates a new file with given pathname. The size of the file will be size. The
pathname must include the mount-point (full name would be [root]shell,
for example).

• Returns VFS OK on success, negative on error.

• Implementation:

1. Call vfs start op. If an error is returned by it, return immediately with
the error code VFS UNUSABLE.

2. Parse the pathname into volume name and file name parts.

3. If the pathname was badly formatted or too long, call vfs end op and
return with the error code VFS ERROR.

4. Lock the filesystem table by calling semaphore P on vfs table.sem.
(This is to prevent unmounting of the filesystem during the operation.
Unlike read or write, we do not have an open file to guarantee that
unmount does not happen.)

5. Find the filesystem from the filesystem table. If it is not found, free the
table by calling semaphore V on vfs table.sem, call vfs end op and
return with the error code VFS NO SUCH FS.

8.3. VIRTUAL FILESYSTEM 67

6. Call filesystem’s create.

7. Free the filesystem table by calling semaphore V on vfs table.sem.

8. Call vfs end op.

9. Return with the return code of filesystem’s create function.

int vfs remove (char *pathname)

• Removes the file with the given pathname. The pathname must include the
mount-point (a full name would be [root]shell, for example).

• Returns VFS OK on success, negative on failure.

• Implementation:

1. Call vfs start op. If an error is returned by it, return immediately with
the error code VFS UNUSABLE.

2. Parse the pathname into the volume name and file name parts.

3. If the pathname was badly formatted or too long, call vfs end op and
return with the error code VFS ERROR.

4. Lock the filesystem table by calling semaphore P on vfs table.sem.
(This is to prevent unmounting of the filesystem during the operation.
Unlike read or write, we do not have an open file to guarantee that
unmount does not happen.)

5. Find the filesystem from the filesystem table. If it is not found, free the
table by calling semaphore V on vfs table.sem, call vfs end op and
return with the error code VFS NO SUCH FS.

6. Call filesystem’s remove.

7. Free the filesystem table by calling semaphore V on vfs table.sem.

8. Call vfs end op.

9. Return with the return code of filesystem’s remove function.

8.3.6 Filesystem Operations

In addition to providing an unified access to all filesystems, VFS also provides
functions to attach (mount) and detach (unmount) filesystems. Filesystems are
automatically attached at boot time with the function vfs mount all, which is
described below.

The file fs/filesystems.c contains a table of all available filesystem drivers.
When an automatic mount is tried, that table is traversed by filesystems try all

function to find out which driver matches the filesystem on the disk.

void vfs mount all (void)

• Mounts all filesystems found on all disks attached to the system. Tries all
known filesystems until a match is found. If no match is found, prints a
warning and ignores the disk in question.

• Called in the system boot up sequence.

• Implementation:

1. For each disk in the system do all the following steps:

2. Get the device entry for the disk by calling device get.

68 CHAPTER 8. FILESYSTEM

3. Dig the generic block device entry from the device descriptor.

4. Attempt to mount the filesystem on the disk by calling vfs mount fs

with NULL volumename (see below).

To attach a filesystem manually either of the following two functions can be
used. The first one probes all available filesystem drivers to initialize one on the
given disk and the latter requires the filesystem driver to be pre-initialized.

int vfs mount fs (gbd t *disk, char *volumename)

• Mounts the given disk to the given mountpoint (volumename). The mount
is performed by trying out all available filesystem drivers in fileystems.c.
The first match is used as the filesystem driver for the disk.

• If NULL is given as the volumename, the name returned by the filesystem driver
is used as the mount-point.

• Returns VFS OK (zero) on success, negative on error (no matching filesystem
driver or too many mounted filesystems).

• Implementation:

1. Try out init functions of all available filesystems in fs/filesystems.c

by calling filesystems try all.

2. If no matching filesystem driver was found, print warning and return the
error code VFS NO SUCH FS.

3. If the volumename is NULL, use the name stored into fs t->volume name

by the filesystem driver.

4. If the volumename is invalid, unmount the filesystem driver from the disk
and return VFS INVALID PARAMS.

5. Call vfs mount (see below) with the filesystem driver instance and
volumename.

6. If vfs mount returned an error, unmount the filesystem driver from the
disk and return the error code given by it.

7. Return with VFS OK.

int vfs mount (fs t *fs, char *name)

• Mounts an initialized filesystem driver fs into the VFS mount-point name.

• Returns VFS OK on success, negative on error. Typical errors are VFS LIMIT

(too many mounted filesystems) and VFS ERROR (mount-point was already in
use).

• Implementation:

1. Call vfs start op. If an error is returned by it, return immediately with
the error code VFS UNUSABLE.

2. Lock the filesystem table by calling semaphore P on vfs table.sem.

3. Find a free entry on the filesystem table.

4. If the table was full, free it by calling semaphore V on vfs table.sem,
call vfs end op and return the error code VFS LIMIT.

8.3. VIRTUAL FILESYSTEM 69

5. Verify that the mount-point name is not in use. If it is, free the filesystem
table by calling semaphore V on vfs table.sem, call vfs end op and
return the error code VFS ERROR.

6. Set the mountpoint and fs fields in the filesystem table to match this
mount.

7. Free the filesystem table by calling semaphore V on vfs table.sem.

8. Call vfs end op.

9. Return VFS OK.

To find out the amount of free space on given filesystem volume, the following
function can be used:

int vfs getfree (char *filesystem)

• Finds out the number of free bytes on the given filesystem, identified by its
mount-point name.

• Returns the number of free bytes, negative values are errors.

• Implementation:

1. Call vfs start op. If an error is returned by it, return immediately with
the error code VFS UNUSABLE.

2. Lock the filesystem table by calling semaphore P on vfs table.sem.
(This is to prevent unmounting of the filesystem during the operation.
Unlike read or write, we do not have an open file to guarantee that
unmount does not happen.)

3. Find the filesystem by its mount-point name filesystem.

4. If the filesystem is not found, free the filesystem table by calling
semaphore V on vfs table.sem, call vfs end op and return the error
code VFS NO SUCH FS.

5. Call filesystem’s getfree function.

6. Free the filesystem table by calling semaphore V on vfs table.sem

7. Call vfs end op.

8. Return the value returned by filesystem’s getfree function.

8.3.7 Filesystem Driver Interface

Filesystem drivers are implemented in BUENOS by creating a set of functions which
map into the function pointers required to fill the filesystem driver information
structure fs t. This structure is described in Table 8.5.

In addition to these functions, an initialization function returning fs t pointer
and taking a generic block device (disk) as an argument must be implemented.
When this function is called it determines whether the given disk contains the
filesystem supported by this driver. If not, it returns NULL. If the filesystem matches,
a filled fs t is returned. All values must be valid (not NULL) in the returned
structure pointer.

When the filesystem driver functions, specified by the function pointers in the
fs t structure are called, the fs t pointer from which they are called is also given
as an argument (treat like this in object oriented languages).

70 CHAPTER 8. FILESYSTEM

Type Name Explanation
void * internal Internal data of the

filesystem driver.
char [16] volume name Advisory mount-point name

filled by the filesystem
driver.

int (*)(struct

fs struct *fs)

unmount A function pointer to a
function which unmounts
this driver instance from the
disk. A call to this function
also invalidates the fs t

pointer to this struct. The
filesystem on the disk must
be in a stable state when
this function returns.

int (*)(struct

fs struct *fs, char

*filename)

open A function pointer to a
function which opens a file
on the filesystem. The name
of the file without the
mount-point part is given as
an argument. Returns a
non-negative file id, negative
values are errors.

int (*)(struct

fs struct *fs, int

fileid)

close A function pointer to a
function which closes an
open file specified by the
argument fileid. Returns
VFS OK (zero) on success,
negative on failure.

int (*)(struct

fs struct *fs,

int fileid, void

*buffer, int

bufsize, int

offset)

read A function pointer to a
function which reads at most
bufsize bytes from the file
specified by fileid into the
buffer starting from
offset. The number of
bytes read is returned. Zero
is returned only at the end
of the file (nothing read).
Negative values are errors.
The filesystem drivers
should always attempt to
read the requested number
of bytes if possible.

Continued on the next page

Table 8.5: Filesystem driver information structure (fs t)

8.3. VIRTUAL FILESYSTEM 71

Continued from the previous page

Type Name Explanation
int (*)(struct

fs struct *fs,

int fileid, void

*buffer, int

datasize, int

offset)

write A function pointer to a
function which writes at
most datasize bytes from
the buffer into the file
specified by fileid starting
write from file location
offset. The number of
bytes written is returned.
Any return value other than
datasize is an error,
negative values are specific
errors and positive values
partial writes (can occur
when the filesystem fills up,
for example).

int (*)(struct

fs struct *fs, char

*filename, int

size)

create A function pointer to a
function which creates a new
file with the given filename

and size. Returns the
standard VFS return codes.

int (*)(struct

fs struct *fs, char

*filename)

remove A function pointer to a
function which removes the
file with the given
filename. Returns the
standard VFS return codes.

int (*)(struct

fs struct *fs)

getfree A function pointer to a
function which returns the
number of free bytes on the
filesystem. Negative values
are errors.

Table 8.5: Filesystem driver information structure (fs t)

The newly implemented driver must be added to the filesystem information
structure filesystems in fs/filesystems.c with the name of the filesystem driver
and the init function. This table is used by the following function (called from within
VFS) to probe possible filesystems on disks:

fs t * filesystems try all (gbd t *disk)

• Tries to mount the given disk with all available filesystem drivers in
filesystems.

• Return initialized filesystem driver (return value from its init function), or
NULL if no match was found.

• Implementation:

1. Loop through all known filesystem drivers and call init on each. If
a match is found (non-NULL return value), return the filesystem driver
instance.

72 CHAPTER 8. FILESYSTEM

9

2nd datablock number

block filename1

First datablock for "filename7"

Second datablock for "filename7"

3rd datablock number

0

1

2

3

4

N

Block

Disk

5

6

7

8

...

10

File Header for "filename1"

Master Directory (MD)

Block Allocation Table (BAT)

Header Block

File Header for "filename7"

Size of file in blocks

1st datablock number

block filename8

Bitmap, each bit

Third datablock for "filename7"

...
127th datablock number

block filename4
block filename5
block filename6
block filename7

corresponds to one block

block filename3
block filename2

...

25 directory entries:

Name of the volume

on disk.

Magic Number (3745)

 (16 bytes)

This is the contents
of the file at offset 1024
from the beginning of
the file.

...

All blocks are 512 bytes in size.

Figure 8.1: Illustration of disk blocks on a TFS volume

2. If no match is found, return NULL.

8.4 Trivial Filesystem

Trivial File System (TFS) is, as its name implies, a very simple file system. All
operations are implemented in a straightforward manner without much consider-
ation for efficiency, there is only simple synchronization and no bookkeeping for
open files etc. The purpose of the TFS is to give students a working (although not
thread-safe) file system and a tool (see section 2.6) for moving data between TFS
and the native filesystem of the platform on which YAMS is run.

When students implement their own filesystem, the idea is that files can be
moved from the native filesystem to the TFS using the TFS tool, and then they can
be moved to the student filesystem using BUENOS itself. This way students don’t
necessarily need to write their own tool(s) for the simulator platform. (It is of course
perfectly acceptable to write your own tool(s), it just means writing programs for
other platforms than BUENOS.)

Trivial filesystem uses the native block size of a drive (must be predefined).
Each filesystem contains a volume header block (block number 0 on disk). After
header block comes block allocation table (BAT, block number 1), which uses one
block. After that comes the master directory block (MD, block number 2), also
using one block. The rest of the disk is reserved for file header (inode) and data
blocks. Figure 8.1 illustrates the structure of the TFS.

Note that all multibyte data in TFS is big-endian. This is not a problem in
BUENOS, since YAMS is big-endian also, but must be taken into consideration if you
want to write e.g. TFS debugging tools (native to the simulator platform).

The volume header block has the following structure. Other data may be present
after these fields, but it is ignored by TFS.

8.4. TRIVIAL FILESYSTEM 73

Offset Type Name Description
0x00 uint32 t magic Magic number, must be 3745

(0x0EA1) for TFS volumes.
0x04 char

[TFS VOLUMENAME

MAX]

volname Name of the volume,
including the terminating
zero.

The block allocation table is a bitmap which records the free and reserved blocks
on the disk, one bit per block, 0 meaning free and 1 reserved. For a 512-byte block
size, the allocation table can hold 4096 bits, resulting in a 2MB disk. Note that the
allocation table includes also the three first blocks, which are always reserved.

The master directory consists of a single disk block, containing a table of the
following 20-byte entries. This means that a disk with a 512-byte block size can
have at most 25 files (512/20 = 25.6).

Offset Type Name Description
0x00 uint32 t inode Number of the disk block

containing the file header
(inode) of this file.

0x04 char

[TFS FILENAME

MAX]

name Name of the file, including
the terminating zero. This
means that the maximum file
name length is actually
TFS FILENAME MAX - 1.

A file header block (”inode”) describes the location of the file on the disk and
its actual size. The content of the file is stored to the allocated blocks in the order
they appear in the block list (the first BLOCKSIZE bytes are stored to the first
block in the list etc.). A file header block has the following structure:

Offset Type Name Description
0x00 uint32 t filesize Size of the file in bytes.
0x04 uint32 t

[TFS BLOCKS MAX]

block Blocks allocated for this file.
Unused blocks are marked as
0 as a precaution (since
block 0 can never be a part
of any file).

With a 512-byte block size, the maximum size of a file is limited to 127 blocks
(512/4 − 1) or 65024 bytes.

Note that this specification does not restrict the block size of the device on which
a TFS can reside. However, the BUENOS TFS implementation and the TFS tool do
not support block sizes other than 512 bytes. Note also that even though the TFS
filesystem size is limited to 2MB, the device (disk image) on which it resides can be
larger, the remaining part is just not used by the TFS.

8.4.1 TFS Driver Module

The BUENOS TFS module implements the Virtual File System interface with the
following functions.

fs t * tfs init (gbd t *disk)

• Attempts to initialize a TFS on the given disk (a generic block device, ac-
tually). If the initialization succeeds, a pointer to the initialized filesystem
structure is returned. If not (e.g. the header block does not contain the right
magic number or the block size is wrong), NULL is returned.

74 CHAPTER 8. FILESYSTEM

• Implementation:

1. Check that the block size of the disk is supported by TFS.

2. Allocate semaphore for filesystem locking (tfs->lock).

3. Allocate a memory page for TFS internal buffers and data and the filesys-
tem structure (fs t).

4. Read the first block of the disk and check the magic number.

5. Initialize the TFS internal data structures.

6. Store disk and the filesystem locking semaphore to the internal data
structure.

7. Copy the volume name from the read block into fs t.

8. Set fs t function pointers to TFS functions.

9. Return a pointer to the fs t.

int tfs unmount (fs t *fs)

• Unmounts the filesystem. Ensures that the filesystem is in a “clean” state
upon exit, and that future operations will fail with VFS NO SUCH FS.

• Implementation:

1. Wait for active operation to finish by calling semaphore P on tfs->lock.

2. Deallocate the filesystem semaphore tfs->lock.

3. Free the memory page allocated by tfs init.

int tfs open (fs t *fs, char *filename)

• Opens a file for reading and writing. TFS does not keep any status regarding
open files, the returned file handle is simply the inode block number of the
file.

• Implementation:

1. Lock the filesystem by calling semaphore P on tfs->lock.

2. Read the MD block.

3. Search the MD for filename.

4. Free the filesystem by calling semaphore V on tfs->lock.

5. If filename was found the MD, return its inode block number, otherwise
return VFS NOT FOUND.

int tfs close (fs t *fs, int fileid)

• Does nothing, since TFS does not keep status for open files.

int tfs create (fs t *fs, char *filename, int size)

• Creates a file with the given name and size (TFS files cannot be resized after
creation).

• The file will contain all zeros after creation.

• Implementation:

8.4. TRIVIAL FILESYSTEM 75

1. Lock the filesystem by calling semaphore P on tfs->lock.

2. Check that the size of the file is not larger than the maximum file size
that TFS can handle.

3. Read the MD block.

4. Check that the MD does not contain filename.

5. Find an empty slot in the MD, return error if the directory is full.

6. Add a new entry to the MD.

7. Read the BAT block.

8. Allocate the inode and file blocks from BAT, and write the block numbers
and the filesize to the inode in memory.

9. Write the BAT to disk.

10. Write the MD to disk.

11. Write the inode to the disk.

12. Zero the content blocks of the file on disk.

13. Free the filesystem by calling semaphore V on tfs->lock.

14. Return VFS OK.

int tfs remove (fs t *fs, char *filename)

• Removes the given file from the directory and frees the blocks allocated for it.

• Implementation:

1. Lock the filesystem by calling semaphore P on tfs->lock.

2. Read the MD block.

3. Search the MD for filename, return error if not found.

4. Read the BAT block.

5. Read inode block.

6. Free inode block and all blocks listed in the inode from the BAT.

7. Clear the MD entry (set inode to 0 and name to an empty string).

8. Write the BAT to the disk.

9. Write the MD to disk.

10. Free the filesystem by calling semaphore V on tfs->lock.

11. Return VFS OK

int tfs read (fs t *fs, int fileid, void *buffer, int bufsize,

int offset)

• Reads at most bufsize bytes from the given file into the given buffer. The
number of bytes read is returned, or a negative value on error. The data is
read starting from given offset. If the offset equals the file size, the return
value will be zero.

• Implementation:

1. Lock the filesystem by calling semaphore P on tfs->lock.

2. Check that fileid is sane (≥ 3 and not beyond the end of the de-
vice/filesystem).

76 CHAPTER 8. FILESYSTEM

3. Read the inode block (which is fileid).

4. Check that the offset is valid (not beyond end of file).

5. For each needed block do the following:

(a) Read the block.

(b) Copy the appropriate part of the block into the right place in buffer.

6. Free the filesystem by calling semaphore V on tfs->lock.

7. Return the number of bytes actually read.

int tfs write (fs t *fs, int fileid, void *buffer, int datasize,

int offset)

• Writes (at most) datasize bytes to the given file. The number of bytes
actually written is returned. Since TFS does not support file resizing, it may
often be the case that not all bytes are written (which should actually be
treated as an error condition). The data is written starting from the given
offset.

• Implementation:

1. Lock the filesystem by calling semaphore P on tfs->lock.

2. Check that fileid is sane (≥ 3 and not beyond the end of the de-
vice/filesystem).

3. Read the inode block (which is fileid).

4. Check that the offset is valid (not beyond end of file).

5. For each needed block do the following:

(a) If only part of the block will be written, read the block.

(b) Copy the appropriate part of the block from the right place in
buffer.

(c) Write the block.

6. Free the filesystem by calling semaphore V on tfs->lock.

7. Return the number of bytes actually written.

int tfs getfree (fs t *fs)

• Returns the number of free bytes on the filesystem volume.

• Implementation:

1. Lock the filesystem by calling semaphore P on tfs->lock.

2. Read the BAT block.

3. Count the number of zeroes in the bitmap. If the disk is smaller than
the maximum supported by TFS, only the first appropriate number of
bits are examined (of course).

4. Get number of free bytes by multiplying the number of free blocks by
block size.

5. Free the filesystem by calling semaphore V on tfs->lock.

6. Return the number of free bytes.

EXERCISES 77

fs/vfs.h, fs/vfs.c Virtual Filesystem implementation

fs/filesystems.h,

fs/filesystems.c

Available filesystems

fs/tfs.h, fs/tfs.c TFS implementation

Exercises

Note that your filesystem, and other exercises in this chapter, must use a new
disk. First, create a new disk device with a blocksize of 128 bytes by adding
the entry defined in section C.1 into your yams.conf.

Generic hints: Do not modify TFS or tfstool, make copies and name them
for example SFS (student filesystem) and sfstool. This way you can still use
tfstool to transfer files to the system’s TFS volume and you only need to
support filesystem creation with your own tool. Note that you must compile
SFS and sfstool with the 128 byte blocksize (which is a configuration defi-
nition in the filesystem header file). Remember to include correct headers in
your own tool (sfs.h, not tfs.h).

You don’t have to make TFS comply to constraints given in this or any other
exercise, it is enough that your filesystem and VFS are correct. You can still
use the old disk for the TFS.

Ï 8.1. Improve the concurrency of the filesystem. Modify the filesystem so that:

• The same file may be read or written concurrently by any number of
processes.

• All filesystem operations must be atomic and serializable. This means
that all reads and writes must look like atomic operations, although in
reality they are done concurrently. Thus for example when a thread
writes to a file all readers see either the whole write or none of it.

• File deletion must work even when the file is open by one or more threads.
If the file is deleted and it is currently open in some thread, only new
opens on that file must fail and all already opened file handles must work
until they are closed. The blocks on a disk are released only after the file
is not open with any thread3.

Ï 8.2. Create a filesystem with large files. Your filesystem must support files up to
the size of the disk and disks of any size up to 1 megabyte. Note that for
future extensibility, do not make the block pointer types any smaller than in
TFS (let them be 32-bit wide). Note also that retrieving a block from a disk
takes quite a lot of time. Make sure that your design is fast enough to be
feasible.

Ï 8.3. Make files extensible. If a file is written beyond its end, the file is extended
so much that the write is possible. This also makes it possible to create files
with length 0 and expand them as needed.

Ï 8.4. Implement directories. Directories can contain files and other directories,
forming a hierarchical namespace together with mount-point identifiers. For
example, a full pathname to shell could be [root]bins/sys/shell.

3Typical way to use temporary files is to first create the file, then open it and finally delete it.
The removal will then be handled automatically when the process exits.

78 CHAPTER 8. FILESYSTEM

Hints: Handle directories as files internally. Plan carefully how concurrent
access to directories is handled.

Ï 8.5. Implement a kernel information filesystem. The filesystem should be a virtual
filesystem, which is not on any disk. It can be mounted normally to any
mountpoint. The filesystem should contain one file per each process in the
system and each file describes the current status of the corresponding process.
Status information should include at least process ID, name of executable,
memory usage and current thread state (running, sleeping, ready for running).
If you have implemented userland threads, replace the thread state with the
number of threads the process currently runs.

Ï 8.6. Improve the performance of your filesystem in the case of many concurrent
users. The typical ways to improve filesystem performance are:

(a) Implement a mechanism to use a part of system main memory as a cache
for disk blocks. Three main styles for doing this are:

• A fixed sized (but configurable) chunk of memory is used for caching.

• All otherwise unused memory pages are used for caching.

• The virtual memory system will treat cache pages and pages used by
programs equally. Note that cache page might be clean (read cache)
or dirty (write cache).

Evaluate these three alternatives and implement the one you consider
to be the best. You can of course use your own scheme if you find it
superior to all of these.

(b) Implement an I/O-scheduler for disk access. The current method of
handling disk read and write requests is a strict FIFO. Implement a better
disksched schedule() function which will improve system performance
by:

• Taking into account the disk block number where the requests in the
queue are made on. The seeks of the disk read/write head take a lot
of time and much speed can be gained by considering its movement
when ordering requests.

• Make sure that no request can ever completely starve.

• If you have implemented a priority scheduler, consider also using
thread priorities as a parameter when ordering disk requests (note
that the disk scheduler is currently run in the context of the thread
which made the request).

(c) Tune the filesystem so that it will try to place blocks that are usually
used sequentially close to each other (like blocks of one file). Together
with a good disk scheduler, this should also improve overall performance.

Write also a set of test programs which demonstrate the performance improve-
ments gained. Analyze the performance gains. You might need to instrument
the operating system to get measurable results out of your test program runs.

Chapter 9

Networking

The implementation of BUENOS networking is organized in layers. Each layer adds
some more functionality to the lower layers. The device driver implementing the
Generic Network Device (GND) interface can be thought of as the bottommost layer
of the network stack. This layer issues commands to the network device and handles
interrupts generated by the device. The implementation of this layer was left as an
exercise to the students. The GND interface is documented in section 10.2.5. Some
hints about implementing the device driver are given in section 10.3.3.

Above the device driver layer resides the network frame layer discussed in sec-
tion 9.1. This layer abstracts the possibly multiple GNDs found in the system.
Packets are received from all GNDs and forwarded further to the correct upper
layer packet handler.

Packet Oriented Protocol (POP) implements an abstraction similar to the unix
sockets. It allows packets sent by different entities in the same machine to be
distinguished. The implementation of POP is further explained in section 9.2.

A stream oriented protocol is left as an exercise to the students. This layer
should add connections and reliability to the services provided by POP. Some hints
about the implementation of a stream oriented protocol are given in section 9.3.

For more information on advanced networking topics, see [Stallings] p. 699–707,
586–590 and 608–615.

9.1 Network Services

Frame layer transfers frames through (possible) multiple Network Interface Cards
(NIC) abstracted by GNDs. There is a receive service thread for each GND and
when a frame is received it is forwared to the appropriate upper level frame handler.
Frames given to be sent are sent through the appropriate GND.

Network addresses in YAMS are one word long (32 bits). There are two kinds of
special addresses:

• Addresses containing all zeros are loopback addresses. While sending they
are pushed immediately to the upper level frame handlers.

• Addresses containing all ones are broadcast addresses. broadcast address,

network These frames are sent through all GNDs.

The frame consists of header and payload as described in Table 9.1. Frame size
is limited by page size of the virtual memory system. This is because there is no
way of reserving two consecutive memory pages and device drivers handle physical
addresses. Payload size is therefore page size minus header size.

80 CHAPTER 9. NETWORKING

Type Name Explanation
network frame header t header Header of the frame.
uint8 t [] payload Payload to be transferred.

Table 9.1: Fields in structure network frame t

Type Name Explanation
network address t destination Destination address of the

frame.
network address t source Source address of the frame.
uint32 t protocol id The higher level protocol id

for this frame.

Table 9.2: Fields in structure network frame header t

The frame header consists of source and destination addresses and the protocol
identification for payload. Source and destination addresses belong to the frame
header of YAMS network devices, but the protocol identification field is considered
as payload by YAMS. The header is described in Table 9.2.

Upper Level Protocols

All upper level protocols are defined in a static table network protocols. Table
entry, defined as network protocols t, contains the following information:

Type Name Explanation
uint32 t protocol id Typecode of the protocol.
frame handler t frame handler Pointer to the function that

will handle the payload of
the frame.

void (*)(void) init Initialization function of the
protocol.

frame handler t is a function type which behaves like this:

int frame handler (network address t source,

network address t destination, uint32 t protocol id,

void *payload)

• Upper level handler for the frame (payload). Takes as parameters source and
destination addresses of the frame, protocol identification of the frame and
payload of the frame.

An initialization function protocols init() is provided. Function calls initial-
ization function for each protocol in network protocols table.

Initialization

In network initialization all network devices are searched and network interfaces

table is set up. Also socket and protocol initialization functions are called here. For
each GND found a receive service thread is started.

The following network initialization function is provided.

9.1. NETWORK SERVICES 81

void network init (void)

• Initializes networking code. Also calls initialization functions for sockets and
protocols. Starts a receive thread for each GND found.

• Implementation:

1. Mark all entries as unused (gnd == NULL) in the network interface
table.

2. Find all network interfaces by device get, get their GNDs and store
GNDs, addresses and MTUs in the table. For each MTU, assert that it
is smaller than page size (the page size is 4096 bytes).

3. Create and run a thread for each GND. All the threads will run
network receive thread with a pointer to the GND as the argument.

Receive Service Thread

For each network interface found a receive service thread is started. The main job is
to allocate memory for frames to be received and when a frame is recieved call the
network receive() function. Each thread has one interface attached to it (given
as parameter) and frames are received through it.

The receive service thread is implemented as follows:

void network receive thread (uint32 t interface)

• Receives frames from the given network device ad infinitum. Calls the function
network receive frame() which will call upper level frame handler.

• Index to the network interfaces table is given as parameter.

• Implementation:

1. Allocate a page for frame receiving. Assert errors.

2. Call GND->receive.

3. If a frame is succesfully received, call network receive frame().

4. Go back to step one.

static int network receive frame (network frame t *frame)

• Finds a frame handler for the appropriate upper level protocol and calls it.

• Implementation

1. Find the frame handler by calling protocols get frame handler().
The protocol ID found from frame is given as parameter.

2. If found call it and return its value.

3. Else return zero as failure.

Upper level frame handlers must free the page reserved for the frame by calling
network free frame().

Service API

Following functions are provided as service API. Upper level protocols may be
implemented on top of these.

82 CHAPTER 9. NETWORKING

network address t network get source address (int n)

• Get the local address of the nth network interface. Returns 0 if no such
interface exists.

• Implementation:

1. Check that n ≥ 0 and smaller than CONFIG MAX GNDS. If not, return 0.

2. Get the nth entry from the table. If GND is not NULL, return the
address, otherwise return 0.

network address t network get broadcast address (void)

• Gets the global broadcast address.

• Implementation:

1. Return 0xffffffff.

network address t network get loopback address (void)

• Gets the loopback address.

• Implementation:

1. Return 0.

int network get mtu (network address t local address)

• Gets the MTU of a GND. The frame header (12 bytes) is decremented from
the size of the frame. If the broadcast address is given, minimum of all GND’s
MTU is returned.

• Implementation:

1. If broadcast address: go trough all GNDs and find the minimun MTU.

2. Else: find local address from the GND table and get the MTU.

3. If not found, return 0.

4. Return MTU - 12.

int network send (network address t source,

network address t destination, uint32 t protocol id, int length,

void *buffer)

• Sends one packet to network. Blocks.

• If the source is broadcast address, the frame is broadcast on all network
interfaces (with the interface’s address as source, of course).

• Returns positive value on success and negative on failure.

• Implementation:

1. ASSERT that the length is smaller or equal to 4084 (page size - 12)

2. Allocates page for the packet with pagepool get physical page. If
page allocation fails, return NET ERROR.

9.2. PACKET ORIENTED TRANSPORT PROTOCOL 83

3. If destination is loopback, push frame to upper levels by calling
network receive frame() immediately and return.

4. If source is broadcast: for each interface, do the following steps using in-
terface address as source. If the source is not broadcast do the following
steps only once.

5. Find source address from GND table (local address).

6. If not found, return NET DOESNT EXIST.

7. Call network send interface().

8. Return success or failure. Negative values indicate failure and zero or
positive values success.

static int network send interface (int interface,

network address t destination, network frame t *frame)

• Sends a frame through the given interface. This is a helper function to ease
handling in more complex functions.

• Implementation

1. Get gnd from network interfaces table.

2. Call gnd->send().

void network free frame (void *frame)

• Frees the given frame. Called from protocol-specific frame handler after the
frame is handled.

• Implementation:

1. Call vm free page().

9.2 Packet Oriented Transport Protocol

Packet Oriented Protocol (POP) is very similar to UDP. Port numbers are used to
identify different entities on the same machine. POP offers unreliable delivery from
one entity on one machine to another entity on another machine.

The port numbers are implemented by a socket abstraction which is very similar
to the sockets found in UNIX like operating systems. A socket is bound to a port
number which can be given explicitly when creating the socket or it may be chosen
randomly by BUENOS. The implementation of POP includes functions to open and
close sockets and to send and receive a packet through an opened socket. The socket
implementation is further discussed in section 9.2.1.

POP also needs some structures and functions that are not essentially a part of
the socket abstraction. These include the format of a POP packet and a queue for
incoming packets. A thread which places the incoming packets to correct receive
buffers is also needed. These issues and the implementation of the protocol specific
functions of the socket abstraction are discussed in section 9.2.2.

84 CHAPTER 9. NETWORKING

Type Name Explanation
uint16 t port The port that this socket is

bound to.
uint8 t protocol The protocol id of the

protocol used with this
socket.

void * rbuf This is the address of the
receive buffer if some thread
is currently waiting for input
from this socket, NULL if
there is no waiting thread.

uint32 t bufsize Size of the receive buffer. No
more than this number of
bytes are copied to the
buffer.

network address t * sender When a packet is received
the sender’s address is
stored here.

int * copied When a packet is received,
the number of copied bytes
is stored here.

uint16 t * sport When a packet is received,
the port number of the
sender is stored here.

Table 9.3: Fields in structure socket descriptor t

9.2.1 Sockets

Open sockets are stored in a static size table called open sockets. This table
contains entries of the form socket descriptor t which is described in Table 9.3.
The size of this table is determined by CONFIG MAX OPEN SOCKETS. The access to
this table is synchronized by a semaphore, open sockets sem.

The socket implementation has three functions, socket init, socket open

and socket close. In addition to these, the POP implementation includes func-
tions socket sendto and socket recvfrom. The stream-oriented transport pro-
tocol is left as an exercise to the students. The implementation of this protocol
should include functions like socket connect, socket read , socket listen and
socket write.

void socket init (void)

• Initializes the structures needed to implement the socket abstraction.

• Implementation:

1. Ensure that this function is called only once.

2. Initialize open sockets sem to 1 (free) and assert that the initialization
succeeds.

3. Initialize all open sockets to empty (protocol 0).

sock t socket open (uint8 t protocol, uint16 t port)

9.2. PACKET ORIENTED TRANSPORT PROTOCOL 85

• This function will create a socket and bind it to the given port. A handle for
the socket is returned.

• protocol is 0x01 for POP.

• port is the port to bind to. If set to 0, BUENOS will select a free port.

• Implementation:

1. Check that protocol is one of the supported ones, return error (-1) if
not.

2. Call semaphore P on open sockets sem.

3. Find a free socket descriptor from the table. If the table was full, call
semaphore V on open sockets sem and return error.

4. If port is 0, find the first unused port by looking through all open sockets
in the table.

5. Otherwise check that the port is unused. If the port is in use call
semaphore V on open sockets sem and return error.

6. Save protocol and port into the table entry and initialize other fields
to 0 or NULL.

7. Call semaphore V on open sockets sem.

8. Return the index to the socket table.

void socket close (sock t socket)

• This function unbinds the socket in question. The socket can no longer be
used after this.

• Implementation:

1. Check that socket has a valid value.

2. Call semaphore P on open sockets sem.

3. Mark the entry in the socket table as unused by setting the protocol to
0 and also zero all other fields.

4. Call semaphore V on open sockets sem.

9.2.2 POP-Specific Structures and Functions

POP defines its own packet format which is described in Table 9.4. The header
includes the port values which are used to distinguish different entities in a ma-
chine. The source and destination network addresses are found in the lower level
network headers and are therefore not included in the POP header. POP allows an
application to send packets of length less or equal to the network MTU (including
all headers). To know where the data ends POP header thus contains the SIZE
field, which tells the payload data length in bytes.

The main functionality of POP is to send and receive packets. Sending in POP
is done synchronously. That is, the sending thread is used to send the packet so that
no packet queueing is needed. Receiving, however, needs to be done asynchronously
so POP contains a queue for received packets. The structure of entries in the queue
for received POP packets is presented in Table 9.5. The queue is of static length
defined by CONFIG POP QUEUE SIZE. Access to the POP queue is protected by a
semaphore, pop queue sem.

86 CHAPTER 9. NETWORKING

Offset Name Size Description
0 SPORT 2 Source port; the sender is bound to this

port.
2 DPORT 2 Destination port; the receiver listens to

(is bound to) this port.
4 SIZE 4 The size of the payload data in bytes.
8 DATA variable The payload data, of length SIZE.

Table 9.4: POP packet format

Type Name Explanation
void * frame The received packet.
sock t socket The socket that will receive

this packet.
uint32 t timestamp The time when this packet

was put to the queue.
network address t from The address of the sender.
int busy 1 if this entry is in use, 0

otherwise.

Table 9.5: Structure for entries in the pop queue.

When a frame arrives, the BUENOS network layer examines the protocol number
in the frame header and calls the appropriate frame handler. The frame handler for
POP is pop push frame. This function will place the arrived packet to the POP
queue. When POP is initialized, a service thread is created. This thread continually
scans the POP queue and delivers packets to applications if they are ready to receive
packets.

The POP implementation includes the following functions:

void pop init (void)

• Initialize the POP layer by emptying the entries in the pop queue and starting
the POP service thread.

• Implementation:

1. Ensure that this function is executed only once.

2. Assert that POP header has the correct lenght.

3. Allocate a page for the send buffer and assert that this succeeds.

4. Create the three needed semaphores (pop send buffer sem,
pop queue sem and pop service thread sem) and assert that this suc-
ceeds.

5. Initialize all entries in the pop queue to empty.

6. Start the service thread.

int pop push frame (network address t fromaddr,

network address t toaddr, uint32 t protocol id, void *frame)

• Place the frame into the POP frame queue and wake up the POP service
thread. If there is no space in the queue, return 0. frame points to the

9.2. PACKET ORIENTED TRANSPORT PROTOCOL 87

beginning of the page containing the frame, and the frame will include the
from and to addresses of the frame layer (ie. it is in the full frame format).

• frame is a page allocated by the caller (frame layer). When the POP layer
has no more need for the page it will call network free frame(frame).

• Returns 1 if the frame was accepted (placed in the queue) and 0 if not. In
case of return value 0, the caller may free or reuse the frame immediately.

• Implementation:

1. Check that the protocol id is POP.

2. Call semaphore P on pop queue sem.

3. Search the queue for an empty slot. If no empty slot was found,
find the oldest nonbusy entry. If the oldest entry is younger than
CONFIG POP QUEUE MIN AGE, call V on pop queue sem and return 0.

4. For the selected entry, set the frame field to frame, socket field to -1,
from to fromaddr, timestamp to rtc get msec and busy to 0.

5. Call semaphore V on pop queue sem.

6. Call semaphore V on pop service thread sem to signal the POP service
thread.

7. Return 1 to indicate that the frame was accepted.

void pop service thread (uint32 t dummy)

• This function runs in its own thread delivering incoming POP packets to
right receive buffers and discarding packets whose destination port is not
listened. When there is nothing to do, the service thread will wait on the
service thread sem.

• Implementation: repeat the following ad infinitum:

1. Call semaphore P on open sockets sem.

2. Call semaphore P on pop queue sem.

3. Find the first nonempty entry in the pop queue.

4. If its destination port is not listened, mark the queue entry as empty
and call network free frame. The call must be postponed after the
semaphore release because many semaphores are held.

5. If the destination port is listened but no one is waiting for a packet for
that socket (receive buffer is NULL), find the next nonempty frame and
repeat from the previous step.

6. If the destination port is listened and someone is waiting for a packet,
mark the queue entry as busy and mark the frame (function internal) to
be transferred.

7. Call semaphore V on pop queue sem.

8. Call semaphore V on open sockets sem.

9. If a frame was marked to be discarded, call network free frame and
mark the row in the queue as unused.

10. If a frame was marked to be transferred, do the following:

88 CHAPTER 9. NETWORKING

(a) Transfer the proper amount of POP payload bytes to the receive
buffer of the socket and set the sender, sport and copied fields to
corresponding values (sockets need not be synchronized since no one
should touch our socket when it is in waiting state).

(b) Mark the receive buffer for the socket as NULL.

(c) Mark the queue entry as empty (no synchronization is needed here
either, since no one else will touch busy entries).

(d) Call network free frame for the frame.

(e) Wake the thread waiting for the transfer to complete..

11. If any frames were processed (transferred or freed), repeat from step 1.

12. Call semaphore P on pop service thread sem.

The following functions are actually part of the socket interface but they are
implemented by POP.

int socket sendto (sock t s, network address t addr, uint16 t dport,

void *buf, int size)

• Send size bytes from buffer buf to address addr, port dport, using socket s.

• Implementation:

1. Check that s, size and buf are sane, return error (-1) if not.

2. Limit size so that the whole frame will fit into one page.

3. Call semaphore P on open sockets sem.

4. Check that the given socket is a POP socket.

5. Copy the entry indexed by s to a local variable.

6. Call semaphore V on open sockets sem.

7. Call semaphore P on pop send buffer sem.

8. Fill the POP header located at the start of pop send buffer with
PRID=0x01, RSRVD=0x00, SPORT=port from the socket entry, and
DPORT=dport.

9. Move size bytes from buf to the data area in the POP packet.

10. Call network send using broadcast address as source address so that the
packet will be sent through all network interfaces.

11. Call semaphore V on pop send buffer sem.

12. Return the number of payload bytes sent or error if network send re-
turned error.

int socket recvfrom (sock t s, network address t *addr,

uint16 t *sport, void *buf, int maxlength, int *length)

• Receive at most maxlength bytes from network using socket s, storing the
received data into buffer buf. The sender’s address is stored in *addr. The
number of actually received bytes is stored in *length.

• Implementation:

1. Check that the parameters are sane.

2. Call semaphore P on open sockets sem.

9.3. STREAM ORIENTED PROTOCOL API 89

3. If the rbuf field of the socket is not NULL, release the semaphore and
return -1 (someone else is waiting for a packet for the same socket, this
is not supported). Also check that this is a POP socket.

4. Set the fields rbuf, bufsize, sender, sport and copied for s from the
arguments.

5. Call semaphore V on open sockets sem.

6. Wake up the POP service thread by calling semaphore V on the
semaphore pop service thread sem.

7. Wait until the packet has been transfered by calling semaphore P on
receive complete semaphore in the socket structure.

8. Return the number of bytes received.

9.3 Stream Oriented Protocol API

The existing network implementation doesn’t support connection oriented reliable
sockets. This kind of sockets provide reliable communication on unreliable network
and can transfer arbitrary number of bytes on single connection. The interface (for
non-exisisting protocol) to stream sockets is following (see also net/sop.h):

int socket connect (sock t s, network address t addr, int port)

• Connects to remote machine (address addr) at port port. The connection
remains open until explicitly closed by call to socket close() or connection
is lost.

• Return 0 on success, 1 on failure.

void socket listen (sock t s)

• Waits until given socket s has been connected by someone (listen on server
socket).

int socket read (sock t s, void *buf, int length)

• Reads at most length bytes from given socket s. The data read is written to
buffer buf.

• Returns the number of bytes read. Zero indicates end of stream and negative
values are returned on errors.

int socket write (sock t s, void *buf, int length)

• Writes length bytes to given socket s. The data is read from buffer buf.

• Returns the number of bytes successfully delivered to the destination. If the
return value is not equal to length, an unrecoverable error has occured and
the socket connection is lost.

90 CHAPTER 9. NETWORKING

net/network.h,

net/network.c

Network frame layer

net/protocols.h,

net/protocols.c

List of available network protocols

net/socket.h,

net/socket.c

Socket library

net/pop.h, net/pop.c Packet oriented unreliable networking
protocol

net/sop.h Stream oriented reliable networking protocol
API (no implementation available)

Exercises

Ï 9.1. Implement a reliable stream oriented network protocol. The interface to the
protocol is described in section 9.3.

Ï 9.2. Implement a network filesystem. The filesystem should be mountable to the
standard VFS interface (see section 8.3). The server side implementation
must support multiple simultaneous clients on the same filesystem at the
same time. Userland programs must be able to use network filesystem just
like a local filesystem.

Ï 9.3. Implement process migration through network. Any userland process must
be able to call new system call (you define it) and give an address of a target
machine. The process is then migrated into that new machine. All already
open files must work normally after the migration, but console prints will go
to the console of the new host machine. The process can re-migrate at any
time it wishes.

Chapter 10

Device Drivers

Since BUENOS runs on a complete simulated machine, it needs to be able to access the
simulated devices in YAMS. These hardware devices include system consoles, disks
and network interface adapters. Device drivers use two hardware provided mech-
anisms intensively: they depend on hardware generated interrupts and command
the hardware with memory mapped I/O.

Most hardware devices generate interrupts when they have completed the pre-
vious action or when some asynchronous event, such as arrival of a network frame,
occurs. Device drivers implement handlers for these interrupts and react to the
event.

Memory mapped I/O is an interface to the hardware components. The un-
derlying machine provides certain memory addresses which are actually ports in
hardware. This makes it possible to send and receive data to and from hardware
components. Certain components also support block data transfers with direct
memory access (DMA). In DMA the data is copied between main memory and the
device without going through CPU. Completion of DMA transfer usually causes an
interrupt.

Interrupt driven device drivers can be thought to have two halves, top and
bottom. The top half is implemented as a set of functions which can be called from
threads to get service from the device. The bottom half is the interrupt handler
which is run asynchronously whenever an interrupt is generated by the device. It
should be noted that the bottom half might be called also when the interrupt was
actually generated by some other device which shares the same interrupt request
channel (IRQ).

Top and bottom halves of a device driver typically share some data structures
and require synchronized access to that data. The threads calling the service func-
tions on the top half might also need to sleep and wait for the device. Resource
waiting (also called blocking or sleeping) is implemented by using the sleep queue or
semaphores. The syncronization on the data structures however needs to be done
on a lower level since interrupt handlers cannot sleep and wait for access to the
data. Thus the data structures need to be synchronized by disabling interrupts and
acquiring a spinlock which protects the data. In interrupt handlers interrupts are
already disabled and only spinlock acquiring is needed.

For an introduction on device drivers and hardware, read either [Tanenbaum] p.
269–300 and 327–341 or [Stallings] p. 474–486.

92 CHAPTER 10. DEVICE DRIVERS

Type Name Explanation
device t device The device for which this

interrupt is registered.
uint32 t irq The interrupt mask. Bits 8

through 15 indicate the
interrupts that this handler
is registered for. The
interrupt handler is called
whenever at least one of
these interrupts has occured.

void (*)(device t

*)

handler The interrupt handler
function called when an
interrupt occurs. The
argument given to this
function is device.

Table 10.1: Fields in structure interrupt entry t

10.1 Interrupt Handlers

All device drivers include an interrupt handler. When an interrupt occurs the sys-
tem needs to know which interrupt handlers need to be called. This mechanism
is implemented with an interrupt handler registration scheme. When the device
drivers are initialized, they will register their interrupt handler to be called when-
ever specified interrupts occur. When an interrupt occurs, the interrupt handling
mechanism will then call all interrupt handlers which are registered with the oc-
cured interrupt. This means that the interrupt handler might be called although
the device has not generated an interrupt.

The registered interrupt handlers are kept in the table interrupt handlers

which holds elements of type interrupt entry t. The fields of this structure are
described in the Table 10.1.

void interrupt register (uint32 t irq, void (*handler)(device t *),

device t device)

• Registers an interrupt handler for the device. irq is an interrupt mask, which
indicates the interrupts this device has registered. Bits 8 through 15 indicate
the registered interrupts. handler is the interrupt handler called when at
least one of the specified interrupts has occured. This function can only be
called during booting.

• Implementation:

1. Find the first unused entry in interrupt handlers.

2. Insert the given parameters to the found table entry.

void interrupt handle (uint32 t cause)

• Called when an interrupt has occured. The argument cause contains the
Cause register. Goes through the registered interrupt handlers and calls those
interrupt handlers that have registered the occured interrupt.

• Implementation:

10.2. DEVICE ABSTRACTION LAYERS 93

Generic block deviceGeneric character device

TTY driver Disk driver

Generic network device

NIC driver RTC driver

Device

Generic device layer

Device driver layer

Figure 10.1: BUENOS device abstraction layers.

1. Clear software interrupts.

2. Call the appropriate interrupt handlers.

3. Call the scheduler if appropriate.

kernel/interrupt.h,

kernel/interrupt.c

interrupt entry t, interrupt register,
interrupt handle

10.2 Device Abstraction Layers

The device driver interface in BUENOS contains several abstraction layers. All device
drivers must implement standard interface functions (initialization function and
possibly interrupt handler) and most will also additionally implement functions
for some generic device type. Three generic device types are provided in BUENOS:
generic character device, generic block device and generic network device. These
can be thought as ”superclasses” from which the actual device drivers are inherited.
The hierarchy of device driver abstractions is shown in Figure 10.1.

Generic character device is a device which provides uni- or bidirectional
bytestream. The only such device preimplemented in BUENOS is the console.
Generic block device is a device which provides random read/write access to fixed
sized blocks. The only such device implemented is the disk driver. These interfaces
could also be used to implement stream based network protocol or network block
device, for example. The interface for generic network device is also given. However
there is no device driver implementing this interface since the network device driver
is left as an exercise.

All device drivers must have an initialization function. Pointer to this function
is placed in a structure drivers available in drivers/drivers.c together with a
device typecode identifier. The system will initialize the device drivers in bootup for
each device in the system by calling these initialization functions. This initialization
is done in device init().

10.2.1 Device Driver Implementor’s Checklist

When implementing a new device driver for BUENOS at least the following things
must be done:

1. Place new driver in drivers/.

2. Implement functions which provide interface to the device for threads. If
possible, use generic device abstractions.

94 CHAPTER 10. DEVICE DRIVERS

Type Name Explanation
uint32 t typecode The typecode of the device

this driver is intended for.
const char * name The name of this driver.

Printed to console before the
driver is initialized.

device t *

(*)(io descriptor t

*descriptor)

initfunc A pointer to the
initialization function for the
driver. Starts the driver for
the hardware device
described by descriptor

and return pointer to the
device driver instance.

Table 10.2: Fields in structure drivers available t

3. Implement interrupt handler for the device.

4. Implement initialization function which will allocate and initialize device
structure and register the interrupt handler.

5. Put the device driver’s initialization function in drivers available table in
drivers/drivers.c.

6. Use volatile keyword in the variable declarations that can be changed during
the execution of a thread (e.g., when the process is sleeping, interrupted, . . .).
(The volatile keyword tells the compiler that the variable in question can
be changed without any action taken by the code nearby the variable.)

10.2.2 Device Driver Interface

Device driver initialization functions are placed in table drivers available. The
structure of an entry in that table is shown in Table 10.2.

Every device driver’s initialization function must return a pointer to device de-
scriptor (device t) for this device. The descriptor structure is explained in Ta-
ble 10.3.

The device entry has a field of type io descriptor t *. This refers to device
descriptor record provided by the hardware (YAMS). This structure is thus not al-
located, but just referenced from hardware device descriptor area in memory. The
fields are documented in detail in YAMS’s manual, but are also shown in Table 10.4.

In system boot-up, device driver initialization code is called from init(). The
function called is:

void device init (void)

• Finds all devices connected to the system and attempts to initialize device
drivers for them.

• Implementation:

1. Loop through the device descriptor area of YAMS.

2. For each found device try to find the driver by scanning through the list
of available drivers (drivers available in drivers/drivers.c).

10.2. DEVICE ABSTRACTION LAYERS 95

Type Name Explanation
void * real device Pointer to the device driver’s

internal data structures.
void * generic device Pointer to a generic device

handle (generic character
device, generic network
device or generic block
device). Will be NULL if
the device driver does not
implement any generic
device interface.

io descriptor t * descriptor Pointer to the device
descriptor for the hardware
device in device descriptor
area provided by YAMS

uint32 t io address Start address of the
memory-mapped I/O-area of
the device.

uint32 t type The typecode of this device.
Typecodes are listed in
drivers/yams.h

Table 10.3: Fields in structure device t

Type Name Explanation
uint32 t type Typecode of the device.
uint32 t io area base Start address of the device’s

memory mapped I/O area.
uint32 t io area len Lenght of the device’s

memory mapped I/O area in
bytes.

uint32 t irq The interrupt request line
used by this device.
0xffffffff if the device
doesn’t use interrupts.

char vendor string Vendor string of the device.
Note that the string is not
0-terminated.

uint32 t[2] resv Reserved for future
extensions.

Table 10.4: Fields in YAMS device descriptor structure io descriptor t.

96 CHAPTER 10. DEVICE DRIVERS

Type Name Explanation
device t * device Pointer to the “real” device.
int (*)(gcd t * gcd,
const void * buf, int
len)

write Pointer to a function which writes
len bytes from buf to the device.
The function returns the number of
bytes successfully written.

int (*)(gcd t * gcd,
void * buf, int len)

read Pointer to a function which reads at
most len bytes to buf from the
device. The function returns the
number of bytes successfully read.

Table 10.5: Generic Character Device (gcd t)

3. If a matching driver is found, call its initialization function and print the
match to the console. Store the initialized driver instance to the device
driver table device table.

4. Else print a warning about an unrecognized device.

After device drivers are initialized, we must have some mechanism to get a
handle of a specific device. This can be done with the device get function1:

device t * device get (uint32 t typecode, uint32 t n)

• Finds initialized device driver based on the type of the device and sequence
number. Returns Nth initialized driver for device with type typecode. The
sequencing begins from zero. If device driver matching the specifield type and
sequence number if not found, the function returns NULL.

10.2.3 Generic Character Device

A generic character device (GCD) is an abstraction for any character-buffered
(stream based) I/O device (e.g. a terminal). A GCD specifies read and write
functions for the device, which have the same syntax for every GCD. Thus, when
using GCD for all character device implementations, the code which reads or writes
them does not have to care whether the device is e.g. a TTY or some other character
device.

The generic character device is implemented as a structure with the fields de-
scribed in the Table 10.5.

10.2.4 Generic Block Device

Generic block device (GBD) is an abstraction of a block-oriented device (e.g. disk).
GBD consists of function interface and a request data structure that abstracts the
blocks to be handled. All functions are implemented by the actual device driver.
Function interface is provided as the gbd t (see Table 10.6) data structure.

Blocks to be handled are abstracted by the gbd request t data structure (Ta-
ble 10.7). Structure includes all necessary information related to the reading or
writing of a block.

The gbd operation t is an enumeration of following values: GBD OPERATION READ

and GBD OPERATION WRITE.

1If you are familiar with Unix device driver interface, it may help to think of the typecode as
major device number and n as minor device number.

10.2. DEVICE ABSTRACTION LAYERS 97

Type Name Explanation
device t * device Pointer to the actual device.
int (*)(gbd t *

gbd, gbd request t

*request

read block A pointer to a function
which reads a
request->block from the
device gbd to the buffer
request->buf. Before
calling, fill the fields block,
buf and sem in request.
The call of this function is
synchronous if sem is NULL.
The call of this function is
asynchronous otherwise.
When the asynchronous read
is done the semaphore sem is
signaled. In synchronous
mode the return value 1
indicates success and 0
failure. In asynchronous
mode 1 is returned when the
work is submitted to the
lower layer, 0 indicates
failure in submission.

int (*)(gbd t

*gbd, gbd request t

*request

write block A pointer to a function
which writes a
request->block to the
device gbd from the buffer
request->buf. Before
calling, fill the fields block,
buf and sem in request.
The call of this function is
synchronous if sem is NULL.
The call of this function is
asynchronous otherwise.
When the asynchronous
write is done the semaphore
sem is signaled. In
synchronous mode the
return value 1 indicates
success and 0 failure. In
asynchronous mode 1 is
returned when the work is
submitted to the lower layer,
0 indicates failure in
submission.

uint32 t (*)(gbd t

* gbd)

block size Returns the block size of the
device in bytes.

uint32 t (*)(gbd t

* gbd)

total blocks Returns the total number of
blocks on the device.

Table 10.6: Fields in the structure gbd t.

98 CHAPTER 10. DEVICE DRIVERS

Type Name Explanation
gbd operation t operation Read or write. Set when

write or read is called,
preset values are ignored.

uint32 t block Block number to operate on.
uint32 t buf Non mapped address

(physical memory address)
to a buffer of size equal to
blocksize of the device.
Address must be a physical
memory address, because
physical devices will handle
only those.

sem t * sem Semaphore which will be
incremented when the
request is done. Can be
NULL. If NULL, the request
will be handled
synchronously (will block).

void * internal Driver internal information,
ignored when using this
structure.

gbd request t * next Pointer to the next request
in the chain. Ignore when
using, driver will use this in
the I/O-scheduler.

int return value Return status of this
request. Set when request is
handled. This is 0 if the
request was successful.

Table 10.7: Fields in the structure gbd request t.

10.3. DRIVERS 99

In case of asynchronous calls gbd -interface functions will return immediately and
waiting is left for the caller. This means creating a semaphore before submitting the
request and the waiting it to be released. Memory reserved for the request may not
be released until the request is really served by the interrupt handler (ie. semaphore
is released). The thread using a GBD device must be very careful especially with
reserving memory from function stacks (ie. static allocation). If function is exited
before the request is served, memory area of the request may corrupt.

In case of synchronous calls gbd -inerface functions will block until the request is
handled. The memory of the request data structure may be released when returned
from gbd -interface functions.

10.2.5 Generic Network Device

A generic network device (GND) is an abstraction of any network device. The
GND interface defines functions for receiving and sending data as well as finding
the maximum transfer unit (MTU) or the network address of the interface. GND is
a generic interface which allows the code that uses the network device to be unaware
of the actual implementation of the network device driver. The GND structure is
described in Table 10.8.

drivers/device.h,

drivers/device.c

Device driver interface

drivers/drivers.h,

drivers/drivers.c

List of available device drivers

drivers/yams.h Constants derived from the YAMS hardware

drivers/gcd.h Generic character device

drivers/gbd.h Generic block device

drivers/gnd.h Generic network device

10.3 Drivers

10.3.1 Polling TTY driver

Two separate drivers are provided for TTY. The first one is implemented by polling
and the other with interrupt handlers. The polling driver is needed in boot up
sequence when interrupts are disabled. It is also useful in kernel panic situations,
because interrupt handlers might not be relied on in error cases.

void polltty init (void)

• Initializes the polling TTY driver. Finds the first console device in YAMS
and attaches to that. Other polltty-functions must not be called before
polltty init() has been called.

int polltty getchar (void)

• Gets one character from TTY device. Blocks (busyloop) until a character has
been successfully read. Returns 0 on error (no TTY device).

• Returns the character read.

• Note that the polling TTY driver is unreliable on reads: characters may be
lost if input buffer overflows in the hardware (buffer is 1 character in size).

100 CHAPTER 10. DEVICE DRIVERS

Type Name Explanation
device t * device Pointer to the real device.
int (*)(struct

gnd struct *gnd,

void *frame,

network address t

addr)

send Pointer to a function which
sends one network frame to
the given address. The
network frame must be in
the format defined by the
media. (For YAMS this means
that the first 8 octets are
filled by the network layer
and the rest is data.) The
call of this function blocks
until the frame is sent. Note
that the pointer to the
frame is a physical address,
not a segmented one and the
frame must have the size
returned by the frame size

function. The return value 0
means success. Other values
indicate failure.

int (*)(struct

gnd struct *gnd,

void *frame)

recv Pointer to a function which
receives one network frame.
The network frame returned
will be in the format defined
by the media. (For YAMS this
means that the first 8 octets
specify the source and
destination addresses and
the rest is data.) Note that
the pointer to the frame is a
physical address, not a
segmented one and the
frame must have the size
returned by the frame size

function. The call of this
function will block until a
frame is received. Otherwise
the call will return error
when no frame is available.
The return value 0 means
success. Other values
indicate failure.

uint32 t (*)(struct

gnd struct *gnd)

frame size Pointer to a function which
returns the frame size of the
media in octets.

network address t

(*)(struct

gnd struct *gnd)

hwaddr Pointer to a function which
returns the network address
(MAC) of this interface.

Table 10.8: Fields in the structure gnd t.

10.3. DRIVERS 101

void polltty putchar (char c)

• Writes character c to TTY. If TTY is not initialized or found, ignores the
write.

drivers/polltty.c,

drivers/polltty.h

Polling TTY driver implementation

lib/libc.c,

lib/libc.h

kwrite() and kread()

10.3.2 Interrupt driven TTY driver

The interrupt driven or the asynchronous TTY driver is the terminal device driver
used most of the kernel terminal I/O-routines. The terminal driver has two functions
to provide output to the terminal and input to the kernel. Both of these happen
asynchronously. I.e., the input handling is triggered when the user presses a key
on the keyboard. The output handler is invoked when some part of the kernel
requests a write. The asynchronous TTY driver is implemented in drivers/tty.c

and implements the generic character device interface.
The following functions implement the TTY driver:

device t * tty init (io descriptor t *desc)

• Initialize a driver for the TTY defined by desc. This function is called once
for each TTY driver present in the YAMS virtual machine.

• Implementation:

1. Allocate memory for one device t.

2. Allocate memory for one gcd t and sets generic device to point to it.

3. Set gcd->device to point to the allocated device t, gcd->write to
tty write and gcd->read to tty read.

4. Register the interrupt handler (tty interrupt handle).

5. Allocate a structure that has (small) read and write buffers and head
and count variables for them, and a spinlock to synchronize access to the
structure and real device to point to it. The first tty driver’s spinlock
is shared with kprintf() (i.e., the first tty device is shared with polling
tty driver).

6. Return a pointer to the allocated device t.

void tty interrupt handle (device t *device)

• Handle interrupts concerning device. This function is never called directly
from kernel code, instead it is invoked from interrupt handler.

• Implementation (If WIRQ set):

1. Acquire the driver spinlock.

2. Issue the WIRQD into COMMAND (inhibits write interrupts).

3. Issue the Reset WIRQ into COMMAND.

4. While WBUSY is not set and there is data in the write buffer, Reset
WIRQ and write a byte from the write buffer to DATA.

102 CHAPTER 10. DEVICE DRIVERS

5. Issue the WIRQE into COMMAND (enables write interrupts).

6. If the buffer is empty, wake up the threads sleeping on the write buffer.

7. Release the driver spinlock.

• Implementation (If RIRQ set):

1. Acquire the driver spinlock.

2. Issue the Reset RIRQ command to COMMAND. If this caused an error,
panic (serious hardware failure).

3. Read from DATA to the read buffer while RAVAIL is set. Read all
available data, even if the read buffer becomes filled (because the driver
expects us to do this).

4. Release the driver spinlock.

5. Wake up all threads sleeping on the read buffer.

static int tty write (gcd t *gcd, void *buf, int len)

• Write len bytes from buf to the TTY specified by gcd.

• Implementation:

1. Disable interrupts and acquire driver spinlock.

2. As long as write buffer is not empty, sleep on it (release-reacquire for the
spinlock).

3. Fill the write buffer from buf.

4. If WBUSY is not set, write one byte to the DATA port. (This is needed
so that the write IRQ is raised. The interrupt handler will write the rest
of the buffer.)

5. If there is more than one byte of data to be written, release the spinlock
and sleep on the write buffer.

6. If there is more data in buf, repeat from step 3.

7. Release spinlock and restore interrupt state.

8. Return the number of bytes written.

static int tty read (gcd t *gcd, void *buf, int len)

• Read at least one and at most len bytes into buf from the TTY specified by
gcd.

• Implementation:

1. Disable interrupts and acquire driver spinlock.

2. While there is no data in the read buffer, sleep on it (release-reacquire
for the spinlock).

3. Read MIN(len, data-in-readbuf) bytes into buf from the read buffer.

4. Release spinlock and restore interrupt state.

5. Return the number of bytes read.

drivers/tty.c

drivers/tty.h

The interrupt driven TTY implementation

10.3. DRIVERS 103

10.3.3 Network driver

YAMS includes a simulated network interface card (NIC). The driver for this device
is not included in BUENOS because it was left as an exercise for the students. The
YAMS NIC is very similar to the other YAMS DMA devices. The network card has a
memory mapped I/O-area which has ports for reading data and a command port
for giving commands. The YAMS NIC will signal completion of tasks by raising
interrupts. See the YAMS manual for further details.

When implementing the network driver you need to provide implementations for
the interface functions specified by the general network device, which are explained
in section 10.2.5. In addition to this at least an initialization function and an
interrupt handler is needed. See also the device driver implementor’s checklist in
section 10.2.1.

10.3.4 Disk driver

The disk driver implements the Generic Block Device (GBD) interface (see sec-
tion 10.2.4). The driver is interrupt driven and provides both synchronous (block-
ing) and asynchronous (non-blocking) operating modes for request. The driver has
three main parts:

• Initialization function, which is called in startup when a disk is found.

• Interrupt handler.

• Functions which implement the GBD interface (read, write and information
inquiring).

The disk driver maintains a queue of pending requests. The queue insertion is
handled in disk scheduler, which currently just inserts new requests at the end of the
queue. This queue, as well as access to the disk device, is protected by a spinlock.
The spinlock and queue are stored in driver’s internal data (see Table 10.9). The
internal data also contains a pointer to the currently served disk request.

Note how the fields modified by both top- and bottom-parts of the driver are
marked as volatile, so that the compiler won’t optimize access to them (store
them in registers and assume that value is valid later, which would obviously be a
flawed approach because of interrupts).

The implementation contains the following functions:

device t disk init (io descriptor t *desc)

• Initializes the disk driver for the disk pointed by desc.

• Implementation:

1. Allocate memory for device record (device t), generic block device
record (gbd t) and internal data (disk real device t, see Table 10.9).

2. Initialize the device record entries.

3. Set GBD function pointers to point to disk’s implementation.

4. Initialize internal data, including the spinlock used for synchronization
for this device.

5. Register the interrupt handler (disk interrupt handle).

104 CHAPTER 10. DEVICE DRIVERS

Type Name Explanation
spinlock t slock Spinlock which must be held

when operating the device
(disk), or manipulating
driver’s internal data
structures.

volatile

gbd request t *

request queue The head of a linked list
containing all the pending
requests for this disk.

volatile

gbd request t *

request served Pointer to the request which
the disk is currently
processing (request sent to
the hardware and waiting
for its interrupt). The same
request is never in this
variable and in request
queue at the same time.

Table 10.9: Fields in disk driver’s internal data structure (disk real device t)

static void disk interrupt handle (device t *device)

• Handle an interrupt on an interrupt line for which this handler for device
driver has been registered.

• Note that this function may be called at any time, even on all CPUs at once
and even for nothing (in case of shared IRQs).

• The handler will check whether a request has ended and if so, start a new
request if one is available. New requests are taken from the beginning of the
request queue.

• Implementation:

1. Acquire the device spinlock (interrupts are disabled by default).

2. Check whether our disk has pending interrupts. If not, release the spin-
lock and return. (This interrupt was actually for some other device on
the same IRQ line).

3. Reset pending IRQs on the device.

4. Assert that we have a reference to the served request in device’s internal
data (request served). This is the request that should now be complete,
because the device generated an IRQ.

5. Set return value to 0 (Success) in the served request.

6. Call semaphore V for served request’s semaphore, so that the waiter
(caller or internal routine) will know that the request is ready.

7. Call disk next request. That function will start new request on the
disk if one is available in the queue of pending requests.

8. Release the device spinlock.

10.3. DRIVERS 105

static void disk next request (gbd t *gbd)

• Start new operation on an idle disk device if queued requests are available.

• This function assumes that the device spinlock is already held and that inter-
rupts are disabled.

• Implementation:

1. Assert that the disk is not busy.

2. Assert that no request is marked as the currently served request.

3. If there are no requests in the queue, return.

4. Remove the first request from the queue of pending requests and set it
as the served request.

5. Write the sector value to the disk’s sector-port.

6. Write the address of the request’s buffer to the disk’s address-port (note
that this must be a physical address, not a segmented address).

7. Write the read or write command to disk’s command-port.

static int disk read block (gbd t *gbd, gbd request t *request)

• Takes in a new read request. This function implements the read-interface on
Generic Block Device (GBD).

• Returns 1 on success, 0 otherwise.

• Implementation:

1. Mark the request as read-request.

2. Submit the request to the driver with disk submit request.

static int disk write block (gbd t *gbd, gbd request t *request)

• Takes in a new write request. This function implements the write-interface
on Generic Block Device.

• Returns 1 on success, 0 otherwise.

• Implementation:

1. Mark the request as write-request.

2. Submit the request to the driver with disk submit request.

static int disk submit request (gbd t *gbd, gbd request t *request)

• Submits a new request into the disk’s request queue. If the disk is currently
idle, puts the request to the disk device.

• Implementation:

1. Check whether the semaphore in the request is NULL. If it is, set
sem null to true, else set it to false.

2. If sem null = true, create new semaphore and set it as the semaphore
for this request.

3. Disable interrupts.

106 CHAPTER 10. DEVICE DRIVERS

4. Acquire the device spinlock.

5. Call disksched schedule to place the new request in the queue of pend-
ing requests.

6. If the disk is idle (no served request), call disk next request to start a
new request on the device.

7. Release the device spinlock.

8. Restore the interrupt status.

9. If sem null = true (we created the semaphore for this request) call
semaphore P on the created semaphore. Thus if this was a blocking
call, wait until the request is complete. After the semaphore lowering
returns, destroy the semaphore and set it back to NULL in the request
structure.

10. Return with success (1) or error (0).

static uint32 t disk block size (gbd t *gbd)

• Returns the blocksize of the disk in bytes. Implements the getblocksize-
interface in the Generic Block Device (GBD).

• Implementation:

1. Disable interrupts.

2. Acquire the device spinlock.

3. Write the blocksize request command into the disk’s command port.

4. Read the blocksize from the disk’s data-port.

5. Release the device spinlock.

6. Restore the interrupt status.

7. Return the blocksize in bytes.

static uint32 t disk total blocks (gbd t *gbd)

• Returns the total number of blocks on this device.

• Implementation:

1. Disable interrupts.

2. Acquire the device spinlock.

3. Write the block number request command to the disk’s command-port.

4. Read the number of blocks from the disk’s data-port.

5. Release the device spinlock.

6. Restore the interrupt status.

7. Return the total number of blocks.

10.3. DRIVERS 107

Disk Scheduler

void disksched schedule (volatile gbd request t **queue,

gbd request t *request)

• Adds given request to queue. The placement location depends on the disk
scheduling policy. The current policy is strict FIFO (first in, first out). Thus
we always add new requests to the end of request queue.

• The first argument is marked volatile, because the function is often called
from places where queues are volatile and thus extra casting is avoided at
the calling side.

• Implementation:

1. Add the request to the end of linked list queue.

drivers/disk.h,

drivers/disk.c

Disk driver

drivers/disksched.h,

drivers/disksched.c

Disk scheduler

drivers/gbd.h Generic Block Device

10.3.5 Timer driver

Timer driver allows to set timer interrupts (harware interrupt 5) at certain inter-
vals. C-function timer set ticks() works as a front-end for the assembler function
timer set ticks. C-function takes number of processor clock cycles after the timer
interrupt is wanted to happen, and it passes it to the assembler function that does
all work.

A timer interrupt is caused by using CP0 registers Count and Compare. Count
register contains the current cycle count and Compare register the cycle number
that the timer interrupt happens. The assembler function simply adds the number
of cycles to the current cycle count and writes it to the Compare register.

void timer set ticks (uint32 t ticks)

• Passes the argument to the assembler function that sets a timer interrupt to
happen after ticks clock cycles.

timer set ticks (A0)

• Sets a timer interrupt to happen by adding the contents of a0 to the current
value of Count register and writing it to the Compare register.

drivers/timer.c,

drivers/timer.h,

drivers/ timer.S

Timer driver implementation

108 CHAPTER 10. DEVICE DRIVERS

10.3.6 Metadevice Drivers

Metadevices is a name for those devices documented in the YAMS documentation as
non-peripheral devices (the 0x100 -series). They don’t really interface to any specific
device but rather to the system itself (the motherboard main chipset, firmware or
similar). The metadevices and their drivers are very simple, and they are as follows.

Meminfo

The system memory information device provides information about the amount of
memory present in the system.

The meminfo device driver is a wrapper to the meminfo device I/O ports, and
consists of the following functions:

device t * meminfo init (io descriptor t *desc)

• Initializes the system meminfo device.

uint32 t meminfo get pages (void)

• Get the number of physical memory pages (4096 bytes/page) in the machine
from the system meminfo device. Reads the PAGES port of the YAMS meminfo
device.

RTC

The Real Time Clock device provides simulated real time data, such as system
uptime and clock speed.

The RTC device driver is a wrapper to the RTC device I/O ports, and consists
of the following functions:

device t * rtc init (io descriptor t *desc)

• Initializes the system RTC device.

uint32 t rtc get msec (void)

• Get the number of milliseconds elapsed since system startup from the system
RTC. Reads the MSEC port of the YAMS RTC device.

uint32 t rtc get clockspeed (void)

• Get the machine (virtual/simulated) clock speed in Hz from the system RTC.
Reads the CLKSPD port of the YAMS RTC device.

Shutdown

The (software) shutdown device is used to either halt the system by dropping to
the YAMS console (firmware console) or “poweroff” the system by exiting YAMS com-
pletely.

The shutdown device driver consists of the following functions:

device t * shutdown init (io descriptor t *desc)

• Initializes the system shutdown device.

EXERCISES 109

void shutdown (uint32 t magic)

• Shutdown the system with the given magic word. Writes the magic word to
the SHUTDN port of the YAMS shutdown device.

• The magic word should be either DEFAULT SHUTDOWN MAGIC
or POWEROFF SHUTDOWN MAGIC.

• Can be called even though the shutdown device is not initialized (kernel should
always be able to panic).

CPU Status

Each processor has its own status device. These devices can be used to count the
number of CPUs on the system or to generate interrupts on any CPU. The driver
implements the following functions:

device t * cpustatus init (io descriptor t *desc)

• Initializes the CPU status device.

int cpustatus count ()

• Returns the number of CPUs in the system.

void cpustatus generate irq (device t *dev)

• Generates an interrupt on the CPU described by dev.

void cpustatus interrupt handle (device t *dev)

• Clears the interrupt generated by dev.

drivers/metadev.c,

drivers/metadev.h

Metadevice driver implementation

Exercises

10.1. Why does the TTY driver have small input and output buffers? What are
they used for and what are the benefits and drawbacks (if any) of having these
kinds of buffers?

10.2. Why doesn’t tty write write *buf by itself? Can you trace the control of
the kernel during writing, say a five character buffer, to the terminal?

10.3. Interrupt handlers cannot print anything in BUENOS, because they cannot ac-
cess the interrupt driven TTY driver by proper syncronization (why?). Can
the polling TTY driver be used to print in an interrupt handler? Why or why
not?

110 CHAPTER 10. DEVICE DRIVERS

Ï 10.4. Implement a device driver for the network interface. The hardware is docu-
mented in YAMS manual. The driver is the low level (link layer) interface to
the network card and it will be used to access the card when implementing a
network protocol stack.

You might find it helpful to take a look at the disk device driver before de-
signing your own driver.

The driver should implement the Generic Network Device interface (specified
in drivers/gnd.h, see section 10.2.5), and in addition of course have an
initialization function and an interrupt handler.

Hint: take a look at section 10.3.3.

Chapter 11

Booting and Initializing

Hardware

This chapter explains the bootup process of the BUENOS system from the first in-
struction ever executed by the CPU to the point when userland processes can be
started.

11.1 In the Beginning There was boot.S . . .

When YAMS is powered up, its program counter is set to value 0x80010000 for all
processors. This is the address where the BUENOS binary image is also loaded. Code
in boot.S is the very first code that YAMS will execute. Because no initializations
are done (ie. there is no stack), boot.S is written in assembly.

The first thing that the boot.S code will do is processor separation. The
processor number is detected and all processors except number 0 will enter a wait
loop waiting for the kernel initialization to be finished. Later, when the kernel
initialization (in main.c) is finished, processor 0 will signal the other processors to
continue.

So that further initialization code could be written in a high-level language, we
need a stack. A temporary stack will be located at address 0x8000fffc, just below the
starting point of the BUENOS binary image. The stack will grow downward. Setting
up the base address of the stack is done after processor separation in boot.S. Later,
after initialization code, every kernel thread will have own stack areas.

After this we have a stack and high-level language routines may be used. On the
next line of boot.S, we’ll jump to the high-level initialization code init() located
in main.c.

11.2 Hardware and Kernel Initialization

The first thing the init() function does is set up the polling TTY driver (see
section 10.3.1). The polling driver is needed in bootup, because interrupts cannot
be enabled before hardware is properly set up and system interrupt handlers are
initialized. Polling TTY is accessed through kwrite(), kread() and kprintf()

functions.

Next, the kernel will set up the memory allocation system (kmalloc), which can
be used during the boot process. Memory allocated at this stage is never released.
After the memory allocation setup, the kernel reads boot arguments from YAMS (see

112 CHAPTER 11. BOOTING AND INITIALIZING HARDWARE

Appendix A) and seeds the random number generation system based on the boot
arguments.

Further, the kernel will initialize interrupt handling system (interrupts still dis-
abled, but handlers can now be installed), sets up the threading system and high
level synchronization primitives (the sleep queue and semaphores).

The next step is to detect all supported hardware in the system, which is done
by calling device init(). After the call, drivers for all supported devices have
been installed. After device drivers, the virtual filesystem is initialized.

Now we are in a state where we can initialize the virtual memory subsystem
which also disables kernel memory allocation system.

A thread is created (note that the bootup doesn’t run in any thread) and it will
be started (since interrupts are disabled it doesn’t actually run). This new thread
will later run system startup sequence in function init startup thread().

Finally, other CPUs in the system are released from waiting loop and interrupts
are enabled. Explicit software interrupt is generated and the startup thread is forced
to run.

11.3 System Start-up

Now we are running inside a real thread in function init startup thread. The
system is actually already running, but now we do all the initializations that can
be done on a running system.

First, all filesystems are mounted into the VFS. Then networking subsystem is
also initialized.

Finally, if initprog boot argument was given to the kernel, we will start
the specified userland program. This ends the kernel bootup sequence. If
an initial program was not given, the init thread will fall back to function
init startup fallback() which can be used to run test code.

init/ boot.S Kernel entry point after boot

init/main.c Kernel bootup code

Appendix A

Kernel Boot Arguments

YAMS virtual machine provides a way to pass boot arguments from the host oper-
ating system to the booted kernel. BUENOS supports these arguments. Typically
arguments are given like this:

yams buenos randomseed=123 ’initprog=[root]shell’ debuginit

In the example above, we give three arguments to the kernel. Two of the ar-
guments have values, one has only name. Note the quotation used to protect the
second argument string from host shell. The arguments without a value are equal
to arguments with a value of an empty string (not NULL).

Boot arguments can be accessed in BUENOS with the following function:

char * bootargs get (char *key)

• Gets the boot argument specified by key.

• Returns the value of the key. Returns NULL if the argument was not given
on kernel command line. Valueless parameters return a pointer to an empty
string.

The DEBUG printing system uses boot arguments to decide whether the particular
debug string should be printed or not. main.c contains example on DEBUG usage
and uses debuginit-argument. The console test in main.c also uses boot argument
(testconsole).

The following boot arguments have predefined meaning:

initprog Defines the process to start after the system has been booted. Example:
“initprog=[root]halt”.

randomseed Specifies the seed with which to initialize the (pseudo)random num-
ber generator. If this argument is not present, the random number generator
is seeded with 0. Example: “randomseed=123” seeds the generator with 123.
The random number generator is currently used only to introduce some vari-
ance to the length of the time slice. It can of course be used in any place
where there is need for (pseudo)random numbers.

drivers/bootargs.h,

drivers/bootargs.c

Boot argument handling

lib/debug.h,

lib/debug.c

Debug printing

Appendix B

Kernel Configuration

Settings

Many static constants defining limits of BUENOS kernel can be tuned by editing the
kernel configuration file kernel/config.h. All configuration options are defined as
C preprocessor macros starting with prefix CONFIG .

Every parameter can be changed in the limits defined in the comment just
above the corresponding configuration parameter. Many limits are arbitrary, but
some values really have to be within the limits in order to get a working system.

The current implementation restricts the number of threads to 256 which is the
maximum number of address space identifiers in MIPS32 CPU. The kernel stack size
should not be increased much, since the space is statically allocated and multiplies
by the number of possible running threads. The system can handle more than 32
CPUs, but YAMS will start to run out of device descriptors (it has 128) if more than
this amount is defined.

Here is a list of current configuration parameters:

CONFIG MAX THREADS

• Purpose: Defines the size of the thread table and thus the maximum number
of threads supported by the kernel

• Value range: from 2 (idle + init) to 256 (max. ASID)

CONFIG THREAD STACKSIZE

• Purpose: Sets the size of the private kernel stack area of each thread.

• Value range: from 2048 (must hold contexts) to any size, but settings over
4096 are not recommended.

CONFIG MAX CPUS

• Purpose: Sets the maximum number of CPUs supported by the kernel.

• Value range: 1 – 32

CONFIG SCHEDULER TIMESLICE

• Purpose: Defines the length of the scheduling interval (timeslice) in processor
cycles.

• Value range: from 200 (can get out of context switch) to any higher value.

115

CONFIG BOOTARGS MAX

• Purpose: Sets the maximum number of boot arguments the kernel will ac-
cept.

• Value range: 1 – 1024

CONFIG MAX SEMAPHORES

• Purpose: Defines the total number of semaphores in the system.

• Value range: 16 – 1024

CONFIG MAX DEVICES

• Purpose: Defines the maximum number of hardware devices supported by
the kernel.

• Value range: 16 – 128 (YAMS maximum)

CONFIG MAX FILESYSTEMS

• Purpose: Defines the maximum number of filesystems.

• Value range: 1 – 128

CONFIG MAX OPEN FILES

• Purpose: Defines the maximum number of open files.

• Value range: 16 – 65536

CONFIG MAX OPEN SOCKETS

• Purpose: Defines the maximum number of network sockets the kernel will
support.

• Value range: 4 – 512

CONFIG POP QUEUE SIZE

• Purpose: Defines the the size of receive queue of packet oriented prototol
(POP).

• Value range: 4 – 512

CONFIG POP QUEUE MIN AGE

• Purpose: Defines the minumum time in milliseconds that POP packets stay
in the input queue if nobody is interested in receiving them.

• Value range: 0 – 10000

CONFIG MAX GNDS

• Purpose: Defines the maximum number of network interfaces the kernel will
support.

• Value range: 1 – 64

116 APPENDIX B. KERNEL CONFIGURATION SETTINGS

CONFIG USERLAND STACK SIZE

• Purpose: Defines the number of stack pages the userland process has.

• Value range: 1 – 1000

kernel/config.h Configurable kernel parameters

Appendix C

Example YAMS Configurations

C.1 Disk

A good example disk for filesystem implementation which do not cause too large
store files to be created on the host operating system could be (note that if pointed
here by an exercise, you must use this entry as it is):

Section "disk"

vendor "128k"

irq 3

sector-size 128

cylinders 256

sectors 1024

rotation-time 25 # milliseconds

seek-time 200 # milliseconds, full seek

filename "store.file"

EndSection

Bibliography

[Andrews] Andrews, G. R., Foundations of multithreaded, parallel and dis-
tributed programming, ISBN 0-201-35752-6, Addison-Wesley Long-
man, 2000

[Patterson] Patterson, D. A., Computer organization and design: the hard-
ware/software interface, ISBN 1-55860-491-X, Morgan Kaufmann
Publishers, 1998

[Stallings] Stallings, W., Operating Systems: Internals and Design Principles,
4th edition, ISBN 0-13-032986-X, Prentice-Hall, 2001

[K&R] Kernighan B. W., Ritchie D. M., The C Programming Language, 2nd
Edition, ISBN 0-13-110362-8, Prentice-Hall, 1988

[Tanenbaum] Tanenbaum, A. S., Modern Operating Systems, 2nd edition, ISBN
0-13-031358-0, Prentice-Hall, 2001

[Miller] Miller, Peter, Recursive Make Considered Harmful,
http://www.tip.net.au/~Emillerp/rmch/recu-make-cons-harm.html

http://www.tip.net.au/~Emillerp/rmch/recu-make-cons-harm.html

Index

Symbols
cswitch switch . 23
timer set ticks 107
tlb get exception state 55
tlb get maxindex 55
tlb probe . 55
tlb read . 56
tlb set asid .55
tlb write . 56
tlb write random 56

A
absolute pathnames 59
adding memory mappings 51
adding system calls 42
ADDR KERNEL TO PHYS 48
ADDR PHYS TO KERNEL 48
address space identifier 53
ASID . 53, 55

B
BAT . 72
binary compatibility 42
binary format, userland programs. . . .38
block allocation table (TFS) 72
blocking interrupts 22
boot arguments. .15
bootargs get . 113
booting . 111
bottom half, device driver 91
bullet proofing. .41
busy waiting. .14

C
C calling convention 15
calling convention 15
CHANGEDFLAGS . 5
closing files . 64
co-processor unusable exception 14
compiling

the system . 4
userland programs 5, 6

CONFIG BOOTARGS MAX 115
CONFIG MAX CPUS 114
CONFIG MAX DEVICES 115

CONFIG MAX FILESYSTEMS 115
CONFIG MAX GNDS 115
CONFIG MAX GNDS . 82
CONFIG MAX OPEN FILES 115
CONFIG MAX OPEN SOCKETS115
CONFIG MAX OPEN SOCKETS 84
CONFIG MAX SEMAPHORES115
CONFIG MAX THREADS 114
CONFIG MAX THREADS 17
CONFIG POP QUEUE MIN AGE 115
CONFIG POP QUEUE MIN AGE 87
CONFIG POP QUEUE SIZE 115
CONFIG POP QUEUE SIZE 85
CONFIG SCHEDULER TIMESLICE114
CONFIG SCHEDULER TIMESLICE 20
CONFIG THREAD STACKSIZE 114
CONFIG USERLAND STACK SIZE 116
connection oriented protocol 89
console . 14
context. .13, 21, 23

restoring . 23
saving . 23
saving area . 24
userland process 37

context switch
definition . 21
implementation 23

context t 23, 24, 37, 38
conventions, filesystem.59
CPU status driver 109
cpustatus count 109
cpustatus generate irq 109
cpustatus init .109
cpustatus interrupt handle109
creating

a TFS volume.6
a thread . 17
files . 66

cswitch switch 22, 24
cswitch vector code 22

D
DEBUG . 15
debug printing. .14
DEFAULT SHUTDOWN MAGIC 109

120 INDEX

deleting files . 66
detecting hardware 111
device abstraction layers 93
device drivers. .91

implementing new ones 93
device get .96
device init . 94
device t . 94
devices . 91
directories . 59
dirty bit . 52
dirty memory page 52
disk driver . 103
disk scheduler 103, 107
disk block size 106
disk init .103
disk interrupt handle104
disk next request 105
disk read block 105
disk submit request 105
disk total blocks 106
disk write block105
disksched schedule 107
DMA. .91
driver

disk . 103
filesystem . 69
interrupt driven TTY 101
polling TTY . 99

drivers available93, 94
DYING .17, 20

E
elf parse header 39
ELF. 38
elf info t . 39
elf parse header 39
entry point . 39
exception . 22

handling . 24
kernel exceptions.25
TLB exceptions 53
TLB miss, load reference 53
TLB miss, modified 53
TLB miss, store reference 53

exception handling 24
EXCEPTION TLBL . 53
EXCEPTION TLBM . 53
EXCEPTION TLBS . 53
execution context .22
EXL bit . 24, 42

F
file operations, VFS 64

filename, maximum length of 61
FILES . 5
files

creating .66
deleting . 66
open files . 64
reading . 65
writing. .65

filesystem . 59
conventions . 59
directories . 59
driver . 69
free space . 69
layers . 59
limits . 61
volume . 59, 60

filesystems try all 71
filling the TLB . 56
floating point numbers.14
forceful unmount . 63
frame, network . 79
frame handler . 80
frame handler t . 80
FREE . 16, 20
free space, filesystem 69
fs t . 69

G
GBD . 96
GBD OPERATION READ 96
gbd operation t . 96
GBD OPERATION WRITE 96
gbd request t . 96
gbd t .96
GCD . 96
generic devices . 93

block . 59, 96
character . 96
network . 79, 99

GND . 79, 99
gnd t .99
GNU Make . 4

H
halting the operating system.43
handling exceptions, userland 41
hardware

initialization 111
memory page size 48

hardware/software interface.9
header

network . 79
POP. 85

INDEX 121

I
idle thread . 21
IDLE THREAD TID . 21
IGNOREDREGEX . 5
implementing a device driver 93
init startup thread()112
inter-CPU interrupts 109
interrupt

handler 10, 22, 92
inter-CPU . 109
stack . 13, 24
stack area. .23
TTY driver . 101
vectors .22

interrupt handle 92
interrupt handle 23
interrupt init . 23
interrupt register 92
invoking YAMS . 4
io descriptor t . 94
IRQ, shared . 91

K
kernel

boot arguments 15
configuration 114
exceptions . 25
programming 13
stack. .13
using memory.13

kernel memory segment
mapped . 49
unmapped . 49
unmapped uncached 49

kernel exception handle 25
kernel exception handle 24
kernel interrupt stacks 22, 23
kmalloc . 13, 49
kprintf . 14
kwrite . 14

L
list of system calls 42
LL instruction . 27
loopback address, network 79

M
Make . 4
makefiles . 5
mapped memory region.52
mapping memory 50, 51
master directory block (TFS) 72
maximum length

filename . 61

pathname . 61
MD . 72
meminfo . 108
meminfo get pages 108
meminfo init . 108
memory

mapped I/O . 91
mapped range.52
mapping. .49–51
page size . 48
reservation, page pool 49
segmentation.48
segments . 13
user mapped region 48
using in the kernel 13

memory management unit 52
memory segments

kernel mapped 49
kernel unmapped 49
kernel unmapped uncached.49
supervisor mapped 49

metadevice drivers 108
MMU . 52
MODULES . 5
mount-point . 59, 60
mounting filesystems 60, 67

N
naming conventions.14
network

addresses . 79
driver .103
frame . 79
header . 79
layers . 79
payload . 79
service API . 81
service thread 81
stack. .79

network free frame 83
network get broadcast address82
network get loopback address 82
network get mtu . 82
network get source address 82
network init . 81
network protocols 80
network protocols t 80
network receive frame 81
network receive thread81
network send . 82
network send interface83
networking . 79
NIC . 79, 103
NONREADY .17

122 INDEX

O
open files . 64
open sockets . 84
open sockets sem 84
openfile table . 62

P
Packet Oriented Protocol 83
page pool. .49
page size, memory 48
page tables . 50
pagepool free pages 49
pagepool free phys page 50
pagepool get phys page 50
pagepool init . 49
pagetable t . 50
pathname

absolute . 59
maximum length 61

payload, network . 79
physical memory address 49
polling TTY driver 99
polltty getchar .99
polltty init . 99
polltty putchar 101
POP. .83, 85

header . 85
port numbers 83
queue . 85

pop init . 86
pop push frame . 86
pop push frame . 86
pop queue sem . 85
pop service thread 87
port numbers, POP 83
POWEROFF SHUTDOWN MAGIC 109
priority, thread . 20
process startup . 37
process start . 37
program counter .22
program entry point 39

Q
queue, POP . 85

R
random numbers 113

seed . 113
read-only memory mapping 52
read-only segment 39
read-write segment 39
reading files . 65
READY .16, 20
ready to run list . 20

real time clock . 108
receive service thread, network.81
registering interrupt handlers 92
registers

a0–a3 . 42
v0 . 42

removing files . 66
resource waiting . 28
return values, VFS 60
RMW sequence .27
RTC . 108
rtc get clockspeed 108
rtc get msec . 108
rtc init . 108
RUNNING . 16, 20

S
SC instruction . 27
scheduler . 20

locking. .20
scheduler add ready 21
scheduler current thread20, 23
scheduler ready to run 20, 21
scheduler schedule 20
segments, memory 13, 48
semaphore create 32
semaphore destroy 33
semaphore P . 33
semaphore P . 31
semaphore t . 32
semaphore table .32
semaphore table slock 32
semaphore V . 33
semaphore V . 32
semaphores . 31

implementation 32
service API, network 81
service thread, network 81
shared IRQ. 91
shutdown . 109
shutdown driver . 108
shutdown init . 108
size

memory page 48
TLB . 55

sleep queue . 28
implementation 30
usage . 28

SLEEPING . 17, 20
sleeping . 28
sleepq add .30
sleepq add .28
sleepq hashtable 30
sleepq init . 31

INDEX 123

sleepq slock . 30
sleepq wake . 30
sleepq wake . 28
sleepq wake all . 31
sleepq wake all . 28
sleeps on 19, 20, 30, 31
SMP . 11
socket close . 85
socket connect . 89
socket connect . 84
socket descriptor t 84
socket init . 84
socket listen . 89
socket listen . 84
socket open . 84
socket read . 89
socket read . 84
socket recvfrom .88
socket recvfrom .84
socket sendto . 88
socket sendto . 84
socket write . 89
socket write . 84
sockets, network 83, 84
software interrupt 42
software interrupt 0 19
SOP. .89
SOURCES . 6
spinlock . 27
spinlock acquire 28
spinlock release 28
spinlock reset . 28
stack . 13

for interrupts 23
kernel .13

stack pointer . 22
start-up, system . 112
startup of userland processes 37
Stream Oriented Protocol 89
supervisor mapped memory segment . 49
synchronization. .27
syscall close . 43
syscall create . 43
syscall delete . 43
syscall exec . 44
syscall execp . 45
syscall exit . 44
syscall fork . 45
syscall halt . 43
syscall join . 45
syscall memlimit 45
syscall open . 43
syscall read . 44
syscall seek . 43

syscall write . 44
system bootup . 111
system calls .41, 42

adding new . 42
number . 42

T
test-and-set. .27
TFS . 72

block allocation table 72
creating a volume 6
master directory block 72
volume header block 72

tfs close . 74
tfs create .74
tfs getfree . 76
tfs init . 73
tfs open . 74
tfs read . 75
tfs remove .75
tfs unmount . 74
tfs write . 76
tfstool . 72
thread create . 19
thread finish . 19
thread get current thread 19
thread goto userland 38
thread run .19
thread run .21
thread switch . 19
thread switch 29, 42
thread t . 24, 37
thread table . 16
thread table init17
thread table slock 17, 20
threading system . 16
threading, introduction 10
threads . 16

context . 24
creation. .17
ID . 17, 19
library . 17
priority . 20
states . 16
table . 17, 24

TID .19
TID t .17
timer

driver .107
interrupt . 20, 22

timer set ticks 107
timeslice. .20
timeticks . 20
TLB . 48, 52

124 INDEX

exception wrappers 53
exceptions . 53
filling . 56
miss . 41
miss (load) exception 53
miss (store) exception 53
modified exception 53
size . 55

tlb entry t . 53
tlb exception state t 55
tlb fill . 57
tlb fill . 51
tlb load exception 53
tlb modified exception53
tlb store exception 53
top half, device driver 91
translation lookaside buffer 52
Trivial Filesystem 72
tty init . 101
tty interrupt handle 101
tty read . 102
tty write .102

U
UM bit . 24
unmapping memory 52
unmount, forceful.63
unmounting filesystems 67
user mapped memory region 48
user context . 37
user exception handle 41
user exception handle 24
userland . 37

binary format 38
compiling programs.5, 6
exception handling 41
process context 37
processes. .37

userland/kernel interface9
using the sleep queue 28

V
VFS. 60

file operations64
filesystem operations 62
operation . 63
return values .60

vfs close . 64
vfs create .66
vfs deinit .63
vfs end op . 63
VFS ERROR . 61
vfs getfree . 69
VFS IN USE . 60

vfs init . 62
VFS INVALID PARAMS 60
VFS LIMIT . 60
vfs mount . 68
vfs mount all . 67
vfs mount fs. .68
VFS NAME LENGTH . 61
VFS NO SUCH FS . 60
VFS NOT FOUND . 60
VFS NOT OPEN. .60
VFS NOT SUPPORTED60
VFS OK . 60
vfs op sem . 62
vfs open . 64
vfs ops . 62
VFS PATH LENGTH . 61
vfs read . 65
vfs remove .67
vfs seek . 65
vfs start op. .63
vfs table . 62
vfs unmount sem . 62
VFS UNUSABLE . 61
vfs usable .62
vfs write . 66
virtual filesystem . 60
virtual memory . 48
VM . 48
vm create pagetable 51
vm create pagetable 37
vm destroy pagetable 51
vm init . 49
vm map . 52
vm set dirty. .52
vm unmap . 52
volatile .94
volume (filesystem) 59
volume header block (TFS) 72
volume, filesystem 60

W
waiting for a resource28
writing files. .65

Y
YAMS. 4

invoking . 4
yamst . 4

Z
zombie . 45

	1 Introduction
	1.1 Expected Background Knowledge
	1.2 How to Use This Document
	1.3 BUENOS for teachers
	1.3.1 Preparing for BUENOS Course

	1.4 Exercises
	1.5 Contact Information

	2 Using Buenos
	2.1 Installation and Requirements
	2.2 Compilation
	2.3 Booting the System
	2.4 Compiling Userland Programs
	2.5 Using the Makefiles
	2.5.1 System Makefile
	2.5.2 Userland Makefile

	2.6 Using Trivial Filesystem
	2.7 Starting Processes

	3 Kernel Overview
	3.1 Directory Structure
	3.2 Kernel Architecture
	3.2.1 Threading
	3.2.2 Virtual Memory
	3.2.3 Support for Multiple Processors

	3.3 Kernel Programming
	3.3.1 Memory Usage
	3.3.2 Stacks and Contexts
	3.3.3 Library Functions
	3.3.4 Using a Console
	3.3.5 Busy Waiting
	3.3.6 Floating Point Numbers
	3.3.7 Naming Conventions
	3.3.8 Debug Printing
	3.3.9 C Calling Conventions
	3.3.10 Kernel Boot Arguments

	Exercises

	4 Threading and Scheduling
	4.1 Threads
	4.1.1 Thread Table
	4.1.2 Thread Library

	4.2 Scheduler
	4.2.1 Idle thread

	4.3 Context Switch
	4.3.1 Interrupt Vectors
	4.3.2 Context Switching Code
	4.3.3 Thread Contexts

	4.4 Exception Processing in Kernel Mode
	Exercises

	5 Synchronization Mechanisms
	5.1 Spinlocks
	5.1.1 LL and SC Instructions
	5.1.2 Spinlock Implementation

	5.2 Sleep Queue
	5.2.1 Using the Sleep Queue
	5.2.2 How the Sleep Queue is Implemented

	5.3 Semaphores
	5.3.1 Semaphore Implementation

	Exercises

	6 Userland Processes
	6.1 Process Startup
	6.2 Userland Binary Format
	6.3 Exception Handling
	6.4 System Calls
	6.4.1 How System Calls Work
	6.4.2 System Calls in BUENOS

	Exercises

	7 Virtual Memory
	7.1 Hardware Support for Virtual Memory
	7.2 Virtual memory initialization
	7.3 Page Pool
	7.4 Pagetables and Memory Mapping
	7.5 TLB
	7.5.1 TLB dual entries and ASID in MIPS32 architectures
	7.5.2 TLB miss exception, Load reference
	7.5.3 TLB miss exception, Store reference
	7.5.4 TLB modified exception
	7.5.5 TLB wrapper functions in BUENOS

	Exercises

	8 Filesystem
	8.1 Filesystem Conventions
	8.2 Filesystem Layers
	8.3 Virtual Filesystem
	8.3.1 Return Values
	8.3.2 Limits
	8.3.3 Internal Data Structures
	8.3.4 VFS Operations
	8.3.5 File Operations
	8.3.6 Filesystem Operations
	8.3.7 Filesystem Driver Interface

	8.4 Trivial Filesystem
	8.4.1 TFS Driver Module

	Exercises

	9 Networking
	9.1 Network Services
	9.2 Packet Oriented Transport Protocol
	9.2.1 Sockets
	9.2.2 POP-Specific Structures and Functions

	9.3 Stream Oriented Protocol API
	Exercises

	10 Device Drivers
	10.1 Interrupt Handlers
	10.2 Device Abstraction Layers
	10.2.1 Device Driver Implementor's Checklist
	10.2.2 Device Driver Interface
	10.2.3 Generic Character Device
	10.2.4 Generic Block Device
	10.2.5 Generic Network Device

	10.3 Drivers
	10.3.1 Polling TTY driver
	10.3.2 Interrupt driven TTY driver
	10.3.3 Network driver
	10.3.4 Disk driver
	10.3.5 Timer driver
	10.3.6 Metadevice Drivers

	Exercises

	11 Booting and Initializing Hardware
	11.1 In the Beginning There was _boot.S …
	11.2 Hardware and Kernel Initialization
	11.3 System Start-up

	A Kernel Boot Arguments
	B Kernel Configuration Settings
	C Example YAMS Configurations
	C.1 Disk

	Bibliography
	Index

